CHAPTER 28

Applications of Riemann-Roch, II:

general Riemann surfaces

Our next aim is to use Riemann-Roch to develop two methods
for mapping an arbitrary Riemann surface into a (usually higher-
dimensional) projective space, with a nice application to curves of
genus three. The second approach behaves differently in the hyper-
elliptic and nonhyperelliptic cases, so we first will want to convince
ourselves that there are nonhyperelliptic Riemann surfaces! To see
this, we will start with a heuristic argument for the “number of com-
plex parameters” governing Riemann surfaces, and show that the
hyperelliptic ones have fewer parameters. But there’s much more in
this chapter, which should give a glimpse of how rich the correspon-
dence between algebraic curves and Riemann surfaces really is.

28.1. Moduli

In algebraic geometry there is the notion of moduli spaces, which
parametrize structures of a prescribed sort modulo some equiva-
lence relation, such as “smooth algebraic curves of degree 5 up to
projective equivalence” or “Riemann surfaces of genus 4 up to iso-
morphism.” A main point is that these spaces can be given algebraic
structure themselves, i.e. turned into algebraic varieties, in many
cases. Suitably refined, the structure of these varieties (or more gen-
erally, schemes or stacks) is one of the hotter topics of study around.!

We shall only be concerned with the notion of moduli as a set
of local parameters (on the moduli space), and will say colloqui-
ally that some structure has a certain number of moduli: e.g. genus
1S0-called “modular curves” or (more generally) “Shimura [modular] varieties”
are a more specialized notion with an arithmetic and group-theoretic flavor.
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344 28. APPLICATIONS OF RIEMANN-ROCH, II

1 (resp. 0) Riemann surfaces have one modulus (resp. zero moduli)
since they can all be expressed as C/Z (1, T) (resp. P!) up to isomor-
phism. That is, the number of moduli is the dimension of the moduli
space. Underlying the claim in §27.1 that not all Riemann surfaces
of genus 6, 10, 15, etc. can be embedded smoothly in P2 is a deep
calculation of Riemann:

28.1.1. THEOREM. Riemann surfaces of genus g > 2 (considered up
to isomorphism) have 3¢ — 3 moduli.

SKETCH. Consider a genus ¢ Riemann surface M, and any ef-
fective divisor D of degree 2¢ on M. By Exercise (2) of Chapter 26,
i(D) =i(D — [p]) = 0 for any point p € M. Riemann-Roch yields

¢(D) =deg(D)—g+1=g+1
and {(D—[p]) =g,

whence there exists f € £(D) and not in any of the finitely many
£(D — [p]) for those p appearing in D. That is, f~!([e]) = D, and
deg(f) = deg(f1([e])) = 2¢. Riemann-Hurwitz tells us about the
ramification behavior of f:

xm = deg(f) - xp1 — deg(Ry)
2—2g:2g~2—rf
rp=6g—2.

For “almost all” D the points in Ry will have multiplicity one (ram-
ifications of order two) and lie over distinct points in P!, meaning
that the branch locus B C P! consists of 6¢ — 2 points. We want
to use all of this data to compute the number of “local deformation
parameters” of M.

Looking at this in a slightly more formal way, consider the set G;
of 2-tuples (M, f) where M has genus ¢ and f has degree 2g. This
maps to the set S, of 2-tuples (M, D) where D > 0 of degree 2¢ (take
D := f~1([e0])). From there you can map to the set & of Riemann
surfaces of genus g, by forgetting D. It’s clear that (fixing M) D has
2g¢ parameters, making dim(&;) — dim(&) = 2g. Moreover, given
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M and D, there are /(D) = g + 1 choices of parameter for f (to have
D as its poles), meaning dim(&7) — dim(S;) = g+ 1. Our argument
in the first paragraph shows that the first map is surjective (while the
second obviously is), and so

(28.12) dim(&) = {dim(&;) — g — 1} — 2¢ = dim(&;) — 3¢ — 1.

-~

dim(&;)

On the other hand, you can map &; to &3, the set of (6g — 2)-
tuples of (unordered) points on IP!, by taking f(Rs) € Div(IP'). This
map is surjective since given a branch-point set in P! you can con-
struct an existence domain for an appropriate algebraic function,?
and in fact the construction shows that there are only finitely many
possibilities for M. Moreover, it shows that a continuous family of
degree-2¢ functions on M with the same branch-point set gives rise
to a continuous family of automorphisms of M. But for ¢ > 2 M
has only finitely many automorphisms. So we see that this map is
finite-to-1, and thus dim(&;) = dim(S3) = 6¢ — 2. Plugging this in
to (28.1.2), we get the desired result. O]

It’s much easier to count moduli for hyperelliptic and algebraic
plane curves.

28.1.3. PROPOSITION. Hyperelliptic Riemann surfaces of genus g > 1
(considered up to isomorphism) have 2¢ — 1 moduli.

PROOF. They are essentially just the existence domains of the

algebraic functions \/ H?SLZ(Z —«;), and so are completely deter-

mined by the branch locus {oci}?iirz. This has 2¢ + 2 parameters,
but we have to account for change of coordinate on P!, which is by
PGL;,(C), by subtracting dim(PGL;) = 3. O

28.1.4. PROPOSITION. Smooth algebraic curves of degree d (considered
up to projective equivalence) have (dJ2r2) — 9 moduli.

2Think V/(z—a)(z—b)(z —c)(z — d) (for g = 1), but more complicated (since g >
2); cf. [Griffiths and Harris], pp. 255-257.
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PROOF. A curve is determined by a polynomial in S%, which has
dimension (szrz). We have only to account for changing projective
coordinates by GL3(C), which has dimension 9. (Here PGLj3 is not
what we want, as we do want to quotient out the rescalings of the

equation.) O

Now we can compare moduli, with two very interesting results.
First, consider the numbers you get for general Riemann surfaces of
genera 1, 2, 3, 4, 5, 6: the numbers of moduli are 1, 3, 6, 9, 12, 15.
For hyperelliptic ones, we have instead 1, 3, 5, 7, 9, 11. So while all
genus 2 Riemann surfaces are hyperelliptic, we have:

28.1.5. PROPOSITION. A general Riemann surface of genus g > 3 is
non-hyperelliptic.

So we will need to find more general methods of realizing Rie-
mann surfaces as algebraic curves than what was discussed in §27.2,
and that is what we endeavor to do in the remainder of this chapter.

Finally, look at those genera which correspond to nonsingular al-
gebraic curves in P? of degrees 3, 4,5, 6,7, ...: namely, 1, 3, 6, 10,
15, and so on. The Riemann surfaces of these genera have (by The-
orem 28.1.1) numbers of moduli 1, 6, 15, 27, 42, etc. But now look
at the smooth algebraic plane curves of the corresponding degrees
(via Prop. 28.1.4): we get 1, 6, 12, 19, 27. The case of genus 3 will be
treated in §28.3. Beyond that, we have immediately:

28.1.6. PROPOSITION. Smooth algebraic plane curves of degree d > 5
do not yield all the Riemann surfaces of genus (d_l)zﬂ — only a special

subset.

28.2. Projective embeddings

Let M be a Riemann surface of genus g. For any © € Div(M) of
degree > 2g — 2, recall from Exercise (2) of Ch. 26 that (D) = 0. By
Riemann-Roch, we then have

/(D) =deg(®) —g+1.
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This will be used repeatedly in the argument below.’

Now fix a divisor D = Y ,cpmnplp] € Div(M) of degree d >
2¢ + 1. We will define an embedding (injective morphism of complex
manifolds)

¢: M P8,
(Since d — ¢ > ¢+ 1, this can only give an embedding in IP? for
g = 1.) The support of D, which is the subset of M consisting of the
points appearing in D (i.e. those p with nonzero n,), is written |D|.

First off, certainly d > 2¢ —2 and so ¢(D) = d — g + 1. Write
{fo,--., fa—g} for abasis of £(D), and define for p ¢ |D|

(28.2.1) o(p) == [fo(p) : -+ fag(p)]-

If p € |D|, this is unsuitable since some functions may blow up (or
all functions may be required to vanish). Therefore if z is a local
coordinate (vanishing at p to first order), we put

(28.2.2) e(p) == [(Z"fo)(p) : -+ (2" fa_g)(P)]-

For points g in a neighborhood of p, [(z"% fo)(q) : -+ : (2" fa—¢)(q)]
gives the same result as [fo(q) : -+ : fs—¢(q)], and so we have con-
structed an analytic map ... provided that (28.2.1)-(28.2.2) do not
yield [0 : --- : 0] at any point. That is the central well-definedness
issue, and we must check it.*

Now for p,q € M, notice that D — [p], D — 2[p] and D — [p] — [q]
each still have degree > 2¢ — 2. Therefore we have

{(D—[p])=d-g
and

¢(D—2[p]) =d—g—1=4(D — [p] —[q]),

3lt's very important to understand the argument in this section. Try slimming it
down (I've expressed it in a somewhat bloated manner) and writing it out for a
specific choice of d and g (> 1, say). (Also, if you are stuck on Exercise (4) of
Ch. 27, some of the steps are similar.)

“Note that (28.2.2) isn’t just a special formula for p € |DJ; it contains (is more
general than) (28.2.1) since for p ¢ |D| we have n, = 0.
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with the immediate consequences

(28.2.3) (D —[p]) € &(D),
(28.2.4) L(D —[p] —[q]) € &(D - [p]),
(28.2.5) £(D —2[p]) < £(D — [p]).

To interpret these, for simplicity first assume p,q ¢ |D|. Then
(28.2.3) says that there exists f € £(D) not vanishing at p, meaning
that the { f;(p) } are not all zero; this makes ¢ well-defined on M\ |D|.
Next, (28.2.4) gives us ¢ € £(D — [p])\&(D — [p] — [g]), a function
vanishing at p but not g, forcing ¢ to take different values at p and g;
hence ¢ is injective on M\ |D|. Finally, (28.2.5) provides h € £(D —
[p])\£(D — 2[p]), i.e. vanishing to exactly first order at p, so that the
derivative of i hence that of ¢ is nonzero there; together with the
injectivity result, this proves that the image of M\ |D| is smooth.

In order to extend these statements to all of M, we have to refine
the argument just a bit. For general points p,q € M, (28.2.3) tells
us that there exists a function f € £(D) with v,(f) = —n, exactly;
(28.2.4) that some ¢ € £(D) has vy(g) > —np but v,(g) = —ngy; and
(28.2.5) that there exists an 1 € £(D) with v,(h) = —np + 1 exactly.
These give precisely the well-definedness, injectivity, and smooth-
ness of image for the map described by (28.2.2). So the image is a
compact complex analytic curve P?~€, which is algebraic by GAGA.

28.3. Canonical maps

Once again we consider a Riemann surface M, this time of genus
g > 2,and let
{wi, ..., wg} C QY(M)

be a basis. Instead of choosing a divisor and going through Riemann-
Roch to get a projective embedding from meromorphic functions,
why not just use these? Define the canonical map

QK - M — P81
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by

prlwip) oo wg(p)).
The meaning of this, as you would expect, is locally writing each
w; as fi(z)dz, and taking [fi(p) : --- : f¢(p)]. This is well-defined,

i.e. the {w;} do not all have a zero at p. Otherwise we would have
J([p]) = 3(0) = g hence (by Riemann-Roch) £([p]) = 2, which we
know to be false for M not isomorphic to P'.

Bottom line: this looks quite promising, from the standpoint of
getting a convenient projective embedding. Or does it?

28.3.1. EXAMPLE. For M hyperelliptic, consider the setting of The-
orem 27.2.4; we have

dx xdx x8 ldx
p(p) = |- — =1

Notice that this looks a lot like the rational canonical map f from

Sy ]:[1:x;...:x81].

Example 7.3.7. In fact, it factors

Ps—1

N

H)l

(28.3.2) C

with deg(x) = 2, and so does not give an embedding of M in P§~1.

All is not lost: the hyperelliptic case is very special (in a bad
way), and for ¢ > 3 we know that there are (lots of) nonhyperel-
liptic curves.

28.3.3. THEOREM. Let @k be the canonical map for an arbitrary Rie-
mann surface of genus g > 2. Then

(a) @k is nondegenerate;®

(b) px (M) is smooth; and

(c) gk is injective <= M is nonhyperelliptic.

Scf. the beginning of Chapter 7, and also Prop. 7.3.1.
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PROOF. (a) Were ¢k (M) contained in a proper linear subspace of
IP$~1, this would produce a linear relation on the {w;}. But they are
linearly independent by construction, being a basis!

(b) This is clear in the hyperelliptic case, by observing that the
derivative of the (injective) rational canonical map is nowhere van-
ishing. (We will return to this in the nonhyperelliptic case.)

(c) The implication “ = ” is already done (by contrapositive) in
Example 28.3.1.

Now let z be a local coordinate vanishing to first order at a point
p € M, and consider the linear functionals on Q' (M) (= J(0)) given
by

o ()"

If the first is zero on some given w, then w € J([p]). If the first and
second are zero, then w € J(2[p]). If all are zero, then w € J(k[p]).
Since k linear conditions cut out a subspace of codimension at most
k, we have

i(k[p)) = dim 3(k[p]) > g — k.
More precisely, we have i(k[p]) = ¢ — k + a and by Riemann-Roch

C(klp])) =k—g+1+i(k[p]) =1+a.

For the special case k = 1, there can be no redundancies in one linear
condition (recall that the {w;} have no common zeroes) and we have
a=0.

Suppose ¢k([p]) = ¢k(lq]) for p # q. Then w — () (p)

w

and w — (%) (q) yield the same functional on Q!(M), up to a
constant multiple; in particular they vanish on the same w’s. So

3([p]) = 3([p] + [g]), which yields i([p] + [q]) = i([p]) = ¢ — 1 and
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via Riemann-Roch

£([p] +[q]) =2—g+1+i([p] + [q]) = 2.

Thus there exists a nonconstant meromorphic function F € £([p] +
[9]). We know that £([p]) and £([g]) have only constant functions
(a = 0 when k = 1), and so F has to have the allowed simple pole
at both of p and g. Thus deg(F) = 2, and so M is hyperelliptic. This
completes the proof of (c).

(b, cont’d.) Now assume M is nonhyperelliptic. Then we must
have /(2[p]) = 1 (why?), i.e. a = 0 for k = 2. Consequently

i(2[p]) =g -2
(whilst i([p]) = ¢ — 1), and we can arrange a basis of Q' (M) so that
in local coordinates at p,

1 1
w1 = dz, wy = zhy(z)dz,

wj e zzhj(z)dz 3<j<yg).
(Here the h;(z) are holomorphic, and h; doesn’t vanish at z = 0.) The
canonical map takes the local form

ox(z) = [1:zhy(z) : 2%h3(z) : -+ - : zzhg(z)]
with derivative
ox(z) = [0: ha(z) +zhy(z) + % -+ 1 %]

which does not vanish at p. This gives the desired smoothness. [

Consider a smooth, irreducible algebraic curve C and hyperplane
H = {W(Z) = 0}, both in IP". (Here W is a homogeneous polyno-
mial in Z4, ..., Z, 11 of degree one, with affine form w.) One can de-
fine an intersection divisor C - H on C in a way which extends what
we have done in IP2. If C is not necessarily smooth, then the divi-
sor lives on a normalization M (<> P2) of C and is denoted ¢*H; it
is given simply by }_,cprordp(c*w)[p]. We define the degree of the



352 28. APPLICATIONS OF RIEMANN-ROCH, II
curve to be the degree of this divisor, called a hyperplane section:
deg(C) := deg(c*H).

Since any two hyperplane sections are rationally equivalent (why?),
any two hyperplane sections have the same degree, making deg(C)
well-defined.

In the case at hand, ¢ is px and n = ¢ — 1. Hyperplane sections
are particularly interesting because if we write W(Z) = ¥ | 0;Z;,
then

0"H = (aqwy + -+ agwy)
is a canonical divisor on M! That’s why ¢ is called the canonical
map, and its image ¢x (M) a canonical curve.

28.3.4. PROPOSITION. Assume M is nonhyperelliptic of genus g. Then
the degree of the canonical curve (M) C P8~ 1is2g — 2.

PROOF. The assumption is necessary in order that M normalize
¢x(M). (In the hyperelliptic case, it is normalized by the rational
canonical map.) We then compute deg(¢x(M)) = deg(¢iH) =
deg(K) = 2¢ — 2 by Poincaré-Hopf, and that's it. O]

And so, we find that “nearly all” genus 3 curves have a nice em-
bedding into the projective plane.

28.3.5. COROLLARY. Every nonhyperelliptic genus 3 curve is the nor-
malization of a smooth quartic curve in P2,

28.4. Weierstrass points

We began our discussion of Riemann-Roch with a naive analysis,
for a fixed point p on a Riemann surface M, of what orders of pole
are possible if we are after a meromorphic function with its only pole
at p. To conclude, I will now briefly explain the sense in which this
can depend on the choice of p and not just the genus g of M. Assume
g > 0 for what follows.

First note that £(0) = 1 (constant functions), and ¢([p]) = 1 by
the argument at the beginning of Ch. 26. By equation (26.2.4), we
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know for each k that
0 < {((k+1)[p]) — (k[p]) < 1.

On the other hand, since the degree of (2¢ — 1)[p] exceeds 2¢ — 2,
we have (Ch. 26 Exercise (2)) that i((2¢ — 1)[p]) = 0, and so (by
Riemann-Roch)

(2g=Dlp)) =(28-1)-g+1=g.
More generally, for k > 2¢ — 1, the fact that i(k[p]) = 0 yields
(klp]) =k—g+1.

So the scenario is that ¢(k[p]) starts (at k = 0) at 1 and works its
way up to g in increments of 0 or 1, as k rises to 2¢ — 1; thereafter it
increases by 1 whenever k does.

The situation with i(k[p]) is “dual”: it starts at g and works its
way down to 0 in decrements of 0 or 1, as k rises to 2¢ — 1; and then
it stays at 0.

Now it turns out that at all but finitely many points, ¢(g[p]) = 1;
that is, all the increments are postponed as far as possible and the
sequence /(k[p]) looks like 1,1,1,...,1,2,3,...,¢, and so on. Those
points where this is not the case are called the Weierstrass points of M.
The simplest example I am aware of is, for a hyperelliptic curve, the
2g + 2 fixed points of the involution ;. For these the sequence looks
like1,1,2,2,3,3, etc.

Exercises

(1) Check that the definition of ¢ (p) in §28.3 is independent of the
choice of local coordinate near p.

(2) Show that any smooth quartic curve in IP? is a canonical curve
(of genus 3), and hence also nonhyperelliptic.

(3) In this exercise you will prove a new Cayley-Bacharach type re-
sult (in P?): if C; and C, (of degrees m and n respectively, with C
assumed smooth and irreducible) meet in mn distinct points, and Cs
(of degree m +n — 3) passes through p1, ..., pmn—1 € C1 N Cy, then it
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(4)

(5)
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passes through the remaining point p := pu,. (We shall write f1, fo,
f3 for the resp. defining homogeneous polynomials.) Start out
by assuming C3 does not contain p, and follow these steps:

(a) Let g denote the genus of Cj, and show that (m — 3)m =
2¢ —2and g = dim(S5 ).

(b) Let h € S¥3, set F, := fz_:1|cl € K(C1)*, and write (F,) =
[p] + (h) — D (this defines D € Div(Cy)). Show that the map
S?‘3 — £(D)/C (here C =constant functions) given by h — F,
is injective, and use this to put a lower bound on /(D).

(c) Find deg(D), i(D), and obtain a contradiction.

A problem on automorphisms of canonical curves:

(@) Let « : C — C be an automorphism of a canonical curve of
genus g. Prove that « is the restriction to C of a linear automor-
phism of IP§~!. [Hint: consider the action of a* on Q!(C).]

(b) Let M be a nonhyperelliptic Riemann surface of genus 3 with
an involution ;. How many fixed points does it have? What is
the genus of the quotient Riemann surface? [Hint: consider the
canonical embedding and apply (a); j is the restriction of what
sort of linear automorphism on P??]

Using the embedding of §28.2, try to prove: (a) there exists, for an
arbitrary Riemann surface, an embedding onto a smooth curve
in IP? and (b) an immersion onto a curve with only nodal singu-
larities in IP2. [Hint: use sufficiently general projections of the
complement of a linear subspace in IP" onto IP? and IP3.] Also, (c)
what degrees do these curves have?



