CHAPTER 9

Hilbert's Nullstellensatz

In something of an algebraic detour, we will now prove Theorem
5.3.1 for affine hypersurfaces. In the general case, we shall also state
(but not prove) a reformulation which lays out the correspondence
between affine algebraic varieties and ideals in commutative rings.

9.1. Resultants (bis)

We need another result on resultants. As in §8.1 let D be a UFD
with fraction field K; and for f = agY" +a;Y" '+ ... +a,and ¢ =
boY™ + b1Y" ! + ... + by, polynomials in D[Y], define R(f,g) :=
det M q). (In case ID is itself a polynomial ring, we will often write
Ry (f,g) to make it clear that Y is the variable being eliminated.)

9.1.1. PROPOSITION. R(f,g) = Gf + Fg for some F,G € D]Y]
with deg G < deg g, deg F < deg f.

PROOF. If R(f,g) = 0, then we are done by (8.1.3). Otherwise,
write

(9.1.2)
melf — aoynerfl _‘_alyn+m72 4. _{_anymfl
meZf — aoyn+m72 4. . _|_anym72
f = aOYn _|_ PPN e +an
Ynflg — boynerfl +blyn+m72 S _*_bmynfl
Ynfzg — boyn+m72 4o L. _i_bmynfz
g = boY™ +. . +by,.
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Viewing the system (9.1.2) as a vector equation, the RHS is evidently

YrH»mfl
Yn+m72

Ms.g) :

Y

1
Moreover, by Cramer’s rule we have (in K) M@’%g) = (de’F M( f,g))_lA,
where A is the adjugate matrix with (i,j)™ entry (—1)"*/ times the

(. i)™

minor of M (£.9)" In other words, the entries of

_1 _
R(f,g)M(f,g) =A

are in ID. Applying this to both sides of (9.1.2) thus produces a sys-
tem of the form

2?2 = R(f,g)Yrtm1

= n+m—2
(9.1.3) "= Rf9)Y

7 = R(f &)
where each “??” is a ID-linear combination of the entries to the left
of “="1in (9.1.2). In particular, the last row of (9.1.3) is

Gof +Fog = R(f,8),
where Gy, Fy € D[Y] satisfy degGo < m —1,degFy < n —1. O

We should mention the formula for the resultant of two poly-
nomials whose irreducible factors are all linear (or constant) in y,
although we will neither use nor prove it:

9.1.4. PROPOSITION. If f and g decompose into linear factors f =
aoIT;(Y — xi), § = boIT;(Y —y;) (for x;,y; € D), then R(f,g) =
ag'by ITij(xi — yj)-

9.2. Study’s lemma

We continue to assume that ID is a UFD with f € DD[Y] of de-
gree n. Given 6 € D, we have the ring homomorphism given by
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“evaluation at ”: )
D[Y] % D

G(Y) —s G(4)

9.2.1. PROPOSITION. (i) If f(8)(= 05(f)) = 0, i.e. 6 is a root of f,
then (Y —6) | f(Y).

(ii) f has at most n roots in D.
PROOF. (i) By the division algorithm,
(9.2.2) f=q9(Y—=06)+r

where degr < deg(Y — ) = 1,1i.e. r € D. Applying 6, to (9.2.2), we
have
0=f(0) =q(5).0+r
and thus r = 0, so that (Y — ¢) divides f.
(ii) Follows from (i) (and the fact that ID[Y] is a UFD) since f can
have at most n = deg( f) linear factors. O

Now we will specialize to the case D = C[X]; more generally, the
results of this section will hold with any algebraically closed field
replacing C, {Xj, ..., X;,_1} replacing X, and S, replacing S,.

Let F e D[Y] =C[X,Y] = S».

9.2.3. PROPOSITION. If V(F) = C?, i.e. F vanishes on all of C?, then
F = 0 as an element of S5.

PROOF. Suppose F # 0. By Prop. 9.2.1(ii), viewed as an element
of D[Y], F has a finite number of roots in ID = C[X]. Some of these
may be constants in C. Since C is an infinite field, there exists p € C
such that 8 is not one of these roots, and then F(X, B)(= 05(F)) # 0
in C[X]. Again by Prop. 9.2.1(ii), F(X, B) itself has finitely many
roots, so there exists « € C such that F(a,8) # 0. Hence, F is not
identically zero on C?. [

9.2.4. PROPOSITION. [STUDY’S LEMMA] Given f,g € Sy, with f
irreducible and V(f) C V(g). Then f divides g.
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9.2.5. REMARK. Suppose we drop the requirement that f be irre-
ducible, so that f = [T f/" (f; irreducible in S,). Then V(f;) C V(f)
for each i, and by the Proposition f;|g for each i. This implies that
flgt™i, ie. f divides a power of g.

PROOF. Since f|0is trivial, we take ¢ # 0. By Prop. 9.2.3, we have
V(g) # C2, which implies V(f) # C? hence f # 0. We may assume
that f ¢ C (since a constant divides anything), and furthermore that
degy (f) # 0 (otherwise just swap X and Y). Writing

f=ag(X)Y" +a;(X)Y" 1+ +a,(X) ¢ C[X]

(n > 0 and ap(X) # 0), I make the claim:! we can assume that g ¢
C[X].

Assuming the claim, f and g are of degree > 0 in Y, so by Prop.
9.1.1 (with D = C[X]), Ry(f,g) = Fg+ Gf € C[X] for deg, F <
degy f, deg, G < degy g. Given any & € C\V(ap), since C is alge-
braically closed there exists a root B € C of f(a,Y). From V(f) C
V(g) we see that (a,8) € V(f(«,Y)) C V(g(a,Y)) C C, so that
f(a,Y) and g(a,Y) have a common root for every &« € C\V(ap). It
follows that ayRy(f,g) € C[X] evaluates to zero at every a € C,
hence is zero. As ag # 0, we find Ry(f,g) = 0in C[X]; and then
by Prop. 8.1.2, degy(geds, (f,8)) > 0. (Alternately, Fg = (—G)f
—> f,4 have a divisor of nonzero degree in Y.) But f is irre-
ducible, so divides any nonzero non-unit dividing it; we conclude
that f | gedg, (f,8) | 8-

To prove the claim, suppose ¢ € C[X]\{0}. Then there exists
a € C\V(g.a0). Viewed as a function on C?, g is constant in Y, so
g(a,B) # 0VB € C. But since ap(x) # 0, degy(f(«,Y)) > 0; and
then (as C is algebraically closed) 38 € C such that f(«, ) = 0. By
assumption, V(f) C V(g) and so g(«, B) = 0, a contradiction. O

Lat this point, of course, we can’t “just swap X and Y”
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9.3. The Nullstellensatz

The proof of Study immediately generalizes to C". This yields a
version of Hilbert’s Nullstellensatz for hypersurfaces:

9.3.1. COROLLARY. IfV(f) = V(g) for f,g € Sy and ...

(i) f,g are irreducible, then f = Ag (A € C*)

(i) f, g are not irreducible, then 3 M, N € N such that f|gN, g|fM.
Equivalently, f and g have the same irreducible factors.

PROOF. (i) Study = f|g and g|f; (ii) is by Remark 9.2.5. O

The point of this is that, modulo issues with powers, there is a
bijection between hypersurfaces and principal ideals (i.e. polynomi-
als up to multiplication by constants) in S,, which reverses inclusion.
That is, provided f and g are “reduced” (all irreducible factors occur
with multplicity 1), (f) D () < flg < V(f) C V().

To get a more general perspective on this, we introduce a few
new ideas. First, given a subset X C C", we define the ideal of X by

[(X) = {f € Su| f(z) = 0Vz € X}.

For example, if f is “reduced”, we clearly have I(V(f)) = (f) by
Study’s Lemma: any g vanishing on V(f) is divisible by f. A sub-
set X C C" is algebraic if it is of the form V() for some ideal | C
Sy. (Indeed, this is just an affine algebraic variety.) The statement
V(I(X)) = X is true (almost a tautology) for algebraic subsets. More-
over, I(+) reverses inclusions as X1 C X, = [(X1) D I(X>).

Given any ideal ] C S;, we let /] denote the radical of |, which is
the ideal comprising all elements of S, some power of which belongs
to J. A radical ideal is an ideal which equals its own radical. Finally, |
is prime <= S;/]is a domain ( <= ] is irreducible in the monoid
of ideals in S;,), and maximal < S, /] is a field.

9.3.2. THEOREM. Let | C S;, be an ideal.
(i) Jis maximal <= | = (Zy —ayq,...,2Zn — ay) for some a; € C;
(ii) If | # Su, then V(]) # @;
(i) I(V(])) =+/].
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Theorem 9.3.2(iii) is the standard modern formulation of the Null-
stellensatz,? and is equivalent to Theorem 5.3.1 (why?). It has the
following important consequence, where an algebraic subset is irre-
ducible if it is not a union of two proper algebraic subsets:

9.3.3. COROLLARY. The correspondence

ideals subsets

I
{JcS,} s {xcc"}
14

induces inclusion-reversing bijections

{radical ideals} <+— {algebraic subsets}
U U
{prime ideals} <— {irred. alg. subsets}

The last correspondence is checked in the exercises, by showing
that V(J1J2) = V(J1) U V(]2); the rest is clear from the Theorem.

One can push the relation between affine algebraic geometry and
commutative algebra much further. For example, the ring of regular
functions on an irreducible affine variety V = V() ( a prime ideal)
is defined by

C[V]:=S,/%,

and it is easy to see that this embeds (say, for V smooth) in O(V).
(The idea is that P is the kernel of the map from S, to O(V) given by
restricting polynomial “functions” to V, and so S,/ is its image.)
C[V] is sometimes also called the coordinate ring of V. Furthermore, if
V is the affine part of a smooth projective variety V, the field of mero-
morphic functions (V) is isomorphic to the fraction field C(V) of
C[V]. Usually C(V) is called the function field of V (or V).

There is even a way to recover varieties from their coordinate
rings; this is the “Spec” operation. Very roughly speaking, the affine
story is this: any commutative ring A which is finitely generated

2Again, we can replace C here with any algebraically closed field. (A proof of
Theorem 9.3.2 is in my Algebra II notes, but would take us too far afield here.)
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over C may be presented as C|zy, ...,zn]|/I (where I C C|zy,...,zN]
is an ideal), and then you take V(I) C CN. This gives one realization
of Spec(A); of course, there are many ways of writing A in this form
(different N, different I, etc.). From the standpoint of scheme theory,
Spec(A) is something intrinsic, an affine scheme which exists in the
absence of any particular embedding in an affine space CV. The best
resources on this are the book by E. Kunz and the classic text by R.
Hartshorne.

The exercises that follow explore some consequences of the Null-
stellensatz.

Exercises

(1) Prove: (i) that for any algebraic subset ¥ C C", V(I(X)) = X; (ii)
that for any two ideals |, J» C C[Zy,...,Z4), V(1]2) = V(J1) U
V(J2).

(2) For any finite collection of ideals {];}!" ;, show that (i) V(¥; J;) =
NiV(J;) and (i) V(N;J;) = V(J1 -+ Jm) = U;V(];). [Hint for (ii):
V(J) = V(V/]) (why?); so start by checking \/N;Ji = VJ1 - Jm-]

(3) Show that an affine variety V is irreducible if and only if I(V) is
a prime ideal. [Hint for one direction: if | := I(V) is not prime,
then 3f1, o € S, \ J with f1f, € J. Take J; := (f1) + ], show
V(J;) €V, and consider J1 J5.]

(4) Prove that any decreasing chain V; D V, D - - - of affine varieties
(in C") “stabilizes” at some m: i.e., V; = V41 = - - -. [Hint: you
may assume that every ideal in S, is finitely generated (Hilbert
basis theorem). Why does this imply that any ascending chain of
ideals must stabilize?]

(5) (i) Show that every nonempty affine variety V = V(J) C C" may
be written uniquely as a finite union Vj U - - - U V;, where each
V; is irreducible and V; ¢ V; for i # j. [Hint: suppose other-
wise, and use Exercise (4).] (ii) Work this out for V(]), where

] = (z122 — 23, 2123 — 23).



