CHAPTER 26

The Riemann-Roch Theorem

As you know, there are no nonconstant holomorphic functions
on a Riemann surface M. What if we allow a simple pole at one
point p but no poles anywhere else? Then you still get nothing, un-
less M is P! (in which case there is (z — z(p))~!). This is because
for ¢ = genus(M) > 1, there is a nonzero holomorphic form w
which doesn’t vanish at p. For any meromorphic function f on M,
we know that ),y Resq(fw) = 0; soif f has a simple pole at p, then
Resy(fw) # 0 and f must have another pole to cancel this term.

What if we are prepared to allow a double pole at p (but still no
other poles)? Then the answer is more complex; if ¢ = 0 or 1 there are
nonconstant such functions (e.g. the Weierstrass g-function), while
if ¢ > 2 it can depend on the point p. In general, the vector spaces
of meromorphic functions f with (at most) a single pole at p and
Vp(f) = —k has dimension > max{1,k — ¢+ 1}. You are guaranteed
to get something nonconstant as soonask — g +1 > 2.

In the 1850’s, Riemann proved a more general inequality which
replaces p (and k) by multiple points and orders; a decade later, his
student Roch turned this into an exact equality (Theorem 26.2.7 be-
low) incorporating another term related to meromorphic 1-forms. It
encompasses the equality dim(Q!(M)) = g and gives a powerful
tool for studying embeddings of Riemann surfaces into higher di-
mensional projective spaces, among other things. Its statement is in
terms of spaces of functions and forms related to divisors, and we
will start in §26.1 by defining these spaces precisely.

You may prefer this shorter introduction to the topic from a lec-
ture by Lefschetz: “Well, a Riemann surface is a certain kind of Haus-
dorff space. You know what a Hausdorff space is, don’t you? It's
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324 26. THE RIEMANN-ROCH THEOREM

also compact, ok. I guess it is also a manifold. Surely you know
what a manifold is. Now let me tell you one nontrivial theorem, the
Riemann-Roch Theorem.”!

26.1. Effective divisors and rational equivalence

Let M be a Riemann surface, and write D = ), mp[p] and
E = Y pemnplp] for divisors on M. (Of course, only finitely many
my and n, are nonzero.) If for all p m, > n,, then we write D > E.

26.1.1. DEFINITION. D € Div(M) is effective <= D > 0.

26.1.2. EXAMPLE. The divisor (w) of a holomorphic 1-form w is
effective. (Why?)

We can use this idea to put constraints on meromorphic functions
and forms. For instance, suppose D = 3[q] — 2[r], and f € (M)
with divisor (f) = Y,emvp(f)[p]. Then imposing the inequality
(f) + D > 0 forces v4(f) +3 > 0 and v,(f) —2 > O; that is, f is
allowed a pole of order no worse than —3 at g, and must have a zero
of order at least 2 at . Likewise, if w € K!'(M) then (w) > D means
w has a zero of order at least 3 at g, and is allowed a pole of order no
worse than —2 at r. The next definition formalizes this and defines
the quantities which the Riemann-Roch theorem will relate.

26.1.3. DEFINITION. For any D € Div(M), set
L(D):={f e KM)"|(f)+D =0}U{0} and
3(D) := {w € K}(M)*| (w) > D} U{0}.

(The “U{0}"” just means that the zero-function is included, so as to
produce a vector space.) Write

¢(D) :=dim (D), i(D):= dim3(D).

The next step is to define an equivalence relation on divisors
which is ubiquitous in algebraic geometry.

lrom A Beautiful Mind by S. Nasar



26.1. EFFECTIVE DIVISORS AND RATIONAL EQUIVALENCE 325

26.1.4. DEFINITION. Divisors D, E € Div(M) are rationally equiv-
alent iff there exists® f € K(M)* with (f) = D — E; we write D £83

26.1.5. PROPOSITION. If D rét E, then
(i) deg(D) = deg(E);
(ii) &(D) = £(E);
(iii) J(D) = 3(E); and
(iv) ¢(D) = 4(E) and i(D) = i(E).
Furthermore, = respects the abelian group structure of Div(M).

PROOF. By assumption D — E = (f). Now Exercise (2) of Ch. 3
says that deg((f)) = 0, which yields (i). Given g € £(D),

(fe) +E=(f)+(8) +E=(g) +D=>0;

so g — fg defines a map £(D) — £(E), and h ~— % defines an
inverse map. This gives (ii), and (iii) is done in the same way. (iv)
obviously follows from (ii)-(iii). The last statement about 2 is essen-

tially just that (D + (f)) + (E+ (g)) = (D+ E + (fg)). O

26.1.6. REMARK. The Picard group Pic(M) of §21.1 is the group of

equivalence classes
Div(M)

rat

4

and Proposition 26.1.5 says (in part) that deg, ¢, and i give well-
defined functions from Pic(M) to Z. In particular, deg is a homo-
morphism, and writing Pic’(M) := ker(deg) C Pic(M) recovers the
“degree-zero part” seen in Ch. 21.

26.1.7. DEFINITION. A canonical divisor K € Div(M) is just the
divisor of any meromorphic 1-form w € K!(M). Since any two such
are rationally equivalent (easy exercise), there is a single canonical
divisor class [K] € Pic(M).

The next (basic) result is sometimes called “Brill-Noether reci-
procity”:

sz Chow’s theorem (§25.1), all meromorphic functions are rational, hence the ter-
minology “rational equivalence” (sometimes also called “linear equivalence”).
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26.1.8. PROPOSITION. Let D € Div(M) be arbitrary, and K a canon-
ical divisor. Then
J(D) = £(K— D),
and soi(D) = {(K — D).

PROOF. LetK = (w);if (f) + K—D > 0, then (fw) = (f) + K >
D—-K+K=D.Sof+ fwmaps £ K—D) — J(D),and 57
gives an inverse.

ek

26.2. Proof and statement

Throughout this section we take C to be an irreducible degree d
projective algebraic curve with nodal singularities S = {ps, ..., ps}-
Let M := C % P2 (¢(M) = C) be its normalization. According to
part (B) of the Normalization Theorem 3.2.1, every Riemann surface
M arises in this way.

Writing o~ 1(p;) =: {g;, 7}, we define a divisor

5
€:=071(8) = Ylq] +[r] € Div(M)
i=1
of degree 26. Given any line H C IP? (“H” for “hyperplane”), put
H:=c (H-C) € Div(M)

for the intersection divisor (of degree d).3

26.2.1. LEMMA. For all sufficiently large m € IN,
b(mH—E)>md—26—g+1
and
imH—-E) =0,
where § = W — 0 is the genus of M.
31f H passes through an ODP p;, then g;and r; will both show up in , with multi-

plicities determined by the local intersection multiplicities of H with the two local
analytic components of C at p;. (See Defn. 12.2.2ff)
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PROOF. Write R € S} and F € S4 for the defining homogeneous
polynomials of H and C (resp.). Consider the map

su(—8) -L e(mH — &)

G
where we note that R% is a well-defined meromorphic function be-

cause numerator and denominator have the same degree. By Study’s
lemma,

. (G
o (ﬁ>50 < Glc=0 <= F|G,

and so kerf = F-SI' ™ (C S¥(-8)).
Therefore, taking dimensions of
L(mH — &) DO im(0),

we find

g (SHCS)
t(mH — &) > dim(im(0)) = d (Ps‘ S?—d>

= dim $'(—S) — dim S7" 7.

Using (25.2.3) (but with m + 3 replacing d), and assuming m > d, this

S (m+1)(m+2) s (m—d+1)(m—d+2)
- 2 2
:md—é—d(dz 3)
=md — 6 — (d_l)z(d_z) +1,
which by Prop. 25.2.4(c)
=md—20—-g+1

Finally, any w € J(mH — &) \ {0} has (w) > mH — £, and taking
degrees gives 2¢ — 2 = deg((w)) > md — 26. Clearly this is unten-
able once m > 2(g + 6 — 1), whence i(mH — £) = 0. O
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26.2.2. LEMMA. Let D € Div(M), p € M. Then
0 < 4D +[p]) — £(D) — (i(D +[p]) —i(D)) < 1.

PROOF. First note that £(D) C £(D + [p]) = 4(D + [p]) —
¢(D) > 0.

Next, writing D = Y-, v 114(q], an element of £(D + [p])\£(D) is
a function f € K(M)* satisfying

(26.2.3) (f)+D+[p] >0 and vu(f) = —(np+1).
If f, ¢ are two such functions, then setting a := lim,_,, %, we have

ordy (f — ag) = —m,
so that f —ag € £(D).So ¢(D + [p]) — ¢(D) < 1, and we conclude
(26.2.4) 0<4D+[p]) —4D) <1
Similarly, writing K for a canonical divisor,

0<{¢K-D)—¢K-D-Ip]) <1
or equivalently
(26.2.5) 0<i(D)—i(D+[p]) <1
Altogether,
0 < £(D +[p]) — (D) +i(D) = i(D+ [p]) <2

and we just have to show that “2” is impossible.
Suppose (for a contradiction) that f satisfies (26.2.3), which is
equivalent to “1” in (26.2.4), and w € K!(M) satisfies

(w) > D and vy(w) = nyp,
which is equivalent to “1” in (26.2.5). Then
(fw) = (f) + (w) = —[p]

with

vp(fw) =vp(f) +vp(w) = —1.



26.2. PROOF AND STATEMENT 329

But the sum of residues of a meromorphic form is 0 (Prop. 13.1.10(b)),
so fw having a single simple pole (and no other poles) is absurd. [

By Lemma 26.2.1, there exists my € Z such that m > my —
b(mH—-E)—i(mH—-E) > md—25—g+1.

Now for any two lines Hy, Hp, we have H; = Ho; soif Hy,...,Hy,
are lines in IP? then by Proposition 26.1.5(iv)

((Ha 4 A Hu—E) —i(Hi+ -+ Hu—E) > md—26—g+1.

Taking m large enough and lines through (a) all points of S and (b)
all points in D, we can ensure that ) ;" ; H; — £ — D is effective, so
that

Hi+ - +Hnw—E = D+ [P]+ -+ [P

where k = md — 26 — deg(D) (and the P; are points of M). Therefore
we have

14 <D+ i[P]]) —1 (D+ i[PA) > k+deg(D) —g+1
= =

Repeatedly applying the right-hand inequality of Lemma 26.2.2 gives

k+¢(D)—i(D) > ¢ (D + i[ﬂ]) —1 <D + i[ﬂ])
j=1 j=1
and we conclude that
(26.2.6) ¢(D) —i(D) > deg(D) —g+1.

Next we show the reverse inequality. Plugging K — D into (26.2.6),
we have

¢((K—D)—i(K—D) > deg(K—D)—g+1
which becomes (using Brill-Noether reciprocity)
i(D) —¢(D) > 2¢—2—deg(D)—g¢+1 = —(deg(D) —g+1),

so that
¢(D)—i(D) < deg(D)—g+1.
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We have thus proved the

26.2.7. THEOREM. [RIEMANN-ROCH] Let M be a Riemann surface
of genus g, D a divisor on M. Then

¢(D) —i(D) = deg(D) — g + 1.

Amongst the easy corollaries of this important result are the Rie-
mann inequality
¢(D) > deg(D)—-g+1,
and (by putting D = 0 in the theorem) the formula
dimQ}'(M) = g.

Here is another simple application to whet your appetite for the next
two chapters.

26.2.8. PROPOSITION. Up to isomorphism, P! is the only Riemann
surface of genus 0.

PROOF. Suppose M has genus 0; then, first of all, the above “corol-
lary of Riemann-Roch” says that dim Q'(M) = 0. If we take (for
some p € M) D = [p], then 3(D) ¢ Q}(M) = {0} = i(D) = 0.
So by Riemann-Roch itself,

¢(D) =deg(D)—g+1=1-0+1=2.

Now £(D) consists of functions with a simple pole allowed at p (and
no other poles). The constant function 1 belongs to £(D); and since
dim £(D) = 2 there is also a nonconstant function f € £(D), which
by Liouville must have the allowed simple pole. Therefore the map-
ping degree of f: M — P! is (cf. §14.1)

deg(f) = deg(f " ([e])) = deg([p]) = 1;

that is, f is an isomorphism. O]

Exercises
(1) Check that any two canonical divisors on a Riemann surface are
rationally equivalent.
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(2) Let D € Div(M), g = genus(M). Prove that if degD > 2g — 2,
then i(D) = 0. Likewise show that if deg D < 0, then /(D) = 0.

(3) Let M be a genus g Riemann surface, and p € M. Using Riemann-
Roch, find the smallest value of k for which there must exist f €
KC(M)* having a pole at p of order no worse than k (i.e. v,(f) >
—k), and no other poles.

(4) Let M have genus g > 2. (a) Prove that M has a morphism to IP*
of degree < ¢ + 1. [Hint: use Exercise (3)] (b) Prove that M has
a morphism to P! of degree < g. [Hint: let p € M, and look at
i((g —2)[p]). This is a bit harder than (a).]

(5) Assume D > 0. By Exercise (2), if ¢ < 1 then i(D) = 0, and
Riemann-Roch becomes /(D) = deg(D) for ¢ = 1 and deg(D) +
1 for g = 0. Prove this directly (a) for M = P! and (b) for M =
C/A (1-torus).



