

CHAPTER 9

Hilbert's Nullstellensatz

In something of an algebraic detour, we will now prove Theorem 5.3.1 for affine hypersurfaces. In the general case, we shall also state (but not prove) a reformulation which lays out the correspondence between affine algebraic varieties and ideals in commutative rings.

9.1. Resultants (bis)

We need another result on resultants. As in §8.1 let \mathbb{D} be a UFD with fraction field K ; and for $f = a_0Y^n + a_1Y^{n-1} + \dots + a_n$ and $g = b_0Y^m + b_1Y^{m-1} + \dots + b_m$ polynomials in $\mathbb{D}[Y]$, define $\mathcal{R}(f, g) := \det M_{(f, g)}$. (In case \mathbb{D} is itself a polynomial ring, we will often write $\mathcal{R}_Y(f, g)$ to make it clear that Y is the variable being eliminated.)

9.1.1. PROPOSITION. $\mathcal{R}(f, g) = Gf + Fg$ for some $F, G \in \mathbb{D}[Y]$ with $\deg G < \deg g$, $\deg F < \deg f$.

PROOF. If $\mathcal{R}(f, g) = 0$, then we are done by (8.1.3). Otherwise, write

$$\begin{aligned}
 (9.1.2) \quad & Y^{m-1}f = a_0Y^{n+m-1} + a_1Y^{n+m-2} + \dots + a_nY^{m-1} \\
 & Y^{m-2}f = \qquad \qquad a_0Y^{n+m-2} + \dots \qquad \dots + a_nY^{m-2} \\
 & \vdots \\
 & f = \qquad \qquad \qquad a_0Y^n + \dots \qquad \dots + a_n \\
 & Y^{n-1}g = b_0Y^{n+m-1} + b_1Y^{n+m-2} + \dots + b_mY^{n-1} \\
 & Y^{n-2}g = \qquad \qquad b_0Y^{n+m-2} + \dots \qquad \dots + b_mY^{n-2} \\
 & \vdots \\
 & g = \qquad \qquad \qquad b_0Y^m + \dots \qquad \dots + b_m.
 \end{aligned}$$

Viewing the system (9.1.2) as a vector equation, the RHS is evidently

$$M_{(f,g)} \begin{pmatrix} Y^{n+m-1} \\ Y^{n+m-2} \\ \vdots \\ Y \\ 1 \end{pmatrix}.$$

Moreover, by Cramer's rule we have (in K) $M_{(f,g)}^{-1} = (\det M_{(f,g)})^{-1} A$, where A is the *adjugate matrix* with $(i,j)^{\text{th}}$ entry $(-1)^{i+j}$ times the $(j,i)^{\text{th}}$ minor of $M_{(f,g)}$. In other words, the entries of

$$\mathcal{R}(f,g) M_{(f,g)}^{-1} = A$$

are in \mathbb{D} . Applying this to both sides of (9.1.2) thus produces a system of the form

$$(9.1.3) \quad \begin{array}{ll} ?? & = \mathcal{R}(f,g) Y^{n+m-1} \\ ?? & = \mathcal{R}(f,g) Y^{n+m-2} \\ \vdots & \quad \quad \quad \ddots \\ ?? & = \mathcal{R}(f,g) \end{array}$$

where each “??” is a \mathbb{D} -linear combination of the entries to the left of “=” in (9.1.2). In particular, the last row of (9.1.3) is

$$G_0 f + F_0 g = \mathcal{R}(f,g),$$

where $G_0, F_0 \in \mathbb{D}[Y]$ satisfy $\deg G_0 \leq m-1$, $\deg F_0 \leq n-1$. \square

We should mention the formula for the resultant of two polynomials whose irreducible factors are all linear (or constant) in y , although we will neither use nor prove it:

9.1.4. PROPOSITION. *If f and g decompose into linear factors $f = a_0 \prod_i (Y - x_i)$, $g = b_0 \prod_j (Y - y_j)$ (for $x_i, y_j \in \mathbb{D}$), then $\mathcal{R}(f,g) = a_0^m b_0^n \prod_{i,j} (x_i - y_j)$.*

9.2. Study's lemma

We continue to assume that \mathbb{D} is a UFD with $f \in \mathbb{D}[Y]$ of degree n . Given $\delta \in \mathbb{D}$, we have the ring homomorphism given by

“evaluation at δ ”:

$$\begin{array}{ccc} \mathbb{D}[Y] & \xrightarrow{\theta_\delta} & \mathbb{D} \\ G(Y) & \longmapsto & G(\delta) \end{array}.$$

9.2.1. PROPOSITION. (i) If $f(\delta)(= \theta_\delta(f)) = 0$, i.e. δ is a root of f , then $(Y - \delta) \mid f(Y)$.

(ii) f has at most n roots in \mathbb{D} .

PROOF. (i) By the division algorithm,

$$(9.2.2) \quad f = q \cdot (Y - \delta) + r$$

where $\deg r < \deg(Y - \delta) = 1$, i.e. $r \in \mathbb{D}$. Applying θ_δ to (9.2.2), we have

$$0 = f(\delta) = q(\delta) \cdot 0 + r$$

and thus $r = 0$, so that $(Y - \delta)$ divides f .

(ii) Follows from (i) (and the fact that $\mathbb{D}[Y]$ is a UFD) since f can have at most $n = \deg(f)$ linear factors. \square

Now we will specialize to the case $\mathbb{D} = \mathbb{C}[X]$; more generally, the results of this section will hold with any algebraically closed field replacing \mathbb{C} , $\{X_1, \dots, X_{n-1}\}$ replacing X , and S_n replacing S_2 .

Let $F \in \mathbb{D}[Y] = \mathbb{C}[X, Y] = S_2$.

9.2.3. PROPOSITION. If $V(F) = \mathbb{C}^2$, i.e. F vanishes on all of \mathbb{C}^2 , then $F = 0$ as an element of S_2 .

PROOF. Suppose $F \neq 0$. By Prop. 9.2.1(ii), viewed as an element of $\mathbb{D}[Y]$, F has a finite number of roots in $\mathbb{D} = \mathbb{C}[X]$. Some of these may be constants in \mathbb{C} . Since \mathbb{C} is an infinite field, there exists $\beta \in \mathbb{C}$ such that β is not one of these roots, and then $F(X, \beta)(= \theta_\beta(F)) \neq 0$ in $\mathbb{C}[X]$. Again by Prop. 9.2.1(ii), $F(X, \beta)$ itself has finitely many roots, so there exists $\alpha \in \mathbb{C}$ such that $F(\alpha, \beta) \neq 0$. Hence, F is not identically zero on \mathbb{C}^2 . \square

9.2.4. PROPOSITION. [STUDY'S LEMMA] Given $f, g \in S_2$, with f irreducible and $V(f) \subseteq V(g)$. Then f divides g .

9.2.5. REMARK. Suppose we drop the requirement that f be irreducible, so that $f = \prod f_i^{m_i}$ (f_i irreducible in S_2). Then $V(f_i) \subset V(f)$ for each i , and by the Proposition $f_i|g$ for each i . This implies that $f|g^{\sum m_i}$, i.e. f divides a power of g .

PROOF. Since $f|0$ is trivial, we take $g \neq 0$. By Prop. 9.2.3, we have $V(g) \neq \mathbb{C}^2$, which implies $V(f) \neq \mathbb{C}^2$ hence $f \neq 0$. We may assume that $f \notin \mathbb{C}$ (since a constant divides anything), and furthermore that $\deg_Y(f) \neq 0$ (otherwise just swap X and Y). Writing

$$f = a_0(X)Y^n + a_1(X)Y^{n-1} + \cdots + a_n(X) \notin \mathbb{C}[X]$$

($n > 0$ and $a_0(X) \neq 0$), I make the **claim**:¹ *we can assume that $g \notin \mathbb{C}[X]$.*

Assuming the **claim**, f and g are of degree > 0 in Y , so by Prop. 9.1.1 (with $\mathbb{D} = \mathbb{C}[X]$), $\mathcal{R}_Y(f, g) = Fg + Gf \in \mathbb{C}[X]$ for $\deg_Y F < \deg_Y f$, $\deg_Y G < \deg_Y g$. Given any $\alpha \in \mathbb{C} \setminus V(a_0)$, since \mathbb{C} is algebraically closed there exists a root $\beta \in \mathbb{C}$ of $f(\alpha, Y)$. From $V(f) \subseteq V(g)$ we see that $(\alpha, \beta) \in V(f(\alpha, Y)) \subseteq V(g(\alpha, Y)) \subseteq \mathbb{C}$, so that $f(\alpha, Y)$ and $g(\alpha, Y)$ have a common root for every $\alpha \in \mathbb{C} \setminus V(a_0)$. It follows that $a_0 \mathcal{R}_Y(f, g) \in \mathbb{C}[X]$ evaluates to zero at every $\alpha \in \mathbb{C}$, hence is zero. As $a_0 \neq 0$, we find $\mathcal{R}_Y(f, g) = 0$ in $\mathbb{C}[X]$; and then by Prop. 8.1.2, $\deg_Y(\gcd_{S_2}(f, g)) > 0$. (Alternately, $Fg = (-G)f \implies f, g$ have a divisor of nonzero degree in Y .) But f is irreducible, so divides any nonzero non-unit dividing it; we conclude that $f \mid \gcd_{S_2}(f, g) \mid g$.

To prove the **claim**, suppose $g \in \mathbb{C}[X] \setminus \{0\}$. Then there exists $\alpha \in \mathbb{C} \setminus V(g \cdot a_0)$. Viewed as a function on \mathbb{C}^2 , g is constant in Y , so $g(\alpha, \beta) \neq 0 \ \forall \beta \in \mathbb{C}$. But since $a_0(\alpha) \neq 0$, $\deg_Y(f(\alpha, Y)) > 0$; and then (as \mathbb{C} is algebraically closed) $\exists \beta \in \mathbb{C}$ such that $f(\alpha, \beta) = 0$. By assumption, $V(f) \subseteq V(g)$ and so $g(\alpha, \beta) = 0$, a contradiction. \square

¹at this point, of course, we can't "just swap X and Y "

9.3. The Nullstellensatz

The proof of Study immediately generalizes to \mathbb{C}^n . This yields a version of Hilbert's Nullstellensatz for hypersurfaces:

9.3.1. COROLLARY. *If $V(f) = V(g)$ for $f, g \in S_n$ and ...*

(i) f, g are irreducible, then $f = \lambda g$ ($\lambda \in \mathbb{C}^$)*

(ii) f, g are not irreducible, then $\exists M, N \in \mathbb{N}$ such that $f|g^N, g|f^M$.

Equivalently, f and g have the same irreducible factors.

PROOF. (i) Study $\implies f|g$ and $g|f$; (ii) is by Remark 9.2.5. \square

The point of this is that, modulo issues with powers, there is a *bijection* between hypersurfaces and principal ideals (i.e. polynomials up to multiplication by constants) in S_n which reverses inclusion. That is, provided f and g are “reduced” (all irreducible factors occur with multiplicity 1), $(f) \supset (g) \iff f|g \iff V(f) \subset V(g)$.

To get a more general perspective on this, we introduce a few new ideas. First, given a subset $\mathfrak{X} \subseteq \mathbb{C}^n$, we define the ideal of \mathfrak{X} by

$$I(\mathfrak{X}) := \{f \in S_n \mid f(z) = 0 \ \forall z \in \mathfrak{X}\}.$$

For example, if f is “reduced”, we clearly have $I(V(f)) = (f)$ by Study's Lemma: any g vanishing on $V(f)$ is divisible by f . A subset $\mathfrak{X} \subseteq \mathbb{C}^n$ is *algebraic* if it is of the form $V(J)$ for some ideal $J \subset S_n$. (Indeed, this is just an affine algebraic variety.) The statement $V(I(\mathfrak{X})) = \mathfrak{X}$ is true (almost a tautology) for algebraic subsets. Moreover, $I(\cdot)$ reverses inclusions as $\mathfrak{X}_1 \subset \mathfrak{X}_2 \implies I(\mathfrak{X}_1) \supset I(\mathfrak{X}_2)$.

Given any ideal $J \subset S_n$, we let \sqrt{J} denote the *radical* of J , which is the ideal comprising all elements of S_n some power of which belongs to J . A *radical ideal* is an ideal which equals its own radical. Finally, J is *prime* $\iff S_n/J$ is a domain ($\iff J$ is irreducible in the monoid of ideals in S_n), and *maximal* $\iff S_n/J$ is a field.

9.3.2. THEOREM. *Let $J \subset S_n$ be an ideal.*

(i) J is maximal $\iff J = (Z_1 - \alpha_1, \dots, Z_n - \alpha_n)$ for some $\alpha_i \in \mathbb{C}$;

(ii) If $J \neq S_n$, then $V(J) \neq \emptyset$;

(iii) $I(V(J)) = \sqrt{J}$.

Theorem 9.3.2(iii) is the standard modern formulation of the Nullstellensatz,² and is equivalent to Theorem 5.3.1 (why?). It has the following important consequence, where an algebraic subset is *irreducible* if it is not a union of two proper algebraic subsets:

9.3.3. COROLLARY. *The correspondence*

$$\begin{array}{ccc} \text{ideals} & & \text{subsets} \\ \{J \subset S_n\} & \xrightleftharpoons[V]{I} & \{\mathfrak{X} \subset \mathbb{C}^n\} \end{array}$$

induces inclusion-reversing bijections

$$\begin{array}{ccc} \{\text{radical ideals}\} & \longleftrightarrow & \{\text{algebraic subsets}\} \\ \cup & & \cup \\ \{\text{prime ideals}\} & \longleftrightarrow & \{\text{irred. alg. subsets}\} \end{array}.$$

The last correspondence is checked in the exercises, by showing that $V(J_1 J_2) = V(J_1) \cup V(J_2)$; the rest is clear from the Theorem.

One can push the relation between affine algebraic geometry and commutative algebra much further. For example, the *ring of regular functions* on an irreducible affine variety $V = V(\mathfrak{P})$ (\mathfrak{P} a prime ideal) is defined by

$$\mathbb{C}[V] := S_n/\mathfrak{P},$$

and it is easy to see that this embeds (say, for V smooth) in $\mathcal{O}(V)$. (The idea is that \mathfrak{P} is the kernel of the map from S_n to $\mathcal{O}(V)$ given by restricting polynomial “functions” to V , and so S_n/\mathfrak{P} is its image.) $\mathbb{C}[V]$ is sometimes also called the *coordinate ring* of V . Furthermore, if V is the affine part of a smooth projective variety \bar{V} , the field of meromorphic functions $\mathcal{K}(\bar{V})$ is isomorphic to the fraction field $\mathbb{C}(V)$ of $\mathbb{C}[V]$. Usually $\mathbb{C}(V)$ is called the *function field* of \bar{V} (or V).

There is even a way to recover varieties from their coordinate rings; this is the “Spec” operation. Very roughly speaking, the affine story is this: any commutative ring A which is finitely generated

²Again, we can replace \mathbb{C} here with any algebraically closed field. (A proof of Theorem 9.3.2 is in my Algebra II notes, but would take us too far afield here.)

over \mathbb{C} may be presented as $\mathbb{C}[z_1, \dots, z_N]/I$ (where $I \subseteq \mathbb{C}[z_1, \dots, z_N]$ is an ideal), and then you take $V(I) \subseteq \mathbb{C}^N$. This gives one realization of $\text{Spec}(A)$; of course, there are many ways of writing A in this form (different N , different I , etc.). From the standpoint of scheme theory, $\text{Spec}(A)$ is something intrinsic, an *affine scheme* which exists in the absence of any particular embedding in an affine space \mathbb{C}^N . The best resources on this are the book by E. Kunz and the classic text by R. Hartshorne.

The exercises that follow explore some consequences of the Nullstellensatz.

Exercises

- (1) Prove: (i) that for any algebraic subset $\mathfrak{X} \subseteq \mathbb{C}^n$, $V(I(\mathfrak{X})) = \mathfrak{X}$; (ii) that for any two ideals $J_1, J_2 \subseteq \mathbb{C}[Z_1, \dots, Z_n]$, $V(J_1 J_2) = V(J_1) \cup V(J_2)$.
- (2) For any finite collection of ideals $\{J_i\}_{i=1}^m$, show that (i) $V(\sum_i J_i) = \bigcap_i V(J_i)$ and (ii) $V(\bigcap_i J_i) = V(J_1 \cdots J_m) = \bigcup_i V(J_i)$. [Hint for (ii): $V(J) = V(\sqrt{J})$ (why?); so start by checking $\sqrt{\bigcap_i J_i} = \sqrt{J_1 \cdots J_m}$.]
- (3) Show that an affine variety V is irreducible if and only if $I(V)$ is a prime ideal. [Hint for one direction: if $J := I(V)$ is not prime, then $\exists f_1, f_2 \in S_n \setminus J$ with $f_1 f_2 \in J$. Take $J_i := (f_i) + J$, show $V(J_i) \subsetneq V$, and consider $J_1 J_2$.]
- (4) Prove that any decreasing chain $V_1 \supset V_2 \supset \cdots$ of affine varieties (in \mathbb{C}^n) “stabilizes” at some m : i.e., $V_m = V_{m+1} = \cdots$ [Hint: you may assume that every ideal in S_n is finitely generated (Hilbert basis theorem). Why does this imply that any ascending chain of ideals must stabilize?]
- (5) (i) Show that every nonempty affine variety $V = V(J) \subset \mathbb{C}^n$ may be written uniquely as a finite union $V_1 \cup \cdots \cup V_r$, where each V_i is irreducible and $V_j \not\subset V_i$ for $i \neq j$. [Hint: suppose otherwise, and use Exercise (4).] (ii) Work this out for $V(J)$, where $J = (z_1 z_2 - z_3, z_1 z_3 - z_2^2)$.