CHAPTER 8

The connectedness of algebraic curves

The main theorem of this chapter will be that the smooth part!
C\sing(C) of an irreducible algebraic curve C C IP? is path-connected
(and then, of course, so is C). For example, in Exercise 5 of Chapter
3, you showed that the complement of the ODP p = [1: 0 : 0] in the
singular cubic curve {Y2Z — X?Z + X® = 0}, viewed as a complex
1-manifold, is isomorphic to C* — which is certainly connected.

Just so that there is no confusion, we should say what the situa-
tion is for reducible curves right away and why the result does not
generalize. For plane projective algebraic curves with more than one
irreducible component, say C = UC;, the components C; must inter-
sect (this will be one consequence of Bezout’s theorem later), making
C connected. But the complement of the singularities in C will not
be connected, as these will include all of the intersection points.

We begin by introducing a new, somewhat technically involved,
tool for dealing with singularities, intersections, and projections of
curves.

8.1. Resultants and discriminants

Let D be a unique factorization domain (UFD), where we re-
call that this is a commutative domain in which each element has
a unique factorization into irreducibles, up to reordering and multi-
plication by units. In a UFD, amongst other things, the notion of a
greatest common divisor? has meaning. By the Gauss lemma, ID[y] is

IWe will show that the set sing(C) of singular points is always finite

%Recall that these are well-defined up to units (invertible elements); for example
in C[x] or C[x, y| the units are C*, hence the notion of “monic ged” (which is com-
pletely well-defined).
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108 8. THE CONNECTEDNESS OF ALGEBRAIC CURVES

also a UFD. In practice we will always take ID to be C or C|x]. (Note
that C[x] is a PID, but C[x, y] is not.)

Consider f(y) = agy™ +a1y™ '+ +am, g(y) = boy" + b1y +
-+ -+ b, elements of D[y| with ag, by # 0.

8.1.1. DEFINITION. The resultant® of f and g, written R(f,g), is
the element of ID given by the determinant of the (n + m) x (n + m)
Sylvester matrix*

ag ay -+ - am 0 .- 0
0 ag a; -+ - - dapm

0

M(f,g) _ 0 0 ag Am—1 am

b by b, 0 0
0 by b b

. 0

0 0 by by_1 by

Now writing K for the field of fractions of ID, we have the
8.1.2. PROPOSITION. R(f,8) =0 <= godyy, (f,8) # 1.

PROOF. The gcd (say, h) is nontrivial if and only if
(8.1.3) Fg = Gf

for some F = Aoym_l 44+ A, 1and G = Boy"’_1 +---+B,_1in
D[y|. Indeed, if h # 1 then put F = f/h and G = g/h. Conversely,
since deg F < deg f and deg G < degg, and both sides of (8.1.3)
factor into the same irreducibles, f and g have a common factor of
degree > 0.

3also called “eliminant”, since y is eliminated
4the line in the matrix is just an organizational device — it has no meaning
two further equivalent conditions: (i) deg, (gcdp,(f,8)) > 0; and, noting that

K[y is a PID, so that the ideal (f, g)kj,] = (gch[y] (f,8)), () (f, &)kpy) # Dkiy)-
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In turn, (8.1.3) is equivalent to

aoBo = by Ao

a1Bg + agB1 = b1 Ag + bpA

(8.1.4) 1Bo 01'10 0A1
amBy—1 = bnAm—l

being satisfied for some {4;}",', {B; }7:—01 C D. To get from (8.1.3)
to (8.1.4), just take coefficients of y"*"~1, ym+n=2 1,
Now notice that (8.1.4) can be rephrased in matrix multiplication

terms: there exist { A;}, { B;} such that

Bo

t Bn:—
Mf,)- —Aé

I
o

—A,-,,,1

In other words, we have shown & # 1 is the same as ker (* M( f,g)) #
{0}, ie. det(M s ) = 0. -

8.1.5. DEFINITION. D(f) := R(f, f') is the discriminant of f. Here
f’ denotes the formal derivative %.

8.1.6. EXAMPLE. If f € Cly], then D(f) € C is a number, and the
criterion

(8.1.7) D(f) vanishes <= f has a multiple root
follows immediately from Prop. 8.1.2. For the affine curve
22 =4 +ay+b

to be singular, we need two of the roots of the right-hand side to
coincide. That is, by (8.1.7), we need

4 0 a b
4 0 a b
0=RMAy¥P+ay+b12y> +a)=1[12 0 a
12 0 a
12 0 a
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which after a bit of row-reduction

4 0 a b 0
0 4 0 a b
=10 0 —22 —3b 0 |=16(4a®+12-9b%) = 64(a> +27b%).
00 0 -2 —3b
0 0 12 0 a

This recovers the result from Exercise 2 of Chapter 6.

8.1.8. EXAMPLE. If f € Clx,y|, then D(f) € Clx] is a polynomial
and from Prop. 8.1.2 we have:

(8.1.9) D(f) vanishes at xg <= f(xp,y) has a multiple root in y.

The collection of xy’s where this happens, that is, the set of roots of
D(f), is called the discriminant locus for the projection of the affine
curve {f(x,y) = 0} onto the x-line:

y
f=0
/’\\ .
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v v v v y ooV
- - - - — -

discriminant locus

8.1.10. PROPOSITION. An irreducible (reduced) algebraic curve {F =
0} C IP? has (if any) finitely many singularities.

PROOF. The affine polynomial f(x,y) = F(1,x,y) has multiple
roots in y for x in the discriminant locus A = {(D(f))(x) = 0} C C.
We may assume f has positive degree in y, since otherwise V(f) is
just a vertical line.
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Since f is irreducible in C|[x, y] of positive degree in y, the identi-
cal vanishing of D(f) would imply that V(f), hence V(F), was non-
reduced. So D(f) is a nontrivial polynomial, and A is finite:

(8.1.11) #{x € C|Jy such that f(x,y) = fy(x,y) =0} < co

It is easy to argue directly® that were V(f) to contain a vertical line
{x = a}, then (x — &) would divide f (contradicting irreducibility).
So by (8.1.11) and Prop. 2.1.15, in fact

#{p € C*| f(p) = fy(p) =0} < co.

The set in brackets includes all singularities of V(f). The only pos-
sible additional singularities of V(F) are the (finitely many) points
where it meets the line at co. O]

8.2. Monodromy and connectedness

Let O C C be a region, that is, an open connected subset. Let
A C ) be a small disk about a point p € () on which one is given a
holomorphic function, f € O(A). We are interested in the question
of when f extends to a holomorphic function on all of (). To see why
this doesn’t always happen, take () = C and A a small disk about
z = 1: then f = ! only extends to a holomorphic function on C*.
Even worse, f = log(z) becomes “multivalued” on C* and so (as a
holomorphic function) only extends to C\R<.

To give a condition which will ensure the existence of a well-
defined holomorphic extension, we need the concept of analytic con-
tinuation. Define a path v C () from p to g to be the image of a
continuous function P : [0,1] — Q with P(0) = p and P(1) = 4.
(Here we are allowed to pick 4 = p.) An analytic continuation of f
along <y consists of

e a partition of y into segments {;} ¥,

e a covering of y by disks A; D 7; (with Ag = A), and

bor you can wait for Study’s lemma in the next Chapter
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e functions f; € O(A;) (with fy = f) satisfying f; = fi+1 on
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If we continue f along two different paths from p to g and compare
the “results”, i.e. the last function fy € O(Ay) (in the neighborhood
of g) in each case, these need not agree. In the above example of
f = log(z) on a disk about p = {z = 1}, we can analytically con-
tinue f along any path in C*. However, if we take 4 = p so that the
path is closed, then we do not have fx(p) = f)(p): they differ by
271y/—1 times the winding number of the path about z = 0, hence
the “multivaluedness” referred to above. This problem only occurs,
however, for non-simply-connected regions:

8.2.1. PROPOSITION. [RIEMANN MONODROMY PRINCIPLE] Given
a region Q) C C which is simply connected, i.e. 771(Q)) = {0}. Let A C Q
be a small disk, and assume that f € O(A) can be analytically continued
along any path v C Q) starting at p € A. Then there exists f € O(Q)
extending f.

We will frequently use this together with the

8.2.2. PROPOSITION. [HEREDITY PRINCIPLE] For F(x,y) € O(C?)
and f € O(A) satisfying

(8.2.3) F(x,f(x)) =0,

the analytic continuation of f along any path <y will also satisfy (8.2.3).
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PROOF. Since F and each f; in the analytic continuation are holo-
morphic, so is each F(x, fj(x)) (on A;). But F(x, f(x)) = 0on A =
Ap by assumption, and since f = fp = f; on Ag N Ay, we have
F(x, fi(x)) = 0 on Ag N A; and therefore (by basic complex analy-
sis) on all of Ay. Simply iterate this argument fori =1,...,N. O

Now given an affine algebraic curve C = {fy(xo,y) = 0} with
fo of degree n, it is convenient to write C as the vanishing locus of a
monic polynomial in y over C|x]:

(8.2.4) flx,y) =y +a;(x)y" 1+ +a,(x) =0.

This is acheived by performing a change of variable xyp = x + Ay and
writing f(x,y) := fo(xo,¥) = fo(x + Ay,y), which has coefficient of
y" depending polynomially on A; choose A so that this coefficient is
1. (The main point is that in fy(xo,y), the y" term may be zero, and
we want to remedy that.)

Having put the equation of C in this form, we write

T : C — C
(x,y) — x

for the projection of the curve to the x-axis. Writing D := {D(f)(x) =
0} for the discriminant locus of this projection, by (8.1.9) we have that
for x € C\D, the fibre 777 1(x) consists of n distinct points. For
some fixed disk A C C\D, label these points {y1(x),...,yn(x)}. No-
tice that R(f,%) = D(f)(x) # 0 implies that % # 0on {f =
0} N t=1(A), so that the holomorphic IFT (Prop. 7.1.2) gives y;(x) €
O(A). The point here is that the “roots” of (8.2.4) in y are algebraic
— hence multivalued — functions of x, but we can take well-defined
holomorphic branches of them over A. As we shall see, the multival-
uedness will intertwine them outside A.

Label the points of D = {py,...,pk}, and let I be the path in
IP! consisting of segments connecting oo to p1, p1 to pz, and so on
up to px. Then the region Q := (P!\T') C C is simply connected.
By Propositions 8.2.1-8.2.2, the {y;(x)} extend to functions in O(Q)
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which still satisfy

(8.2.5) f(x,yi(x)) = 0.
t0 "joo" C

p
T

® = points of D

Analytically continued through T’ in C\D, the y; continue to satisfy
(8.2.5) by the heredity principle, but may swap.

8.2.6. EXAMPLE. f(x,y) = y°> —x, D = {0}, I = R<,. Pass-

ing through T cyclically permutes y1(x) = /x, y2(x) = e% Iz,

1

ya(x) = "5 .

This swapping (or permutation)’ of the y;(x) gives rise to an
equivalence relation “~": y;(x) ~ y;(x) if one may be analytically
continued into the other in C\D. An equivalence class is just all the
{yr} which are equivalent to a given y; in this sense.

8.2.7. PROPOSITION. For any equivalence class E of ~, formed (re-
ordering if necessary) by y1(x), ..., Yym(x),

(8.2.8) ﬁ (v —ya(x))
A=1

belongs to C|x, .

The transformations of an algebraic structure arising from its transport around
loops (in this case, loops in C about points of D) are what is meant by the word
monodromy in general. So the Riemann monodromy principle is really a statement
about the absence of monodromy:.
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Put differently: while the {y,(x)}_; are multivalued algebraic
functions on C\D, the elementary symmetric polynomials in them
are not multivalued; in fact, they are polynomials!®

8.2.9. COROLLARY. C irreducible = C\7t~(D) is connected ( =
C connected).

PROOF ASSUMING PROP. 8.2.7. If f € Clx,y] doesn’t factor, then
by the Proposition there can be only one equivalence class: E =
{1,...,n}. So the complete set of “branches” {y;(x)} is acted on
transitively by monodromy about D, and one can therefore draw a
path on C\7r~!(D) connecting any two points. O

We now prove Prop. 8.2.7, using some theorems from complex
analysis. In particular, recall that Rouché’s theorem asserts that for two
holomorphic functions f,g € O(%R) on a simply connected region’
with |f| > |g| on a simple closed curve v C R, f + ¢ and f have the

same number of zeroes (counted with multiplicity) inside -.

PROOF. The product (8.2.8) is clearly well-defined on C\ D, since
monodromy about D simply swaps its factors; hence it is in O(C\D).
Write

m

82100 T\ (y—yalx ZO )" Tew—j(y1(x), .. ym(x))y’

=
where e, j(y1(x),...,ym(x)) =: e,—;j(x) denotes the elementary sym-
metric polynomials in the {y, }. Again, because these are not changed
under monodromy, we have ¢, _j(x) € O(C\D). Observe that given
a € D with neighborhood N, (a small disk about «), the polynomials
aj(x) from (8.2.4) satisfy

xeNy = |aj(x)| <M (V))
for some M € IN. Fixing xo € N, \ {a}, put a; = a;(x) and

) =vy", Sy =y"+ay" "+ +an

8we use A to index E (.. 1,...,m)and i toindex {1,...,n}

%the main point is that %R should contain the “interior” of vy
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so that the {y;(x)} are the roots of . Ony = {|y| = M+ 1} C C,
we have

6§ = lay" "+ A aa| SM((M+1)" 1400 41)

=M+1)"-1<(M+1)"=|F|
By Rouché, § and ® have the same number of zeroes inside -; since
§ = y" has n zeroes (at y = 0!), we find that

lyj(x0)] <M+1 forallj=1,...,nand xg € N,.

Consequently the ¢x(x) € O(C\D) are bounded on N, N (C\D) =
N\ {a}, and so by the Riemann removable singularity theorem ex-
tend across {a }. Doing this for each « € D, we conclude that e;(x) €
O(C).

So the coefficients of the yf ‘s in (8.2.10) are entire functions of x.
To prove that they are polynomials in x, we shall have to consider
their behavior about x = co. If we work in the local coordinates
=19 = Yabout[0:1:0]inP? then the polynomial (8.2.4)

defining C becomes”

#f (LE) =g+ (2 (1) 7 4+ (D),
with roots
(8.2.11) 7i(%) = 2yi(3).

Let N C P! be a small neighborhood of # = 0 (i.e. x = o) and
N3 = No\{# = 0}. By (8.2.11), the monodromy of the {#;}} ,
about ¥ = 0 stabilizes the subset {i, }}'_;, so that the

er(3)

are well-defined holomorphic functions on N. Since deg(aj(x)) <

ec(71(%), ..., gm(%)) = 7*

j, the ¥a;(1) are polynomials in % hence bounded on Ne. Using
Rouché as above, the e ({7, (%)} ) are also bounded on N, and
thus extend to holomorphic functions on N.

10Here we are essentially taking the projective completion of C and restricting that
to U C P2,
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In other words, e (x) = ex(1) hasa pole at x = co of order at most
k. Since ey (x) was also holomorphic on C, we have ¢, € K(IP!). Now
K(P') = C(IP!) and so ex(x) = g((i)) where P, Q are polynomials;
since its only pole is at oo, Q is a constant. Therefore each ¢, € Clx],

and with (8.2.10) we see that (8.2.8) is a polynomial in C|x, y|. O

Exercises

(1) Are the real points'! of a smooth algebraic curve C IP? necessarily
connected?

(2) For what values of a, b does x* + ax + b have a multiple root?

(3) Find the intersection points of the two conics x? +2y?> = 3 and
x? + xy + y?> = 3 in C?, starting by taking a resultant.

(4) Consider the family of affine curves {C, },cc defined by Axy =
(x+1)(y+1)(x+y+1). Take discriminants twice, firstin C[A, x|
(eliminating y) and then in C[A] (eliminating x), to find the set of
(three) values of A for which C, is singular. Why does this work?
[Hint: you may wish to use a computer to take the second dis-
criminant.] This is called the discriminant locus of the family of
curves.

(5) Let C be defined by y?* = x'2(x — 1)3(x + 1)3(x — 2)*(x +2)?,
with covering map 7: C — C sending (x,y) — x as above. Ex-
plicitly describe the action of monodromy about D = {0, =1, +-2}
on the “branches” (or “decks”, or “sheets”) of C over C, as given
by the {y;(x)} on C \ I'. Conclude that C \ sing(C) is connected.
[You can use I' = [—2,2] here.]

(6) In the previous exercise, the fundamental group 711 (C \ D) acts
on the set of branches through a cyclic (abelian) group. If we
instead take C to be the curve (1 —x)y® + (1+x)y®+ (1 —x) =0,
can you show that 711 acts through a nonabelian group? [Start by
finding D, which consists of 3 points. Interpret C(x) as a subfield
of C(y) (by presenting x as a rational function of y) and describe
the monodromy action via automorphisms of C(y)/C(x).]

11

i.e. points on the curve which can be written [Xj : X; : X5, with all X; € R. See
also Exercise 5 of Chapter 2 and Exercise 2 of Chapter 5.



