Hand in all.

(1) [Jacobson, p. 404 #1]
(2) Show that $U(1)$ is a real form of \mathbb{C}^*, by following the hint in II.B.3(C).
(3) What are the semisimple \mathbb{Z}-modules?
(4) Show that a (left) R-module M has a composition series iff it is Noetherian and Artinian, cf. the remarks just before III.A.4.
(5) Show that the center of a semisimple ring R is a finite direct product of fields. Show that, in the case $R \cong M_n(D)$ (D a division ring), it is a field.
(6) Let M be a finitely generated (left) R-module and $E = \text{End}_R(M)$. Show that if R is semisimple, then so is E.
(7) Let R be an n^2-dimensional algebra over a field k. Show that $R \cong M_n(k)$ (as k-algebras) if and only if R is simple1 and has an element whose minimal polynomial over k has the form $(x - a_1) \cdots (x - a_n)$ where $a_i \in k$. [Hint: for the “if” part, observe that, for the given r, $k[r] \cong k \times \cdots \times k$ (n copies) and show that R has a composition series of length $\geq n$.]
(8) Let R be a central simple algebra over k. Show that R is isomorphic to a matrix algebra over over k if and only if R has a nonzero right ideal I with $(\dim_k I)^2 \leq \dim_k R$. 2

1Here I mean simple in the weaker (k-algebra) sense, that R has no nontrivial proper 2-sided ideals.

2I deleted part (i) of this problem, since I forgot and proved it in III.C.7.