CHAPTER 18

Putting a nonsingular cubic in standard form

An irreducible algebraic curve E C P? is an elliptic curve if the
genus of its normalization E is 1 (topologically it looks like a donut).
By the genus formula, all smooth cubic curves are elliptic. In the next
two chapters we will show not only that such a curve is isomorphic
to C/A for some lattice A, but will get a description of A which
shows its dependence on E. This is important, since for two different
lattices A = Z («, ) and A’ = Z (&/, B’), the complex 1-tori C/ A and
C /A’ need not be isomorphic as Riemann surfaces. (More precisely,
they are isomorphic if and only if [« : B] is carried to [¢' : p'] by
an integral projectivity, i.e. a transformation of IP! induced by A €
PSLy(Z).)

Even more significant is how we do this: by putting E in Weier-
strass form, integrating a holomorphic form on it to get a map to a
complex torus, and showing that the Weierstrass p-function and its
derivative invert this map. To put E in this form, a choice of flex is
required. What is that?

18.1. Flexes

Let C = {F(Z,X,Y) = 0} C IP?2 be an irreducible algebraic curve
of degree d > 3. One way of thinking of the tangent line at a nonsin-
gular point p € C is as the unique line satisfying (C - T,C), > 2.

18.1.1. DEFINITION. A smooth point p € C is called a flex if the
intersection multiplicity
221
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T,C
C

Intuitively these are the inflection points of C, and can be seen to cor-

= e

respond to cusps of the dual curve C (see §4.4). Since C has finitely
many singularities, this gives one proof that there are finitely many
flexes; we will however take a different approach.

Denoting partial derivatives by subscript, e.g. Fzx := 3%2—;)(, the
Hessian of F is the polynomial matrix

Fz7z Fzx Fzy
Hessp = | Fxz Fxx Fxy
Fyz Fyx Fyy

Its determinant
H := det(Hessr)

is clearly a homogeneous polynomial of degree 3(d — 2). Call Hc¢ :=
{H(Z,X,Y) =0} C IP? the Hessian curve associated to C.

18.1.2. LEMMA. Let p € C be a smooth point. Then p is a flex <=
p E He.

PROOF. Since intersection numbers are invariant under projec-
tivities, we may assume p = [1: 0 : 0], T,C = {Y = 0}. In affine
coordinates, writing f(x,y) := F(1,x,y), this means that the curve
{f(x,y) = 0} C C? contains (0,0) and is tangent to {y = 0}. So
£(0,0) = 0and (f«(0,0), f,(0,0)) = (0,A) where A # 0, so that

f(x,y) = Ay + (ax® + 2bxy + cy®) + higher-order terms.
Parametrizing T,,C by t — (t,0), we have
(C-T,C)p = ordg (f(t,0)) = ordp(at* + h.o.t.),

which is > 3 (yielding a flex) if and only if a = 0.
Now the above form of f implies

F(Z,X,Y) = AYZ%¥ 1 4 (aX? +2bXY + Y2 2972 1. ..
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so that
0 0 (d-1A
Hessp(1,0,0) = 0 2a 2b
@d-1A 20 2c

Taking the determinant,
H(p) = det(Hessr(p)) = —2(d — 1)*A%a.
This is clearly zero (i.e. p € Hc) if and only if a = 0. O

Now Bezout guarantees intersections of C and H. If C is singu-
lar then these might all be at singular points, so that there may be
no flexes (though this isn’t typical: see the exercises). On the other
hand, if C is smooth then by Lemma 18.1.2 we do have flexes. Refin-
ing this observation:

18.1.3. PROPOSITION. On a nonsingular curve C of degree d > 3,
there exists at least one and at most 3d(d — 2) flexes.

PROOF. By Bezout,

Y. (C-Hc)p=(C-Hc) =deg(C)-deg(Hc) =d-3(d —2).
peCNHc
So the number of points in C N H¢ is between 1 and 3d(d — 2), all
points are smooth points, and we apply Lemma 18.1.2. ]

18.1.4. REMARK. Since Hessr is just the multivariable derivative
(Jacobian matrix) of D¢ : P? — P? (§4.4), the intersections of C and
Hc may be viewed as degeneracies of the map D¢l|c : C — C. This
is what gives rise to the cusps in C referred to above.

18.1.5. DEFINITION. The multiplicity of a flex p € C is defined to

Now take C = E to be a smooth elliptic curve (d = 3). Then
in the proof of Lemma 18.1.2, the precise form of the homogeneous
polynomial is (F(Z,X,Y) =)

(18.1.6)
AYZ? + (aX? 4 2bXY + cY?)Z + aX® + BX2Y + 4 XY? + 6Y3,
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Assume a = 0 so that we have a flex at [1 : 0 : 0]. (Note that « must
then be nonzero, in order that Y not divide F — which would make
E reducible hence singular.) Then a short computation gives

2\y 2by 2bx + 2cy + 2A
Hessp(1,x,y) = 2by 6ax +2By  2Bx+2yy+2b
2bx +2cy +2A 2Bx +2yy+2b 2yx + 65y + 2c

Pull this back to T,E = {y = 0} by making the substitution

0 0 2bt 427
Hessp(1,t,0) = 0 bat  2Bt+2b |;
2bt+2A 2Bt+2b 2yt +2c

this has determinant
H(1,t,0) = —(2A + 2bt)?6at,
and since a, A # 0
(TyE-Hg)p = ordo(H(1,¢,0)) = 1.

So Hg is smooth at p and T,E is not its tangent line. But then it
intersects E transversely (since they have distinct tangent lines), so
that (E - Hg), = 1. This computation is valid at any flex of E (after a
projective change of coordinates, of course), and so leads to:

18.1.7. PROPOSITION. Any smooth cubic has 9 flexes, each of multi-
plicity one.

PROOE. Since deg(Hg) = 3(d —2) = 3, Bezout gives us 9 inter-
section points of Hg and E, counted with multiplicity; and we have
demonstrated that the multiplicities are all 1. [
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18.2. Weierstrass form
Consider an arbitrary smooth cubic curve
E={F(ZX,Y)=0} C P~

In this section we will show that there exists a projective transfor-
mation putting E uniquely into a convenient form. (Alternately, you
can view this as the existence of new projective coordinates in terms
of which the equation of E takes said form, which is actually how
the proof will go.)

We know E has a flex, and first of all we can choose coordinates
so that thisisat [0 : 0 : 1] =: O with ToE = {Z = 0}. To get the
general equation of such a cuve: take (18.1.6), set a = 0 (for a flex),
swap Z and Y, and (without loss of generality since A # 0) normalize
A to 1; this gives

F(Z,X,Y) = ZY* + (2bXZ 4 cZ*)Y + aX® + BX*Z + X 7% 4 625,
with affine form

fxy) = F(Lx,y) = y* +yfa(x) + f3(x).

Now the discriminant

Dy(f(x,y)) = Ry(y* +yfa(x) + f5(x), 2y + fo(x))

1 f» f3 1 fo f3
=det| 2 f, 0 | = det —f2 —2f3
0 2 fo 2 f2
= —fi+4fs = —(2bx+e)? +4(ax’ + B+ 9x +9)

is a polynomial in x of degree 3 since &« # 0. Roots of (Dy(f))(x)
correspond to vertical lines x = xp which are tangent to (the affine
part of) E at some point. Bezout tells us that the intersection num-
ber there can only be 2, since deg(E) = 3 and {X = x¢Z} already
meets E at 0. Such “first order” tangencies mean the roots each
have multiplicity one. Therefore E has three vertical tangents (apart
from Lo, = {Z = 0}), at p1, p2, p3.
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18.2.1. LEMMA. The {p;}3_, are collinear.

PROOF. In the picture
T E

define p to be the third intersection point of L, and E, and g the
third intersection point of Lo, with E. Consider (in addition to E)
the cubic curves C; = Loy, + Lop, + Lop and C; = ToE + 2Ly p,.
We have
E-C,=30+2p1+2p2+p+9q
and
E-C, =30 +2p1 +2p2 +2p.

Arguing as in §15.2, the ratio of the homogeneous polynomials defin-
ing C; and C, gives a degree 1 map E — P! (which is impossible)
if p # 9. Sop = g, and Lo, is tangent to E at p. It follows that
p is p1, p2, or p3. The first two are impossible since the tangent
to p1 doesn’t pass through p, and vice versa; so p = p3. Hence

pll pZ; p3 € Lp]pz- ]

Now stereographic projection from O to Ly, ,(= P!) presents E
as a2 : 1 cover of P! branched over p1, P2, p3, and the image TpE N
Ly, p, of O. Furthermore Ly, ,, Lop,, ToE form a triangle, and so we
can choose new projective coordinates X', Y’, Z' in order that L,, ,, =
{Y" =0}, Loy, = {X' =0}, and ToE = {Z' = 0}. For simplicity I'll
drop the primes and just write X, Y, Z for this new coordinate system.
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The following picture summarizes what we know:

where (on Y = 0) p; is at % = (0. Write a; (resp. ay) for the value of

% at py (resp. p3).
We would like an equation corresponding to this picture. Now,
in the new coordinate system, the equation of E is still of the form

F(Z,X,Y) = ZY* + (2bXZ 4 cZ*)Y + aX® + BX?Z + X 7% 4 625,

because we still have a flex at [0 : 0 : 1] with tangent line Z = 0.
But now (referring to the picture) also [1 : 0 : 0] € E, which implies
5 = 0. Moreover, Fy(= 2YZ +2bXZ +cZ?) = 0atp; = [1:0: 0],
p2 = [1:a1:0],and p3 = [1 : ay : 0] since the tangents are vertical
there. This yields ¢ = 0, then 2bay = 2bay = 0. As the {p;} are
distinct (so «; # 0), we have b = 0, and

F(Z,X,Y) = Y?Z + X(aX? + BXZ + yZ?)
= Y?Z 4 aX(X — a1 Z2)(X — aZ).

Now define new coordinates by the projective transformation

3
Xzi/;Xo-l—“l;—mZO, Y =iYy, Z=2,,
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which makes the equation

- 4 .
F(ZOI XO/ YO) =F ({’/;XO + ad ;_ 12 ZO/ ZYO/ ZO)

= —Y3Zo+4X3 — 92X0Z3 — 3373

Dropping the subscript 0’s and taking the affine equation, we have
put E in Weierstrass form:

18.2.2. PROPOSITION. (a) Any smooth cubic E C P? is projectively
equivalent to a curve with affine equation of the form

(18.2.3) y? =4x° — gx — g3

(b) For a given E, this form is unique up to a change of the form (g2,83) —
(§4g2, Cf’gg,) where { € C*; in particular,

I
ji= 82 e
85 — 2783

is an invariant of E.

PROOF. We have just seen (a). To show (b), write the projective
equation Y2Z = 4X3 — ¢»XZ? — ¢373. 1t is not difficult to check
that any projective linear transformation fixing O and preserving the
form of this equation (up to rescaling) takes the form X = eXp, Y =
nYo, Z = f]—zZo. Taking ¢ := 5 gives exactly the claimed effect on
(g2,83), and j is unchanged by this transformation.

What about a projectivity which sends a different flex O’ to [0:0:1],
“replacing” O? (As the equation says (Le - E)[g01] = 3, we must
have a flex there.) As with O, we have again four tangent lines
({Lowy(= T,E)};_, and TorE) through O', which can be regarded
as 4 points in a IP!. The Weierstrass forms will be equivalent in the
sense just described if (for some ordering of the p; resp. p!) the cross-
ratios of these point-configurations are the same for O and O'.

In fact, there are 4 tangent lines to E through any non-flex as well
(use a discriminant as above), and so we get a continuous algebraic
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map from E to unordered 4-tuples of distinct points on IP1. By pass-
ing to a finite unbranched cover of E, we get a map to ordered 4-
tuples. Since the cross-ratio of 4 distinct points lies in C*, this gives
a nonvanishing holomorphic function on E, which is constant by Li-
ouville. In particular, it takes equal values on all 9 flexes. O]

Note that the vanishing of the x> term on the right-hand side of
(18.2.3) indicates that its roots sum to zero.

Exercises
(1) Show that the cubic curve

C={0=X34+Y - XY(X+Y+2)} CP?

has one singular point (a node) and exactly three collinear flexes.
[Hint: start by computing the Hessian, then find the Hessian
curve and determine its intersections with C.]

(2) (i) Fill in the computational details in the first paragraph of the
proof of Prop. 18.2.2. (ii) Check that the coordinate change just
before Prop. 18.2.2 eliminates the X?Z term as claimed.

(3) Prove that through every non-flex of a smooth cubic E there are
4 distinct tangent lines to E.

(4) Put the Fermat curve X3 + Y3 = Z3 in Weierstrass form and cal-
culate its j-invariant.

(5) Consider the irreducible quintic curve C = {X° +YZ* = 0} C
IP2. (a) Without doing any computation, put an upper bound on
the number of flexes. (b) Find all singularities of C. (c) Find all
flexes of C and their multiplicities.



