
CHAPTER 19

Canonical normalization of the Weierstrass cubic

This chapter will focus on the precise relationship between the
Weierstrass-form elliptic curves and complex 1-tori (or equivalently,
2-lattices in C). We will begin by associating to a Weierstrass cubic E
a “period lattice” ΛE, and to a (full) lattice Λ a Weierstrass cubic EΛ.
These will ultimately be shown to be bijections of sets and mutual
inverses. The key step is the inversion of the Weierstrass ℘-function
and its derivative (embedding a 1-torus in P2) by the Abel map u :
E → C/ΛE. This map is closely related to the elliptic integral

ˆ ∗

∞

dx
±
:

4x3 − g2x − g3
,

a variant of which will be studied in the exercises.

19.1. Holomorphic forms on an elliptic curve

Let E be a Weierstrass cubic, viz., the projective closure of

f (x, y) := y2 − Q(x) = 0

in P2, where

Q(x) = 4(x − e1)(x − e2)(x − e3) , e1 + e2 + e3 = 0.

19.1.1. CLAIM. ω := dx
y

???
E
∈ Ω1(E) is nowhere vanishing.

19.1.2. REMARK. This statement perhaps requires clarification.
You may interpret dx

y

???
E

in either of two equivalent ways:

(a) any algebraic differential form (such as dx
y ) on C2 extends to a

meromorphic form on P2, and you can think of |E as shorthand for
pullback to E (rather than introducing σ : E ↩→ P2 just to write σ∗ dx

y );
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232 19. CANONICAL NORMALIZATION OF THE WEIERSTRASS CUBIC

(b) alternatively, writing x = X
Z and y = Y

Z exhibits x and y as mero-
morphic functions on P2 (and hence, via pullback, on E), and Exam-
ple 13.1.4 tells us that d( x|E)

y|E
is a meromorphic 1-form.

Either way, we have ω ∈ K1(E); and part of the content of the Claim
is that ω is holomorphic: νp(ω) ≥ 0 for all p ∈ E. The “nowhere
vanishing” statement says that actually νp(ω) = 0 for all p.

PROOF OF 19.1.1. Look at the affine part E\O. Wherever fy ∕= 0,

so that x gives a local coordinate, dx
y

???
E

is holomorphic and nonva-
nishing. We have f = 0 and fy = 0 precisely at the three points
{(ei, 0)}i=1,2,3, where fx = Q′(ei) ∕= 0 so that y is a local coordinate.

On E we have 0 = d f = 2ydy − Q′(x)dx so that dx
y

???
E

=

2
dy

Q′(x)

????
E

,

which is evidently nonvanishing and holomorphic in a neighbor-
hood of each (ei, 0).

What about the (flex) point at infinity O = [0:0:1]? By Poincaré-
Hopf, g = 1 =⇒ ∑p∈E νp(ω) = 2g − 2 = 0, so that if νp(ω) = 0 for
all p ∈ E\O, there can be no contribution from O either. □

19.1.3. COROLLARY. Ω1(E) = C 〈ω〉. That is, every holomorphic
1-form on E is a multiple of ω.

PROOF. For any ω0 ∈ Ω1(E), the discussion preceding Exam-
ple 13.1.6 tells us ω0

ω ∈ K(E). But since ω is nowhere vanishing,
ω0
ω is actually a holomorphic function. Now use Liouville’s theorem

(O(E) ∼= C). □

Among the standard topological invariants of a 1-manifold M is
its first homology group. An ad hoc definition is

H1(M, Z) :=

K
free abelian group generated by
closed piecewise-C∞ paths on M

L

K
subgroup generated by

boundaries of finitely triangulable regions

L ,
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or simply “cycles modulo boundaries”. From the picture

α

β

it isn’t hard to convince yourself that

H1(E, Z) ∼= Z 〈α, β〉 .

That is, for any closed C∞ path γ ⊂ E, there exists a closed set Γ ⊂ E
(with boundary ∂Γ) such that

γ = mα + nβ + ∂Γ.

The integers m, n are uniquely determined by γ. One then has
ˆ

γ
ω =

ˆ

∂Γ
ω + m

ˆ

α
ω + n

ˆ

β
ω

= m
ˆ

α
ω + n

ˆ

β
ω

by Cauchy’s theorem (Prop. 13.1.9). The values of the integrals
´

γ ω

over cycles are called the periods of ω, and we define the period lattice

ΛE := Z

T
ˆ

α
ω,
ˆ

β
ω

U
⊂ C.

This furnishes an invariant of the complex structure1 on E which, un-
like the topological invariant, actually distinguishes elliptic curves
which are non-isomorphic as complex manifolds (or algebraic curves).

19.1.4. REMARK. Given a lattice of the form Z 〈λ1, λ2〉 =: Λ ⊂ C

(with λ1, λ2 R-linearly independent), we have a Weierstrass P-map

C/Λ P−→ P2

u +−→ [1 : ℘(u) : ℘′(u)]

1Algebraic geometers call this a transcendental invariant, to distinguish it from al-
gebraic ones.
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whose image (by Exercise 5 of Chap. 7) is a Weierstrass cubic! Define

EΛ := P(C/Λ),

which we henceforth consider to be the range of the map P . Obvi-
ously it is of interest to find out whether all Weierstrass cubics arise
in this fashion (as EΛ’s).

Before moving on we should note that P is injective. Its compo-
sition with (the x-coordinate projection) x : EΛ → P1 has degree 2
since ℘ has a unique pole on C/Λ (at 0), which is a double pole. But
mapping degrees of Riemann surfaces multiply under composition,
and the degree of x itself is 2; so that of P : C/Λ → EΛ must be 1.

19.2. The Abel map

Let
E = {y2 = 4x3 − g2x − g3+ ,- .

Q(x)

} ⊂ P2

be a Weierstrass cubic with ω = dx
y

???
E
∈ Ω1(E). Integrating this gives

a (holomorphic) map of Riemann surfaces

u : E −→ C/ΛE

p +−→
ˆ p

O
ω

where the integration is over any C∞ path from O to p. This Abel map
is well-defined: if γ′, γ′′ are two such paths, then their difference is
closed and so

γ′ − γ′′ = ∂Γ + mα + nβ.

Integrating, we have
ˆ

γ′
ω −

ˆ

γ′′
ω = m

ˆ

α
ω + n

ˆ

β
ω ∈ ΛE.

A “baby” version of Abel’s theorem for elliptic curves2 is then:

19.2.1. THEOREM. The Abel map is injective.

2We will meet the grownup version, which is phrased in the language of divisors,
in Chapter 21.
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Abel’s theorem is usually paired with something called “Jacobi
inversion”, the baby version of which is:

19.2.2. PROPOSITION. The Abel map u is surjective (and thus an iso-
morphism).

PROOF. Since ω ∕= 0, u is nonconstant; since u is also holomor-
phic, u(E) is open in C/ΛE. Moreover, as u is continuous and E
compact, u(E) is compact (hence closed). Since C/ΛE is connected,
this forces u to be onto (and also C/ΛE to be compact).3 □

19.2.3. REMARK. Since C/ΛE is compact, ΛE must be a lattice of
rank 2: that is,

´

α ω and
´

β ω are linearly independent over R.4

SKETCH OF PROOF FOR 19.2.1. Suppose u(p) ≡ u(q) mod ΛE

for p ∕= q points of E; then
ˆ p

q
ω =

ˆ p

O
ω −

ˆ q

O
ω = u(p)− u(q) ∈ ΛE.

Modifying the path from q to p by mα + nβ (for some m, n ∈ Z), we
get

ˆ q

p
ω = 0.

Dirichlet’s existence theorem (which we won’t prove, but follows
from the theory of Green’s functions on Riemann surfaces in com-
plex analysis) guarantees the existence of η0 ∈ K1(E) with only sim-
ple poles, only at p and q, with

Resp(η0) = −Resq(η0) = 1.

This is true for any two (distinct) points p and q, and has nothing to
do with our assumption (that u(p) = u(q)). Now referring to the

3One should say something about the ugly possibility of
´

α ω,
´

β ω ∈ C being
linearly dependent over R but not Q, in which case C/ΛE would not be Hausdorff.
Here one can just quotient by the real span of the periods to get a map to R and
apply the same argument; since R is noncompact, this case doesn’t occur.
4If ΛE = {0} (rank 0), then C/ΛE = C. If ΛE ∼= Z (rank 1), then C/ΛE ∼=
C/2π

√
−1Z

∼=→ C∗ (by taking exp). Both are noncompact so can’t occur. The
other possibility was ruled out in the previous footnote.
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picture

α

β
O

p

γ

q

E

we have

(19.2.4) H1 (E\{p, q}, Z) ∼= Z 〈α, β, γ〉

where
ˆ

γ
η0 = 2πi.

Next, “normalize” η0, putting

η := η0 −
/´

α η0
´

α ω

0
ω,

which has the same residues as η0. Observe that
ˆ

γ
η = 2πi,

while
ˆ

α
η = 0.

Cutting open the above figure along α and β yields the funda-
mental domain F (the yellow region):5

β−β

α

−α

O

q

ppat
h

5In order to accomodate the path from q to p, it may be necessary to “dilate” F
by an integer factor M. (You can think of this as the fundamental domain of a
finite unbranched covering of E.) This doesn’t really affect the proof, except for
replacing ∂F by Mα + Mβ − Mα − Mβ.
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On the interior of F, U :=
´ ∗
O ω gives a holomorphic function which

is continuous on the boundary. Now

0 =

ˆ q

p
ω = U(p)− U(q)

which by the Residue theorem

=
1

2πi

ˆ

∂F
U · η.

Noting that
´

α ω (resp.
´

β ω) is the change in U from “−β” to “β”
(resp. “−α” to “α”), this

=
1

2πi

K
ˆ

β
η

ˆ

α
ω −

ˆ

α
η

ˆ

β
ω

L

=
1

2πi

7
ˆ

β
η

8/
ˆ

α
ω

0
,

where
´

α ω ∕= 0. Hence,
ˆ

β
η = 0.

By (19.2.4), any closed path on E\{p, q} is, up to boundaries, of
the form nα + mβ + ℓγ; and so the integral of η over such a path is
ℓ
´

γ η = 2πiℓ. Consequently,

F := exp
/
ˆ ∗

O
η

0

is a well-defined function on E which is holomorphic off {p, q}. Let
z (resp. w) be a local coordinate about p (resp. q) with z(p) = 0
(resp. w(q) = 0). We know that the leading term of η at p is dz

z ,
and at q is − dw

w . This makes F locally at p (resp. q) the product of
a nonvanishing holomorphic function by e

´ dz
z = elog z = z (resp.

e−
´ dw

w = 1
w ), so that F is meromorphic on E with divisor

(F) = [p]− [q].

Therefore deg(F) = 1, making F : E → P1 an isomorphism, which
is impossible.



238 19. CANONICAL NORMALIZATION OF THE WEIERSTRASS CUBIC

We conclude from this contradiction that p and q cannot have
been distinct. □

Essentially all of the foregoing (with the exception of Remark
19.1.4) works for any nonsingular cubic. There is a unique holomor-
phic 1-form up to scale; it vanishes nowhere; and integrating it from
a base point gives an isomorphism from the cubic to a complex 1-
torus. This follows from the last 2 sections by applying the projective
transformation of Chapter 18 to put the cubic in Weierstrass form
(which has just been slightly more convenient for writing down ω).
For the next section, however, the Weierstrass form will be crucial.

19.3. Abel inverts Weierstrass

We now make the BIG CLAIM that
(19.3.1)

a Weierstrass cubic is always the image EΛ of a Weierstrass P-map

(cf. Remark 19.1.4), and we have

(19.3.2) u ◦ P = idC/Λ

and

(19.3.3) P ◦ u = idE.

The next two Propositions will establish (19.3.1)–(19.3.3). First we
study the case where E is (by assumption) the image of a P-map.

19.3.4. PROPOSITION. Let Λ = Z 〈λ1, λ2〉 ⊂ C be a lattice. The
composition

C/Λ
(∼=)−→
P

EΛ
(∼=)−→

u
C/ΛEΛ

is the identity.

PROOF. Obviously part of the claim is that

(19.3.5) ΛEΛ

/
:=

M
ˆ

γ
ω

???? γ ∈ H1(EΛ, Z)

N0
= Λ.
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For EΛ, not a lot is lost by working in affine (x, y) coordinates, since
there is only O at ∞ and we know that corresponds to u ≡ 0 on the
complex 1-tori. (Note also that “u” is used both as the Abel map and
as the coordinate on C; which one will be clear from the context.)

Since P(u) = (℘(u),℘′(u)),

P∗ω = P∗
7

dx
y

????
EΛ

8
=

d(℘(u))
℘′(u)

=
℘′(u)du
℘′(u)

= du.

Moreover, that P is an isomorphism means any cycle γ on EΛ is the
image of some γ̃ ∈ H1(C/Λ, Z)

C

Λ
γ

so that
ˆ

γ
ω =

ˆ

P∗(γ̃)
ω =

ˆ

γ̃
P∗ω =

ˆ

γ̃
du

gives a bijection between ΛEΛ and Λ, hence (19.3.5). So then taking
u0 ∈ C/Λ,

u(P(u0)) =

ˆ P(u0)

O

dx
y

=

ˆ P(u0)

P(0)
ω =

ˆ u0

0
P∗ω =

ˆ u0

0
du = u0

proves the Proposition. □

Now let E be any Weierstrass cubic.

19.3.6. PROPOSITION. The composition

E
(∼=)−→

u
C/ΛE

(∼=)−→
P

EΛE (⊂ P2)

is the identity. In fact,

(19.3.7) E = EΛE

exactly as subsets of P2.
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PROOF. On (x, y) ∈ E, the composition takes the form

(x, y) u+−→
´ x

∞
dw

±
√

Q(w)

P+−→
/
℘

/
´ x

∞
dw

±
√

Q(w)

0
,℘′

/
´ x

∞
dw

±
√

Q(w)

00
,

with the ± determined by y. We must show that the RHS recovers
(x, y), or equivalently that the inverse (x(u), y(u)) : C/ΛE → E of
the Abel map u identifies with (℘(u),℘′(u)).

Let’s start with x, and compare the elliptic functions x(u) and
P(u) on C/ΛE. First I claim that both have double poles at u = 0:
you already know that ℘(u) = 1

u2 + higher-order terms. For x, it
suffices to check this on E, using

x =
X
Z

????
E
∈ K(E)∗

E

O

X=0

{Z=0}=T E
O

. . . which is easy:

νO(x) = (E · {X = 0})O − (E · {Z = 0})O = 1 − 3 = −2.

Now x(u) = A
u2 + h.o.t., with A =

lim
u→0

x(u) · u2 =
#

lim
x→∞

√
x · u(x)

$2
=

%

' lim
x→∞

´ x
∞

dw√
Q(w)

1/
√

x

(

*

2

=

7
lim
x→∞

1/
:

Q(x)

−1/2x
3
2

82

= lim
x→∞

4x3

Q(x)
= 1.

Define an involution
ȷ : E → E
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by
(x, y) +→ (x,−y);

this fixes O. For p ∈ E,

u(ȷ(p)) =
ˆ ȷ(p)

O=ȷ(O)

dx
y

=

ˆ p

O
ȷ∗

dx
y

= −
ˆ p

O

dx
y

= −u(p),

and so
x(−u) = x(u) , y(−u) = −y(u).

All told, we now have that x(u) and ℘(u) are both even ΛE-periodic
functions locally of the form 1

u2 + h.o.t., and so their difference has
no poles and must (by Liouville) be constant: x − ℘ = c.

Next, differentiating u =
´ x

∞
dx
y gives du

dx = 1
y , or

x′(u) =
dx
du

= y(u);

and then

0 =
d

du
(c) = x′(u)− ℘′(u) = y(u)− ℘′(u).

All that is left is to check that c = 0.
The fixed points of the involution u +→ −u are the 2-torsion points,

i.e. those u ∈ C/ΛE with 2u ≡ 0

O u

uu

1

23

since we must have u ≡ −u mod ΛE. These are, of course, the im-
ages (by u) of the fixed points of ȷ in E, since u ◦ ȷ = −u. They also
must map (by P) to the fixed points of (x, y) +→ (x,−y) in EΛE , since
(℘(−u),℘′(−u)) = (℘(u),−℘′(u)). Writing

y2 = 4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3)
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for the equation of E,

2e
1

3

O

E

e e

x (2-torsion points) = e1, e2, e3, ∞.

Similarly, if EΛE = {y2 = 4x3 − g̃2x − g̃3 = 4(x − ẽ1)(x − ẽ2)(x − ẽ3)}
then

℘(2-torsion points) = ẽ1, ẽ2, ẽ3, ∞;

and clearly
e1 + e2 + e3 = ẽ1 + ẽ2 + ẽ3 = 0.

Since ℘(u) = x(u)− c,

℘(u1) + ℘(u2) + ℘(u3) = x(u1) + x(u2) + x(u3)− 3c

which becomes
0 = 0 − 3c

so c = 0.
We conclude that ℘(u(x, y)) = x and ℘′(u(x, y)) = y. □

Exercises
(1) Show that the curve E with affine form y2 = (1 − x2)(1 − k2x2)

(for k ∕= ±1) is elliptic, i.e. has normalization of genus 1. Find
an isomorphic Weierstrass cubic and use this to calculate the j-
invariant. [Hint: consider the projection (of the normalization)
to the x-axis (∼= P1) and apply a projectivity of this P1 to the 4
branch points.]
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(2) [Adapted from Silverman-Tate.]
Let 0 < β ≤ α, and consider the ellipse C defined by

x2

α2 +
y2

β2 = 1.

(a) Show that the arc-length of C is given by the integral6

4α

ˆ π
2

0

:
1 − k2 sin2 θdθ

for an appropriate choice of constant k depending on α and β.
(b) Prove that this is equal to

4α

ˆ 1

0

1 − k2x2
:
(1 − x2)(1 − k2x2)

dx,

and deduce that the arc-length of C is computed by the inte-
gral of the (meromorphic) 1-form α 1−k2x2

y dx|E ∈ K1(Ẽ) around
a closed loop on the elliptic curve E from Exercise (1). [This
demonstrates why such integrals (and hence curves such as E)
came to be called “elliptic”.]

(3) Show that the “complete elliptic integral of the first kind”,

K(k) :=
ˆ π

2

0

dθ:
1 − k2 sin2 θ

,

corresponds to the integral of a holomorphic 1-form around the
same loop on the same E (from Exercise (1)), and so is more di-
rectly related to the Abel map above (giving a generator of the
lattice ΛE if we pretend E is a Weierstrass cubic).

(4) Let E = {F = 0} ⊂ P2 be an arbitrary smooth cubic, and write
f (x, y) = F(1, x, y). Show that dx

fy
|E defines a nowhere vanishing

holomorphic 1-form on E. [Hint: make use of d f |E = 0, the ho-
mogeneity property of F, and coordinate changes to rewrite the
form in neighborhoods of the (finitely many) points where “dx

fy
”

is unsuitable. (This includes points “at infinity”, as you need to

6Without the 4α, this is the so-called “complete elliptic integral of the second
kind.”
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show the form is holomorphic on the full projective curve.) Don’t
try to explicitly write out a local expression for f .]

(5) Continuing Exercise (4), suppose that E is a nodal cubic. Show
that the pullback of dx

fy
|E to the normalization Ẽ has simple poles

at the two preimage points of the node. [Hint: apply a projectiv-
ity to move the node to the origin and fix the two tangent lines
there.] Why does this make sense in light of Poincaré-Hopf and
the result of Exercise (4)?

(6) Let Λ ⊂ C be a lattice of rank 2 as above, and write the image EΛ

of the corresponding P-map in the form y2 = 4x3 − g2(Λ)x −
g3(Λ). Show that g2(Λ) = 60s4(Λ) and g3(Λ) = 140s6(Λ),
where sk(Λ) := ∑λ∈Λ\{0}

1
λk . [Hint: look back at Exercise (5)

of Chapter 7.]


