CHAPTER 3

The normalization theorem

We state (but do not yet prove) the promised relationship be-
tween algebraic curves and Riemann surfaces, and explain how to
work it out directly for conics. To state the general relationship, how-
ever, we need the notion of meromorphic functions on a Riemann
surface, so we will first define and prove a few results about those.

3.1. Meromorphic functions on a Riemann surface

Let M be a Riemann surface (Definition 2.3.3) with analytic atlas
{(Uy,z4)} (Definition 2.2.1), and write V, := z,(U,) C C. The local
analytic chart ¢, @V, — U, (C M) is simply defined to be the (com-
position) inverse of of the local coordinate z,. (I've avoided writing

-1

z~ " since in some settings this is easy to confuse with %.)

3.1.1. DEFINITION. A meromorphic (resp. holomorphic) function
f € K(M) (resp. O(M)) is a collection of continuous maps f, : Uy —
IP! such that
e the {f,} “agree” on overlaps (viz., fx = fg on U,p), and
39



40 3. THE NORMALIZATION THEOREM

e fy o ¢, is a meromorphic (resp. holomorphic) function, in the
sense of complex analysis, for all «.

3.1.2. REMARK. (a) One really works with functions of the coor-
dinate z,, i.e. the function f, o ¢, =: g, (mapping V, — P1), and
then the compatibility condition reads

(3.1.3) 80 0 Pop = gp-

(b) (M) is a field, since you can multiply, add, and invert (ad-
ditively and multiplicatively) meromorphic functions.

For the above Definition and Remark, we could just as well take
M to be a noncompact complex 1-manifold. In that case O(M) may
be an interesting ring. But in the Riemann surface case it is not:

3.1.4. PROPOSITION. [LIOUVILLE’'S THEOREM] M compact —
O(M) = C (constant functions).

PROOF. On the one hand, f € O(M) = f(M) C (P!\{co}) =
C; while on the other, M compact and f continuous = f(M) is
compact. Applying absolute value gives a compact subset |f(M)| C
R>¢. This has a maximum element, which is assumed at some point
p € M, and this p lies in some U,. Hence, the absolute value of
the holomorphic function g, = fx © ¢, attains a maximum on V, (at
¢«(p)), and by the maximum modulus principle, g, (and thus f,) is
some constant ¢ € C.

Let Ug be any open set of the atlas meeting U,. Since fg = fu =
¢ on Uyg, and U,g has accumulation points, fg = c on Up. One
continues this argument now for any open set meeting U, or Ug,
and so forth. By connectedness of M, this shows f = c on all open
sets of the atlas, hence on all of M. O

3.1.5. DEFINITION. Let f € (M) be a meromorphic function.
For any p € M, f is locally of the form

(3.1.6) z"h(z)



3.1. MEROMORPHIC FUNCTIONS ON A RIEMANN SURFACE 41

with m € Z, z a local coordinate vanishing at p (i.e. z(p) = 0), and
h(z) a local holomorphic function of z with #(0) # 0.} We say that
the order v, (f) of f at p is m.

With this bit of language it is easy to compute the meromorphic
function field for Riemann surfaces of genus 0 and 1.

3.1.7. THEOREM. (a) K(IP') = C(z) (z an indeterminate).

(b) Writing A = {miAy + mpAy |m; € Z} (A, Ay € C linearly
independent over R) for a lattice, K(C/A) = C(gp, ') where p(u) is the
Weierstrass p-function for A.

PROOF. (a) Referring to Example 2.2.4, write z = zp and w = z;
for the two local coordinates. I am really going to use z as a global co-
ordinate on P!; the statement we want to prove is that meromorphic
functions on P! are precisely the rational functions of z.

In one direction, this is easy: if P, Q are polynomials in z (with

Q # 0), clearly % is the restriction to Uy of a meromorphic function

on P! (on Uy, it is %%’))).

Conversely, are all meromorphic functions rational? Given f €
K(PY), vp(f) < 0 at finitely many? points z;(= p), and we shall
for simplicity assume none of these is the point co. Let P;(z) =
ZVZZ' (f)<k<0 Bix(z — z;)¥ (sum is over k) be the principal part of the
Laurent expansion of f at z;, and consider G(z) = )} P;(z). Then
f — G € O(PP!) is constant by Liouville; and since G is rational, we're
done.

(b) Next, f € K(C/A) if and only if f is a doubly-periodic mero-
morphic function on C: thatis, f(u) = f(u + myAy + mpA;) for all
my,my € Z (also known as an elliptic function). We will see later

ITo be absolutely precise, if z is a local coordinate on U > p, with V = z(U),
then / is a holomorphic function on V. I'll frequently assume things like this to be
“understood”.

2otherwise compactness = zeroes of 1 have an accumutaion point = Jl(
identically 0. (Also, note that I am identifying points by the value of the coordinate
z on IP1. If M were not P!, I would write p; instead of z;.)
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that these are generated (rationally) by

1 1 1
W=zt L x
A£0
and its derivative. O

3.1.8. DEFINITION. A morphism (or holomorphic map) M LM

3 is a collection F, : U, — M of continuous

of Riemann surfaces
maps (agreeing on the {U,p}) such that the composition® z; o F, o
Pul, (F-1(0;)nu,} is holomorphic for all &, i. (Note that this definition
works more generally for complex 1-manifolds — compactness is

inessential.)

Now suppose we have p € (U, C)M and q € (U; C)M with F(p) =
q, z(p) = 0 and Z;(g) = 0, as shown in the above figure. Assuming
F is nonconstant, then after “normalizing” the local coordinates,’ we
have Z;(zy) = (z4)¥ for some (unique) u € Z~(. One says that f has
ramification index u at p (over g). If this index is > 1, we say that f is
branched over g (or ramifies at p).

3.1.9. REMARK. For y = 3, we have already seen this picture
in Example 2.3.1. In general, for a holomorphic map of Riemann
surfaces 7t : X — Y, for all but finitely many y € Y the number
|77 1(y)| is the same, and this is called the degree of the mapping

Swrite {Uy, z4} and {U;, 2;} for the atlases.

4this composition renders Z; as a function of z, (and is a local snapshot of F in this

sense)

5see Exercise 4 below
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7t. (This will be explained in greater depth in a later chapter.) The
branch points of 7t are just the remaining points of Y. Usually we
will just draw a schematic picture like

and it is understood that the picture is really as in Example 2.3.1 —
so that going around the point on the “base” Y moves you between
branches of the “cover” X.

3.1.10. PROPOSITION. Let M be a Riemann surface (or, more gener-
ally, a complex 1-manifold). The holomorphic maps M — P!, excluding
the constant map sending all points to {oo}, are simply the meromorphic
functions K(M).

PROOF. Again refer to Example 2.2.4: given a morphism F : M —

P! (Definition 3.1.8), by definition zg o F, o ¢, is holomorphic on

the complement of the preimage of co, while z; o F; 0 ¢, = m
is holomorphic on the complement of the preimage of 0.° Hence,
F, o ¢, is meromorphic and {F,} defines a meromorphic function

(Definition 3.1.1). The converse is even more tautological! 0

Later we will discuss morphisms (holomorphic maps) of com-
plex manifolds of any dimension. The following is a special case:

3.1.11. DEFINITION. Write [Zy : Z1 : --- : Z,] for (projective)
coordinates on IP”. A map ¢ from a Riemann surface M to P" is
called holomorphic if and only if all compositions [Z; o0 : Z; o 7] are
holomorphic as maps to IP! on the open subsets of M where they are
well-defined.

®The holomorphicity of m guarantees, in particular, that F, o ¢, has only
poles and not essential singularities.
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3.1.12. REMARK. If the image c(M) is not contained in the “hy-
perplane at infinity” Zy = 0, this is the same as saying that composing
o with each affine coordinate on C" gives a meromorphic function.

To see this, first write M;; for the subsets of M where (under o)
Z; and Z; are not both zero; these are the open subsets in the last
definition.” By Prop. 3.1.10, the conditions of Defn. 3.1.11 mean that

Z; ) .
7 are meromorphic functions on the M;;. We need to show that the

zj = ;—é extend to meromorphic functions on all of M. First, M is
covered by the open sets {Z; # 0}. Hence, for p ¢ Mo; (i.e. Z; and
Zy vanish at p), we have a neighborhood U containing p where some
other Z; does not vanish, so that U C M;j, M;p. Now, on U N My

: Z; -1 . :
we can write z; = - (%) as a product of functions which are
1 1

meromorphic on all of U, hence showing that z; extends as desired.

3.2. Riemann surfaces parametrize algebraic curves

Here is the Normalization Theorem. We will prove part (A) in
this course.

3.2.1. THEOREM. (A) Given an irreducible algebraic curve C C P2,
there exists a Riemann surface M and a holomorphic map o : M — P?
with C as its image which is 1-to-1 on =1 (C\sing(C)).

(B) Given a Riemann surface M, there exists a holomorphic map o :
M — P2 such that

e 0 (M) is an irreducible algebraic curve with sing(c(M)) consisting
of ordinary double points (or empty), and
e 0 is 1-to-1 off the preimage of these ordinary double points.

In this sense, irreducible smooth projective algebraic plane curves
(over C) are equivalent to, and are isomorphically parametrized by,

7Some, but not all, of these Mij (with i, j # 0) will be empty if ¢(M) is contained
in an intersection of coordinate hyperplanes; this doesn’t matter.
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Riemann surfaces.

If a curve C is not smooth, then the normalization “desingularizes”
it (and we shall see this quite explicitly later on). In either case, we
say that M is the normalization of C.

Let’s look briefly at the meaning of (B), which we will not prove
in this course. For a given Riemann surface (i.e. compact complex
1-manifold) M, it guarantees a holomorphic map to P2, with image
c(M) = C = projective closure of {f(x,y) = 0}. Changing co-
ordinates on IP? if necessary, we may assume that C does not pass
through [0 : 0 : 1]. So it makes sense to consider the composition

0} 0:0:
M —>OP2\{[ 1]}> [Z:X:Y]

N projection
. J R\
N zX1 |

which exhibits M as a branched cover of P! — or more precisely,

as the existence domain of the algebraic function g(x) obtained by
solving
f(x,8(x)) =0.
So Theorem 3.2.1(B) contains the statement that every compact com-
plex 1-manifold is an existence domain in the sense of §2.3.
We should also note that any Riemann surface admits a holomor-
phic embedding o : M — IP3, an even nicer result than part (B) above!
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3.3. Stereographic projection

As a plausibility check on Theorem 3.2.1(A), we’d like a recipe
for normalizing conics — i.e. degree-2 (conic) curves C C IP2. Given
a point p € C, and any line line ¢ through p, by Proposition 2.1.15
¢ either meets C in two points with mutliplicity 1 or in 1 point with
multiplicity 2. Put differently, we have either

o (NC={pq}

or
e (NC =2p,ie. l=T,Cis the tangent line to C at p.

(We will give a systematic treatment of tangent lines below.) Con-
versely, given p and any other point g on C, there is a unique line
through them (and it doesn’t meet C anywhere else).

There are two ways to think of why this gives a parametrization
of C. One possibility is to take a fixed line (22 PP') and use lines
through p to project C onto it:

~ . v P
A A
S P

e / \ . P

o
&

This is where the term “stereographic projection” comes from.

But this auxiliary projective line is superfluous, because the fam-
ily of lines through p already gives a IP!. (Indeed this is close to
the original definition of what P! is.) We can parametrize this P!
by the slope of the line with respect to suitable coordinates (usually
(x,y) = (%—(1), %—3)) The upshot is that we get a 1-1 correspondence be-
tween lines through p and points on C, so that we are in the situation
of §3.2 with M = P!,

3.3.1. EXAMPLE. Suppose we wish to find a parametrization P* %
C of the conic {X? + Y2 = Z2} C IP?, which in affine coordinates is
x? 4+ y? = 1. We choose a point on C, say p = (1,0), and draw lines
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y = pu(x — 1) through p. (The slope here is y, and this should be
viewed as a choice of coordinate on IP1.) Substituting into x> + y* = 1
and solving for x in terms of 1, we have
P Hut(x—1)2 =1
— (P24 x+ (2 —1) =0
= (=D{A+p)x+(1-p*)} =0
Ignoring the solution x = 1 (which corresponds to p), we have

2 2
_p -1 _ (=1 2
”_W+1’y_y(ﬁ+l 0_ﬁﬂ+f

Hence, we find ,
_ (w1 =2

One can also do stereographic projection to construct normaliza-
tions of singular cubic curves:

/

p'

‘s
&
\

The idea here is to consider lines through the singular point p; since
any such / already meets C “twice”, it will only hit C in one addi-
tional point (by Proposition 2.1.15). You'll work an example in the
exercises below. This will not work for a smooth cubic.

Exercises

(1) Give a parametrization m +— (x(m),y(m)) (hence an isomor-
phism P! — C) of the smooth conic curve C that is the projective
closure of 3x? — y?> = 1. (You may work in affine coordinates.)

(2) Show that for any Riemann surface M and meromorphic func-
tion (0 #) f € K(M), one has ¥, vp(f) = 0. [Hint: Use the



48 3. THE NORMALIZATION THEOREM

residue theorem from complex analysis. Cut open the RS as in
Chapter 2, and integrate % along the “boundary”.]

(3) Convince yourself that the order v,(f) of a meromorphic func-
tion on a Riemann surface M (Definition 3.1.5) is independent of
the choice of local coordinate.

(4) Prove the following, which was claimed in Definition 3.1.8: Given
M, M' Riemann surfaces with a holomorphic map f : M — M’
(and f(p) = g). Then there exist (U,z) on M and (V,w) on M’
satisfying z(p) = 0 = w(q), such that w = z" (for some y € IN)
is the local form taken by f near p. [Here for example “(U,z)”
means an open disk U C M with local coordinatez : U — C.]

(5) Find a parametrization P! — C of the singular cubic Y2Z —
X?Z +X® = 0 in P2 (C has an ordinary double point p at
[Z:X:Y]=][1:0:0]. Check that this point is indeed a singu-
larity of C.) To do this, convert to affine coordinates, substitute in
y = mx, and solve for the other intersection point’s coordinates
as a function of m. Two points will go to p = (0,0). Picture:

o

C

What are « and 8? Change coordinates on P! (fractional linear

transformation) so that in your new coordinate, 0 and co are sent
to p. Your parametrization should read now ¢ : P! — C sending
z — (x(z),y(z)) with 0,00 +— p. This will be used in a later
exercise.

(6) Let A, A’ C C be two full lattices (free abelian subgroups of rank
2 whose generators are independent over R), and consider the
complex 1-tori T = C/A and T' = C/A’. These are (compact)
Riemann surfaces of genus 1. (a) Show that there exists an iso-
morphism between them iff A is a multiple pA’ (4 € C*). [Hint:
if there exists an isomorphism, then there is one sending 0 — 0;
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lift this to a biholomorphism of the universal covers.] (b) Re-
placing A, A’ by multiples, we may assume they are of the form
Z+Zt and Z + Z7', with 7,7 € § (upper half-plane). Show
that T = T’ (i.e. there exists an isomorphism) iff T and 7’ are
related by a fractional linear transformation (ie. T = g’/IZ for
some (%) € SLy(Z)). Conclude that £/SL,(Z) parametrizes

equivalence classes of complex 1-tori.




