
CHAPTER 9

Hilbert’s Nullstellensatz

In something of an algebraic detour, we will now prove Theorem
5.3.1 for affine hypersurfaces. In the general case, we shall also state
(but not prove) a reformulation which lays out the correspondence
between affine algebraic varieties and ideals in commutative rings.

9.1. Resultants (bis)

We need another result on resultants. As in §8.1 let D be a UFD
with fraction field K; and for f = a0Yn + a1Yn�1 + · · ·+ an and g =

b0Ym + b1Ym�1 + · · · + bm polynomials in D[Y], define R( f , g) :=
det M( f ,g). (In case D is itself a polynomial ring, we will often write
RY( f , g) to make it clear that Y is the variable being eliminated.)

9.1.1. PROPOSITION. R( f , g) = G f + Fg for some F, G 2 D[Y]
with deg G < deg g, deg F < deg f .

PROOF. If R( f , g) = 0, then we are done by (8.1.3). Otherwise,
write
(9.1.2)
Ym�1 f = a0Yn+m�1 +a1Yn+m�2 + · · · +anYm�1

Ym�2 f = a0Yn+m�2 + · · · · · · +anYm�2

...
f = a0Yn + · · · · · · +an

Yn�1g = b0Yn+m�1 +b1Yn+m�2 + · · · +bmYn�1

Yn�2g = b0Yn+m�2 + · · · · · · +bmYn�2

...
g = b0Ym + · · · · · · +bm.
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Viewing the system (9.1.2) as a vector equation, the RHS is evidently
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Moreover, by Cramer’s rule we have (in K) M�1
( f ,g) = (det M( f ,g))

�1A,
where A is the adjugate matrix with (i, j)th entry (�1)i+j times the
(j, i)th minor of M( f ,g). In other words, the entries of

R( f , g)M�1
( f ,g) = A

are in D. Applying this to both sides of (9.1.2) thus produces a sys-
tem of the form

(9.1.3)

?? = R( f , g)Yn+m�1

?? = R( f , g)Yn+m�2

... . . .
?? = R( f , g)

where each “??” is a D-linear combination of the entries to the left
of “=” in (9.1.2). In particular, the last row of (9.1.3) is

G0 f + F0g = R( f , g),

where G0, F0 2 D[Y] satisfy deg G0  m� 1, deg F0  n� 1. ⇤

We should mention the formula for the resultant of two poly-
nomials whose irreducible factors are all linear (or constant) in y,
although we will neither use nor prove it:

9.1.4. PROPOSITION. If f and g decompose into linear factors f =

a0 ’i(Y � xi), g = b0 ’j(Y � yj) (for xi, yj 2 D), then R( f , g) =

am
0 bn

0 ’i,j(xi � yj).

9.2. Study’s lemma

We continue to assume that D is a UFD with f 2 D[Y] of de-
gree n. Given d 2 D, we have the ring homomorphism given by
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“evaluation at d”:
D[Y]

q

d�! D

G(Y) 7�! G(d)
.

9.2.1. PROPOSITION. (i) If f (d)(= q

d

( f )) = 0, i.e. d is a root of f ,
then (Y� d) | f (Y).

(ii) f has at most n roots in D.

PROOF. (i) By the division algorithm,

(9.2.2) f = q.(Y� d) + r

where deg r < deg(Y� d) = 1, i.e. r 2 D. Applying q

d

to (9.2.2), we
have

0 = f (d) = q(d).0 + r

and thus r = 0, so that (Y� d) divides f .
(ii) Follows from (i) (and the fact that D[Y] is a UFD) since f can

have at most n = deg( f ) linear factors. ⇤

Now we will specialize to the case D = C[X]; more generally, the
results of this section will hold with any algebraically closed field
replacing C, {X1, . . . , Xn�1} replacing X, and Sn replacing S2.

Let F 2 D[Y] = C[X, Y] = S2.

9.2.3. PROPOSITION. If V(F) = C2, i.e. F vanishes on all of C2, then
F = 0 as an element of S2.

PROOF. Suppose F 6= 0. By Prop. 9.2.1(ii), viewed as an element
of D[Y], F has a finite number of roots in D = C[X]. Some of these
may be constants in C. Since C is an infinite field, there exists b 2 C

such that b is not one of these roots, and then F(X, b)(= q

b

(F)) 6= 0
in C[X]. Again by Prop. 9.2.1(ii), F(X, b) itself has finitely many
roots, so there exists a 2 C such that F(a, b) 6= 0. Hence, F is not
identically zero on C2. ⇤

9.2.4. PROPOSITION. [STUDY’S LEMMA] Given f , g 2 S2, with f
irreducible and V( f ) ✓ V(g). Then f divides g.
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9.2.5. REMARK. Suppose we drop the requirement that f be irre-
ducible, so that f = ’ f mi

i ( fi irreducible in S2). Then V( fi) ⇢ V( f )
for each i, and by the Proposition fi|g for each i. This implies that
f |gÂ mi , i.e. f divides a power of g.

PROOF. Since f |0 is trivial, we take g 6= 0. By Prop. 9.2.3, we have
V(g) 6= C2, which implies V( f ) 6= C2 hence f 6= 0. We may assume
that f /2 C (since a constant divides anything), and furthermore that
degY( f ) 6= 0 (otherwise just swap X and Y). Writing

f = a0(X)Yn + a1(X)Yn�1 + · · ·+ an(X) /2 C[X]

(n > 0 and a0(X) 6= 0), I make the claim:1 we can assume that g /2
C[X].

Assuming the claim, f and g are of degree > 0 in Y, so by Prop.
9.1.1 (with D = C[X]), RY( f , g) = Fg + G f 2 C[X] for degY F <

degY f , degY G < degY g. Given any a 2 C\V(a0), since C is alge-
braically closed there exists a root b 2 C of f (a, Y). From V( f ) ✓
V(g) we see that (a, b) 2 V( f (a, Y)) ✓ V(g(a, Y)) ✓ C, so that
f (a, Y) and g(a, Y) have a common root for every a 2 C\V(a0). It
follows that a0RY( f , g) 2 C[X] evaluates to zero at every a 2 C,
hence is zero. As a0 6= 0, we find RY( f , g) = 0 in C[X]; and then
by Prop. 8.1.2, degY(gcdS2

( f , g)) > 0. (Alternately, Fg = (�G) f
=) f , g have a divisor of nonzero degree in Y.) But f is irre-
ducible, so divides any nonzero non-unit dividing it; we conclude
that f | gcdS2

( f , g) | g.
To prove the claim, suppose g 2 C[X]\{0}. Then there exists

a 2 C\V(g.a0). Viewed as a function on C2, g is constant in Y, so
g(a, b) 6= 0 8b 2 C. But since a0(a) 6= 0, degY( f (a, Y)) > 0; and
then (as C is algebraically closed) 9b 2 C such that f (a, b) = 0. By
assumption, V( f ) ✓ V(g) and so g(a, b) = 0, a contradiction. ⇤

1at this point, of course, we can’t “just swap X and Y”



9.3. THE NULLSTELLENSATZ 123

9.3. The Nullstellensatz

The proof of Study immediately generalizes to Cn. This yields a
version of Hilbert’s Nullstellensatz for hypersurfaces:

9.3.1. COROLLARY. If V( f ) = V(g) for f , g 2 Sn and . . .
(i) f , g are irreducible, then f = lg (l 2 C⇤)

(ii) f , g are not irreducible, then 9 M, N 2 N such that f |gN, g| f M.
Equivalently, f and g have the same irreducible factors.

PROOF. (i) Study =) f |g and g| f ; (ii) is by Remark 9.2.5. ⇤
The point of this is that, modulo issues with powers, there is a

bijection between hypersurfaces and principal ideals (i.e. polynomi-
als up to multiplication by constants) in Sn which reverses inclusion.
That is, provided f and g are “reduced” (all irreducible factors occur
with multplicity 1), ( f ) � (g) () f |g () V( f ) ⇢ V(g).

To get a more general perspective on this, we introduce a few
new ideas. First, given a subset X ✓ Cn, we define the ideal of X by

I(X) := { f 2 Sn | f (z) = 0 8z 2 X}.

For example, if f is “reduced”, we clearly have I(V( f )) = ( f ) by
Study’s Lemma: any g vanishing on V( f ) is divisible by f . A sub-
set X ✓ Cn is algebraic if it is of the form V(J) for some ideal J ⇢
Sn. (Indeed, this is just an affine algebraic variety.) The statement
V(I(X)) = X is true (almost a tautology) for algebraic subsets. More-
over, I(·) reverses inclusions as X1 ⇢ X2 =) I(X1) � I(X2).

Given any ideal J ⇢ Sn, we let
p

J denote the radical of J, which is
the ideal comprising all elements of Sn some power of which belongs
to J. A radical ideal is an ideal which equals its own radical. Finally, J
is prime () Sn/J is a domain (() J is irreducible in the monoid
of ideals in Sn), and maximal () Sn/J is a field.

9.3.2. THEOREM. Let J ⇢ Sn be an ideal.

(i) J is maximal () J = (Z1 � a1, . . . , Zn � an) for some ai 2 C;
(ii) If J 6= Sn, then V(J) 6= ∆;

(iii) I(V(J)) =
p

J.
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Theorem 9.3.2(iii) is the standard modern formulation of the Null-
stellensatz,2 and is equivalent to Theorem 5.3.1 (why?). It has the
following important consequence, where an algebraic subset is irre-
ducible if it is not a union of two proper algebraic subsets:

9.3.3. COROLLARY. The correspondence

ideals subsets

{J ⇢ Sn}
I

⌧
V

{X ⇢ Cn}

induces inclusion-reversing bijections

{radical ideals}  ! {algebraic subsets}
[ [

{prime ideals}  ! {irred. alg. subsets}
.

The last correspondence is checked in the exercises, by showing
that V(J1 J2) = V(J1) [V(J2); the rest is clear from the Theorem.

One can push the relation between affine algebraic geometry and
commutative algebra much further. For example, the ring of regular
functions on an irreducible affine variety V = V(P) (P a prime ideal)
is defined by

C[V] := Sn/P,

and it is easy to see that this embeds (say, for V smooth) in O(V).
(The idea is that P is the kernel of the map from Sn to O(V) given by
restricting polynomial “functions” to V, and so Sn/P is its image.)
C[V] is sometimes also called the coordinate ring of V. Furthermore, if
V is the affine part of a smooth projective variety V̄, the field of mero-
morphic functions K(V̄) is isomorphic to the fraction field C(V) of
C[V]. Usually C(V) is called the function field of V̄ (or V).

There is even a way to recover varieties from their coordinate
rings; this is the “Spec” operation. Very roughly speaking, the affine
story is this: any commutative ring A which is finitely generated
2Again, we can replace C here with any algebraically closed field. (A proof of
Theorem 9.3.2 is in my Algebra II notes, but would take us too far afield here.)
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over C may be presented as C[z1, . . . , zN ]/I (where I ✓ C[z1, . . . , zN ]

is an ideal), and then you take V(I) ✓ CN. This gives one realization
of Spec(A); of course, there are many ways of writing A in this form
(different N, different I, etc.). From the standpoint of scheme theory,
Spec(A) is something intrinsic, an affine scheme which exists in the
absence of any particular embedding in an affine space CN. The best
resources on this are the book by E. Kunz and the classic text by R.
Hartshorne.

The exercises that follow explore some consequences of the Null-
stellensatz.

Exercises
(1) Prove: (i) that for any algebraic subset X ✓ Cn, V(I(X)) = X; (ii)

that for any two ideals J1, J2 ✓ C[Z1, . . . , Zn], V(J1 J2) = V(J1) [
V(J2).

(2) For any finite collection of ideals {Ji}m
i=1, show that (i) V(Âi Ji) =

\iV(Ji) and (ii) V(\i Ji) = V(J1 · · · Jm) = [iV(Ji). [Hint for (ii):
V(J) = V(

p
J) (why?); so start by checking

p
\i Ji =

p
J1 · · · Jm.]

(3) Show that an affine variety V is irreducible if and only if I(V) is
a prime ideal. [Hint for one direction: if J := I(V) is not prime,
then 9 f1, f2 2 Sn \ J with f1 f2 2 J. Take Ji := ( f1) + J, show
V(Ji) ( V, and consider J1 J2.]

(4) Prove that any decreasing chain V1 � V2 � · · · of affine varieties
(in Cn) “stabilizes” at some m: i.e., Vm = Vm+1 = · · · . [Hint: you
may assume that every ideal in Sn is finitely generated (Hilbert
basis theorem). Why does this imply that any ascending chain of
ideals must stabilize?]

(5) (i) Show that every nonempty affine variety V = V(J) ⇢ Cn may
be written uniquely as a finite union V1 [ · · · [ Vr, where each
Vi is irreducible and Vj 6⇢ Vi for i 6= j. [Hint: suppose other-
wise, and use Exercise (4).] (ii) Work this out for V(J), where
J = (z1z2 � z3, z1z3 � z2

2).


