We now study some applications of sheaf cohomology and the de Rham theorem in a classical setting, partly to have some concrete examples of Hodge decompositions of bilinear relations before we meet them in greater generality.

As defined above, a compact Riemann surface (CRS) \(M \) is just a compact complex 1-manifold. \(M \) is Kähler, of course, since \(dw = 0 \) automatically (no 3-forms on \(M \)). We will see below that it is in fact projective.

The isomorphism class of \(M \) as a \(C^\infty \) manifold is given by the genus \(g \) of \(M \):

\[
g = 0 \quad \quad \quad \quad g = 1 \quad \quad \quad \quad g = 2
\]

and this determines its homology \(H_1(M, \mathbb{Z}) \cong \mathbb{Z}\langle x_2, \ldots, x_g \rangle \):

Note the (perfect) intersection pairing

\[
(\xi, \eta) \quad H_1(M, \mathbb{Z}) \times H_1(M, \mathbb{Z}) \to \mathbb{Z}
\]

with matrix

\[
J = \begin{pmatrix}
0 & \text{I}_g \\
\text{I}_g & 0
\end{pmatrix}
\]

Aside: Note that the subgroup of \(GL_2(\mathbb{Z}) \) defined (wrt.

basis \(\{x_i\} \) if you will) by

\[
\text{M}_g \mathbb{Z} = J
\]

is called the symplectic group

\(\text{Sp}_g(\mathbb{Z}) \).
As for the cohomology, we have the cup (wedge) product
\[(6.2) \quad H^1_{dR}(M, \mathbb{C}) \times H^1_{dR}(M, \mathbb{C}) \to H^2_{dR}(M, \mathbb{C}) \xrightarrow{\cup} \mathbb{C} \]
as well as the (perfect) pairing induced by integration
\[(6.3) \quad H^1_{dR}(M, \mathbb{C}) \times H_1(M, \mathbb{C}) \to \mathbb{C} . \]
We get a composite isomorphism
\[H_1(M, \mathbb{C}) \xrightarrow{(6.1)} H^1(M, \mathbb{C}) \xrightarrow{(6.3)} H^1_{dR}(M, \mathbb{C}) \]
which begs the question: are the pairings all compatible, i.e., does
\[\int \quad \cdots \quad \int \quad \text{commute?} \]
In fact, the only issues here is the "top triangle": that is, do we have
\[\int_M \eta_Y \wedge \eta_{Y'} = [\gamma] \wedge [\gamma']? \]
There is a simple construction for \(\eta_Y \in A^1(M) \)-closed which makes this obvious: take a \(C^\infty \) embedding of \(|Y| \times \Delta \) in a small tubular neighborhood of \(|Y| \), which gives a diagram
\[\begin{array}{ccc}
|Y| \times \Delta & \to & M \\
\downarrow \pi & & \\
\Delta & & \\
\end{array} \quad (\Delta = \text{unit disk}) \]
Taking a C^∞ bump 1-form η on Δ with $\int_\Delta \eta = 1$, we set $\eta_y := \iota_{\pi^* \eta}$. By Fubini, one sees that at intersections

$$\int \eta_x \wedge \eta_y = \pm \int \pi^* \eta \wedge \pi^* \eta = \pm \left(\int_\Delta (\pi^* \eta)^2 \right) \quad \text{according to (6.2) is positive),}$$

which $\Rightarrow (6.4)$ commutes (and (6.2) is positive).

So periods of C^∞ 1-forms are whatever we want them to be. Holomorphic forms are more interesting. To see this we will require the following "preliminary" result:

Poincaré–Hopf Theorem: (i) Given $\omega \in C^\infty(M, TM)$, $\sum_{p \in M} \text{ind}_p \omega = \chi_M$.

(ii) Given $\omega \in \Omega^1(M)$,

\[\sum_{p \in \Sigma} \text{ind}_p \omega - \text{# of zeroes} = 2g - 2.\]

Proof: (i) "triangulate" M, and draw the following vector field on each triangle.

Which clearly gives together to give a global vector field on M, with indicies ± 1.

The marked points on the edges and $+1$ at the marked points on the faces + vertices. Thus,

$$\sum \text{ind}_p \omega = \# F - \# E + \# V = \chi_M = 2 - 2g.$$
It's fairly easy to see that this invariant is continuous under (co) derivation, hence that (6.5) holds for any vector field \(\tilde{v} \). It still holds if we allow \(\tilde{v} \) to have singularities at a finite number of points \(\{p_1, \ldots, p_n\} \) (i.e. \(\tilde{v} \in \mathcal{C}^0(M|\cup_{i=1}^n \{p_i\}, T_M) \)) provided one adds in the indices of \(\tilde{v} \) at the \(p_i \) into the sum.

(ii) (6.5) even holds if \(\tilde{v} \) is replaced by a smooth \(-\)form \(\eta \in \Gamma(M|\cup_{i=1}^n \{p_i\}) \), by using a metric \(g \) to identify \(TM \cong \mathbb{T}M \).

The corresponding notion of index, if \(\eta = \int f \, d\gamma + G \, dy \), is

\[
\text{Ind}_p \eta := \frac{1}{2\pi} \oint \frac{d\alpha}{\cos(\alpha - \gamma)}
\]

and once again the sum in (6.5) must be over all \(\mathcal{O}'s \) of \(\eta \).

If we \(K(M) \) has local form \(\omega = f \, dx + g \, dy \) (\(f, g \) are valued in \(\mathbb{C} \)), then \(\eta := \text{Re}(\omega) = \text{Re}(f) \, dx + \text{Re}(g) \, dy \). Let \(p = 0 \) be a pole of \(\omega \), and put \(\nu_p := \text{ord}_p(\omega) \). In a local holomorphic chart \(\mathcal{O} \) at \(p \),

\[
\omega \equiv r\, (\cos \nu \theta + i \sin \nu \theta) \,(dx + idy)
\]

\[
= r^\nu (\cos \nu \theta - i \sin \nu \theta)) \, dx + r^\nu (\sin \nu \theta + i \cos \nu \theta) \, dy.
\]

For the real part, then,

\[
\eta \approx \cos(-\nu \theta) \, dx + \sin(-\nu \theta) \, dy
\]

and so by (6.6)

\[
\text{Ind}_p \eta = \frac{1}{2\pi} \oint \! d[-\nu \theta] = -\nu_p
\]

\[
\Rightarrow \sum_{p \in M} \nu_p = 2g - 2.
\]

The compactness result for a meromorphic function \(f \in \mathcal{M}(M) \backslash \{0\} \) is

\[
\left(\# \text{zeros of } f \right) - \left(\# \text{poles of } f \right) = \sum_{p \in M} \text{Res}_p \frac{df}{f} = \frac{1}{2\pi i} \oint_{\mathcal{M} \cup \cup_{i=1}^n \{p_i\}} \frac{df}{f} = \frac{1}{2\pi i} \oint_{\mathcal{M} \cup \cup_{i=1}^n \{p_i\}} d(f/\bar{f}) = 0
\]

up to multiplication by a local holomorphic \(\tilde{v} \), which will not affect index.
We can rephrase these statements in terms of the group of (well) \textit{divisors}:

\[
\text{DIV}(M) := \left\{ \sum_{p \in M} d_p [p] \mid d_p \in \mathbb{Z}, \text{ finitely many } p \right\}
\]

\[
\downarrow \text{deg (= degree homomorphism)}
\]

\[
\mathbb{Z} \rightarrow \sum d_p =: d
\]

Write \(\text{Div}(M)^0 := \ker(\text{deg}) \)

- \(D \) is effective \(\Leftrightarrow d_p \geq 0 \) \((\forall p) \Rightarrow "D \geq 0"
- \(D \geq E \Leftrightarrow D - E \geq 0
- A\text{ given } D\text{ may be written } D_+ - D_-, \text{ with } D_+, D_- \geq 0.

\text{Example 1: (i) } f : \sum_{p \in M} n_p(f)[p] \text{ induces a group homomorphism }

(\cdot) : M(M)^* \rightarrow \text{DIV}(M)^*

(ii) Given \(\omega \in K^1(M)^* \), writing \(\omega = f dx \) in local coordinates one defines \(\nu_p(\omega) := \nu_p(f) \), this yields

\(\omega := \sum_{p \in M} \nu_p(\omega)[p] \), and Poincaré--Hopf \(\Rightarrow \)

\[\text{deg}(\omega) = 2g - 2. \]

We now have the crucial

\text{Definition 1: } \mathcal{O}(D) := \text{sheaf of meromorphic functions } f \text{ satisfying } (f) + D \geq 0 \text{ (or } f \equiv 0 \text{ locally)}
\[\mathcal{O}^1(D) := \text{sheaf of zero- \textit{locally} } 1 \text{-forms satisfying \textit{(locally)}} \]
\[(\omega + D) \geq 0 \quad \text{(or } \omega = 0) \]
\[L(D) := \mathcal{O}^1(D) = H^0(\mathcal{O}(D)) \quad \text{and } L(D) := H^1(\mathcal{O}(D)) \]

(the "m" is understood)
\[l(D) := \dim L(D) \quad \text{and } i(D) := \dim \mathcal{O}(D). \]

For \(D \geq 0 \), one has short-exact sequences

\[0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(D) \rightarrow \bigoplus \mathbb{C}^d \rightarrow 0 \quad \text{(reduces principal part)} \]

\[0 \rightarrow \mathcal{O}^1 \rightarrow \mathcal{O}^1(D) \rightarrow \bigoplus \mathbb{C}^d \rightarrow 0 \]

with associated long-exact sequences

\[0 \rightarrow \mathcal{O}(\mathbb{M}) \rightarrow L(D) \rightarrow \mathbb{C}^{d(\deg D)} \rightarrow H^1(\mathcal{O}) \rightarrow L(D) \rightarrow 0 \]

\[0 \rightarrow \mathcal{O}^1(\mathbb{M}) \rightarrow \mathcal{O}^1(D)(\mathbb{M}) \rightarrow \mathbb{C}^d \rightarrow H^1(\mathcal{O}^1) \rightarrow H^1(\mathcal{O}^1(D)) \rightarrow 0 \]

in which the alternating sum of dimension must be zero (exercise).

For \(D > 0 \) we also have

\[0 \rightarrow \mathcal{O}(-D) \rightarrow \mathcal{O} \rightarrow \bigoplus \mathbb{C}^d \rightarrow 0 \]

\[0 \rightarrow \mathcal{O}(\mathbb{M}) \rightarrow \mathbb{C}^d \rightarrow \mathcal{O}(-D) \rightarrow H^1(\mathcal{O}) \rightarrow 0 \]

(hold for vanishing somewhere on \(D \))

and so for \(d > 0 \)
\[(G.12)\] \[
\begin{align*}
\ell(D) &\geq d + O(1) \quad (\text{in the sense of asymptotics:}) \\
\dim R^1(D)(M) &\geq d + O(1) \\
i(-D) &= d + O(1)
\end{align*}
\]
This immediately gives

Proposition 1: Nonconstant meromorphic functions and nonzero meromorphic forms exist.

Let \(\omega \in K^1(M)^* \) then, and set

\[K := (\omega) \in \text{Div}(M), \]
this canonical divisor is well-defined modulo \((\mathcal{M}(M)^*)\).

Corollary 1: \(\Theta(K) \leq \Lambda^1 \).

\[\text{Proof: } f \mapsto f\omega, \quad \text{check: } (f\omega) = (f) + (\omega) = (f) + K \geq 0, \]
\(\forall \omega \rightarrow ? \)

Now let \(D = D_+ - D_- \), \(\sum_{D_+} 0 \)

\(D_- > 0 \Rightarrow \)

\(0 \to \Omega(-D_-) \to \Omega(D) \to \bigoplus \mathfrak{g} \mathfrak{c} \to 0 \Rightarrow \)

\[(G.13)\]

\[0 \to \ell(D) \to \mathfrak{g}^* \to \lambda(-D_-) \to \ell(D) \to 0 \]

Now \((G.9) \Rightarrow \)

\[\ell(D) - i(D) = d + 1 - g_a \quad \text{for } D \geq 0, \]
where \(g_a := \dim H^1(\mathcal{O}) \). For the remaining cases of \(D \),
\[(G.13) \quad \tilde{\rho}(D) - i(D) = \tilde{d}^+ - i(-D) = \tilde{d}^+ - (\tilde{d}^- + g_\omega - 1) = \tilde{d}^+ - g_\omega.\]

Riemann-Roch Theorem: For all \(D \in \text{Div}(M),\)

\[\tilde{\rho}(D) - i(D) = \tilde{d}^+ - g_\omega.\]

Remark 1: While (6.12) was proved for \(D \geq 0,\) it's clear now that it holds in general. (For \(i(-D),\) this means showing \(\tilde{\rho}(-D) = 0\) for \(D\) sufficiently large; but already for \(D > 0\) \(\tilde{\rho}(-D)\) is zero for a deg \((C_f)\) = 0 always.)

To understand \(\tilde{\rho}(D)\) and \(g_\omega,\) we have to do some heavy lifting. Multiplication induces a map of sheaves

\[\mathcal{O}(-D) \otimes \mathcal{L}(D) \to \mathcal{O}^1,\]

hence a pairing

\[H^1(\mathcal{O}(-D)) \otimes H^0(\mathcal{L}(D)) \to H^0(\mathcal{O}^1) \cong \int \frac{\mathcal{L}}{\mathcal{O}^1} \to H^0_\omega(M, \mathcal{C}).\]

One can think of this as a map

\[\Theta_D : \tilde{\rho}(D)(M) \to (H^1(\mathcal{O}(-D))^\vee,\]

\[\omega \mapsto \{ \mathfrak{g} \mapsto e(\mathfrak{g} \omega) \} \]

Theorem 1 (Serre duality, for curves): \(\Theta_D\) is an isomorphism \((\forall D).\)
Proof: For $E \geq D$ we have
\[
0 \rightarrow \Omega(-E) \rightarrow \Omega(-D) \rightarrow \Theta \oplus \mathcal{E}^{e-d} \rightarrow 0
\]
\[
\Rightarrow \quad H'(\Omega(-E)) \rightarrow H'(\Omega(-D)) \rightarrow 0
\]
\[
\Rightarrow \quad H'(\Omega(-D)) \rightarrow H'(\Omega(-E))
\]
Set $V = \lim_{\to} H'(\Omega(-D))$.

Claim 1: $\Theta : \mathcal{H}^2(M) \rightarrow V$ is injective.

Pf: let $\omega \in \mathcal{H}^2(D(M))$
\[
k = -(1+\chi(\omega)) \quad (\leq d_p-1)
\]
Introduce a class $\delta \in H'(\Omega(-D))$ by taking
\[
\delta_{12} = z^k \in \Omega(-D)(U_{12}) \quad \text{and} \quad f_{91}
\]
is not a good open cover, this won't affect anything.

[Note: for z^k to extend to $\Omega(-D)(U_1)$, translating δ, we'd need $k \geq d_p$]

Let $\{ g_2 \in C^0(U_2) \}$ extend δ; then $\{ \overline{\delta g} \}$ involves δ as an element of $H'(\mathcal{C}^0(M))$, and $\overline{\delta g}$ gives the differentiation of δ in $A^{0,1}(-D)$.

and
\[
\mathcal{E}(\delta g) = \int_M \omega \wedge \overline{\delta g} = \int_{MU_1} \omega \wedge \overline{\delta g_2}
\]
\[
= \int_{MU_1} d(g_2 \omega) = \int_{2U_1} 2k_z \omega = 2\pi i \operatorname{Res}_p(z^k \omega) \neq 0 \quad \text{by choice of } k.
\]
So we obtain a nonzero element of V. //

* in particular, recall that $H'(\Omega(-D))$ is defined as $\lim_{\to} H'(\Omega(-D))$
so one can use any U to define a class. By δ we mean its image in the limit.
Claim 2 \(w \in \mathcal{K}(M) \) maps into \(H^1(\mathcal{O}(-D))^\vee \) \(\Rightarrow \) \(w \in \mathcal{N}(D)(M) \).

PF: If \(\Theta(w) \in \mathcal{N}(D)(M)^\vee \), then it has to vanish on all coboundaries for this group; if also \(\kappa = \nu_p(w) < -d_p \), then \(\kappa \geq d_p \Rightarrow \)
\[\exists \gamma \in \text{above}, \text{but } (\nu_p(w) \neq 0 \text{ or } \gamma) \quad \Rightarrow \quad \nu_p(w) \geq -d_p \quad (\forall \gamma) \quad // \\
\]

It remains to prove \(\Theta \) surjective. First note

- \(1 \)-dim \(\Gamma \) \(M(M) \) - vector space
- \(V = M(M) \) - vector space (given \(v \in V \), \(f \cdot v)(x) := v(f(x)) \)
- \(\Theta \) is \(M(M) \) - linear \((\Theta(fw))(x) := e(\omega f(x)) = \Theta(\omega)(f(x)) = (f \cdot \Theta(\omega))(x) \)

Now for \(\phi \in \mathcal{N}(\mathcal{O}(-D))^\vee \subset V \), it will suffice to prove the

Claim 3 \(\phi = \Theta(\tilde{\omega}) \) for some \(\tilde{\omega} \in \mathcal{K}(M) \).

PF: by (6.12) + Remark 1, for \(n > 0 \)
\[\dim \mathcal{N}(\mathcal{O}(-D - n[p]))^\vee = n + \Theta(1) \]
Moreover, \(\mathcal{N}(\mathcal{O}(-D - n[p]))^\vee \) contains
- \(\Theta(\mathcal{N}(D + n[p])(M)) \) \(\sim \) \(\dim \geq n + \Theta(1) \) by (6.12) & Claim 1
- \(\Theta(n[p])(M) \), \(\phi \) \(\sim \) \(\dim \geq n + \Theta(1) \) by (6.12)

So for \(n \) sufficiently large, these spaces intersect nontrivially:
\[\mathcal{P} \begin{cases} f \in \Theta(n[p])(M) \\ w \in \mathcal{N}(D + n[p])(M) \text{ s.t. } f \cdot \psi = \Theta(w) \end{cases} \]
\[\Rightarrow \quad \psi = \Theta(\omega) = \Theta(fw), \quad \text{dim.} \quad // \\
\]

By Claim 2, \(\tilde{\omega} \) will automatically lie in \(\mathcal{N}(D)(M) \). \(\square \)
Here come the corollaries!

Corollary 2:

(i) \(i(D) = \dim \mathcal{R}(-D)(M) \)

(ii) \(H^0(O(D)) \cong H^1(N^1(-D)) \)

(iii) \(e : H^1(N^1) \to \mathcal{C} \) is an isomorphism

Pf.:

(i) is immediate from Thm. 1

(ii) \(H^0(N^1(D-K)) \cong H^0(O(K-D)) \)

(iii) is the special case \(D = 0 \) of (ii).

Now we have \(H^0(N^1)^\vee \cong H^1(O) \Rightarrow \dim \mathcal{R}^1(M) = g_a \). Moreover,

\[
0 \to C \to \mathcal{O} \to \mathcal{R}^1 \to 0
\]

Gives

\[
0 \to C \to \mathcal{O} \to \mathcal{R}^1(M) \to H^1(C) \to H^1(O) \to H^2(N^1)^\vee \cong H^2(C) \to 0
\]

\[
\Rightarrow 2g_a = 2g \Rightarrow g_a = g.
\]

Corollary 3:

(i) \(\dim \mathcal{R}^1(M) = g \)

(ii) \([K-R^7] \mathcal{L}(D) - i(D) = d - g + 1 \)

(iii) \(H^2(M, C) \cong H^1(N^1) \)

Remark 2:

Given a finite set of principal parts \(\{ \frac{a^{(c_i)}}{z_i^{(c_i)}} + \ldots + \frac{a^{(c_i)}}{z_i^{(c_i)}} \} \) on \(M \), can we solve the Mittag-Leffler problem for \(K^1(M) \)?

Well, it's clear from the Residue theorem that a necessary condition is

\[
\sum_{i=1}^{k} a^{(c_i)} = 0.
\]
Let $\tilde{D} = \sum d_i [p_i] (\geq 0)$; then $\lambda(-D) = 0$, so by R-R
\[\dim H^0(\tilde{D}) = g + \sum d_i - 1, \] and the dimension of the
subspace of principal parts spanned by these forms is
\[\dim H^0(\tilde{D}) - \dim H^0(\tilde{L}) = \sum d_i - 1. \]
That means (ii) is also a sufficient condition.

Now we have a map
\[
(6.14) \quad \Xi^1(M) \oplus \Xi^1(N) \to H^1_{dR}(M/G),
\]
induced by
\[
(\omega, \bar{\psi}) \mapsto [\omega + \bar{\psi}],
\]
as well as a (compatibility) map
\[
\Xi^1(M) \to H^0(\tilde{M}),
\]
induced by
\[
(\omega, \bar{\psi}) \mapsto \omega + \bar{\psi}.
\]

Corollary 4: (i) [Hodge decomposition]
\[
H^1_{dR}(M/G) \cong \Xi^1(M) \oplus \Xi^1(N).
\]

(ii) \[\Xi^1(M) \cong H^0(\tilde{M}). \]

Proof: (i) We need to check (6.14) injective (it then follows from
equality of dims.). Suppose $\omega + \bar{\psi} = df$, $f \in C^\infty(M)$. Then
\[
\int_{\partial M} \omega = \int_{\partial M} df = \int_{\partial M} \partial f = 0 \Rightarrow f \in \Omega^0(M),
\]
\[
\Rightarrow \omega = 0.
\]

(ii) We have a diagram (exact rows)
\[
0 \to \Xi^1(M) \to H^1(\mathcal{O}) \to H^1(\mathcal{O}) \to 0
\]
\[
\downarrow \quad \text{incl.}
\]
\[
0 \to \Xi^1(M) \to \Xi^1(M) \to \Xi^1(M) \to 0.
\]

\[
\Rightarrow \text{last arrow is an \epsilon.}
\]
Conclusion 5: (a) \(d > 2g - 2 \Rightarrow \chi(D) = 0 \)
(b) \(d < 0 \Rightarrow \chi(D) = 0 \)

Let \(D = k[p] - \sum_{i=1}^{l} [p_i] \), \(k-l > 2g-2 \). Then \(R - R + \text{Cor. 5} \Rightarrow \)

\[(6.15) \quad \chi(D) = k-l-g+1. \]

Conclusion 6: \(\exists \) holo. embedding \(g : M \hookrightarrow \mathbb{P}^{g+1} \).

Proof: Fix \(p \in M \). Then for arbitrary \(k \in \mathbb{Z} \), \(r \in M \),

\[(6.16) \quad \chi((2g+1)[p] - [q] - [r]) \cong \chi((2g+1)[p] - [q]) \cong \chi((2g+1)[p]) \]

\[
\begin{array}{c|c|c|c}
\text{degree} & \frac{2g-k}{2g+1} & \frac{2g-1}{2g} & \frac{2g+1}{2g+2} \\
\hline
\text{dimension} & g & g+1 & g+2 \\
\end{array}
\]

Let \(\{f_0, \ldots, f_g+1\} \subset \mathbb{C} \) be a basis, and define for \(m \in \mathbb{P}^g \)

\[(6.17) \quad q(m) = [f_0(m) : \ldots : f_{g+1}(m)] \in \mathbb{P}^{g+1}. \]

For \(m = p \) this is unsuitable, since (except for constants) the function will blow up. Writing \(\tilde{z} \) for a local holo. coord. at \(p \), set

\[(6.18) \quad \tilde{q}(p) = [(z_{\tilde{f}_0}(p) : \ldots : z_{\tilde{f}_{g+1}}(p)) \in \mathbb{P}^{g+1}. \]

We already have \(\lim_{m \to p} q(c(m)) = q(p) \) and have constructed an analytic map between complex manifolds \(M \) and \(\mathbb{P}^{g+1} \), provided

\[(6.17-18) \] do not yield \([0; \ldots; 0]\) at any point of \(M \).

To check this doesn't happen, and that \(q \) is injective,
we use (6.16):

- for \(q \neq p \), \(L_q \nsubseteq L \Rightarrow \exists f \in L \) not vanishing at \(q \)
 \[\Rightarrow \) not all \(f_i(q) = 0 \]

- \(L_p \nsubseteq L \Rightarrow \exists f \in L \) with \(\nu_p(f) = -(2g+1) \Rightarrow \) not all \((\varepsilon^{2g+1}_p f)(p) = 0 \)

- for \(p, q, r \) distinct \(L_q, r \nsubseteq L_p \Rightarrow \exists f \in L \) vanishing at \(q \) but not at \(r \)
 \[\Rightarrow \) \(\phi(q) \neq \phi(r) \)

- for \(q \neq p \), \(L_q, r \nsubseteq L_p \Rightarrow \exists f \in L \) vanishing at \(q \) but with \((\varepsilon^{2g+1}_p f)(p) \)
 \[\Rightarrow \) vanishing at \(p \Rightarrow \phi(q) \neq \phi(p) \).

\[\Box \]

Remark 3: (i) This can be refined further to show \(M \subseteq \mathbb{P}^3 \) and \(M \hookrightarrow \mathbb{P}^2 \) with only “normal crossings” or “000” singularities (locally of form \(xy=0 \))

(ii) One can also use a blow up for \(M \) to set an embedding in \(\mathbb{P}^{g+1} \) (“canonical curve”), but this doesn’t work for hyperelliptic \(RS \text{'s} \) — those with a degree-2 map to \(\mathbb{P}^1 \).

(iii) In fact, we can even check that the image of the above mapping \(M \to \mathbb{P}^{g+1} \) will be smooth:

\[L_q, r \nsubseteq L_p \Rightarrow \exists f \in L_q \) vanishing to exactly 1st order at \(q \)
 \[\Rightarrow \) derivative of \(\phi \) (in local coords.) is nonzero true
 + similar check at \(p \).

Before turning to periods and the Riemann bilinear relations, here is one more important application of sheaf technology. Let

\[\tau: M \to N \]

be a surjective mapping of \(CRS \text{'s} \) (most commonly \(N \) will be \(\mathbb{P}^1 \)) of degree \(d \) \((\text{:= cardinality of } \tau^{-1}(q) \text{ for generic } N \) . Let
\[\Delta = \{ p_1, \ldots, p_m \} \subseteq M \] denote the set of ramification points, of degree \(r_i \; \text{(i.e., locally the map looks like } z \mapsto z^{r_i} \text{)} \); we have
\[\pi(\Delta) = \{ q \in N \mid |\pi^{-1}(q)| < d_\pi \} \]. Define
the ramification divisor
\[\{ \begin{align*}
R_\pi &= \sum (r_i - 1) [p_i] \in \text{Div}(M) \\
r_\pi &= \deg R_\pi
\end{align*} \]
Consider \(\omega \in K^1(M)^{\geq 0} \), with \((\omega) \cap \pi(\Delta) = 0 \). Then under \(z \mapsto z^{r_i} = w \), \(dw \) pulls back to \(r_i z^{r_i - 1} dz \), and so we have for \(\pi^* \omega \in K^1(M) \)
\[(\pi^* \omega) = (\pi^* (\omega)) + R_\pi \]
\[\implies g_M - 2 = \deg (\pi^* \omega) = \deg (\pi^* (\omega)) + \deg R_\pi = d_\pi \cdot \deg (\omega) + r_\pi \]
giving the
Riemann-Hurwitz formula:
\[g_M = \frac{d_\pi \cdot (g_M - 1)}{2} + 1. \]

Example 2: For a hyperelliptic \(RS \) \(M \xrightarrow{2:1} \mathbb{P}^1 \),
with 2b branch pts., \(g_M = b - 1 \).

Note: the restrictions imposed by this formula on the possible data involved: we must have
\[\left\lfloor \frac{2}{r_\pi} \right\rfloor \]
\[d_\pi \mid g_M - \frac{r_\pi}{2} - 1 \]
Let \(\{ w_1, \ldots, w_g \} \subset SL^1(M) \) be a basis.

\[\{ y_1, \ldots, y_{2g} \} \subset H_1(M, \mathbb{Z}) \] the symplectic basis described above.

Then we have the period matrix \(\Pi_j = \begin{pmatrix} f_j & \omega_j \\ \omega_j^T & 0 \end{pmatrix} \in \mathbb{C}^{2g} \) and the period vector \(\pi_j \).

Proposition 2: The \(e_j \) are \(\mathbb{R} \)-linearly independent (viewed as vectors in \(\mathbb{R}^{2g} \)).

Proof: If \(0 = \Pi \alpha \) (\(\alpha \in \mathbb{R}^{2g} \)) then \(0 = \left(\begin{array}{c} 1 \\ \Pi \end{array} \right) \alpha \Rightarrow \)

\[\text{rank} \begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix} < 2g \Rightarrow \exists b \in \mathbb{C}^{2g} \setminus \{0\} \text{ s.t. } b \left(\begin{pmatrix} \Pi & 0 \\ 0 & \Pi \end{pmatrix} \right) = 0 \Rightarrow \]

\[\sum_{i=1}^{2g} b_i a_i \omega_i = 0 \Rightarrow [\omega | \phi] = 0 \Rightarrow \omega | \phi = 0 \quad \square \]

So \(\Lambda_M := \mathbb{Z} \langle \bar{\tau}_1, \ldots, \bar{\tau}_g \rangle \subset \mathbb{C}^g \) is a full lattice, or more intrinsically \(H_1(M, \mathbb{Z}) \subset SL(M)^\vee \).

Definition 2: The Jacobian of \(M \) is the complex \(g \)-torus

\[J(M) := \frac{SL^1(M)}{H_1(M, \mathbb{Z})} \cong \mathbb{C}^g \]

\[\uparrow \Lambda_M \]

equivariant against the basis \(\{ w_1, \ldots, w_g \} \).
Now for any \(\psi \in \mathcal{H}(M) \otimes \mathcal{H}(M) \), we have the equality of functionals on \(\mathcal{H} \):

\[
(6.19) \quad [\psi] = \sum_{j=1}^{g} \left(\pi_j(\psi) \left[\psi_{j^{-1}} \right] - \pi_{j^{-1}}(\psi) \left[\psi_j \right] \right)
\]

where we are using the equivalent pairings \(\langle , \rangle \) from (6.4). For \(\omega, \psi \in \mathcal{H}(M) \)

\[
(6.20) \quad 0 = \int_{\mathcal{M}} \omega \wedge \psi = \left[[\omega], [\psi] \right] = \sum_{j=1}^{g} \left(\pi_j(\psi) \pi_{j^{-1}}(\omega) - \pi_{j^{-1}}(\psi) \pi_j(\omega) \right)
\]

\[
(6.21) \quad 0 < i \int_{\mathcal{M}} [\omega, \bar{\omega}] = i \left[[\omega], [\bar{\omega}] \right] = -i \sum_{j=1}^{g} \left(\bar{\pi}_j(\omega) \pi_{j^{-1}}(\omega) - \bar{\pi}_{j^{-1}}(\omega) \pi_j(\omega) \right)
\]

We can restate the result in matrix form:

\[
(6.22) \quad \begin{cases}
(\text{i}) & TT^*T = 0 \\
(\text{ii}) & \sqrt{-1} TT^*T > 0
\end{cases}
\]

Writing \(T = \begin{pmatrix} A & B \\ G & S \end{pmatrix} \), (6.22) becomes

\[
(6.22) \quad \begin{cases}
(\text{i}) & A^TB - B^TA = 0 \\
(\text{ii}) & \sqrt{-1} (A^TB - B^TA) > 0
\end{cases}
\]

In particular, \(\sqrt{-1} T \mathcal{T}^*T (A^TB - B^TA) \mathcal{T} > 0 \) \(\forall \mathcal{T} \neq 0 \Rightarrow A \) cannot have nontrivial left-inverse \(A \) is invertible.

* e.g., \(\mathcal{C} = TT^*T = \begin{pmatrix} \pi^T & \pi^T \\ G & S \end{pmatrix} \begin{pmatrix} 0 & E_g \\ E_g & 0 \end{pmatrix} \begin{pmatrix} \pi & \pi \\ G & S \end{pmatrix} = \begin{pmatrix} \pi^T & \pi^T \\ G & S \end{pmatrix} \begin{pmatrix} \pi & \pi \\ G & S \end{pmatrix} (\text{matrix of the product comm. to } (6.20) \text{ w/ substitute } \omega, \psi) \)
Using A^{-1} to change our w-boots, we have

$$\mathbf{T}' = A^{-1} \mathbf{T} = \begin{pmatrix} I_g & \frac{A^{-1} \mathbf{B}}{z} \\ \frac{z}{z} & z \end{pmatrix} \quad \Rightarrow \quad (6.23)$$

with $A = I_g$, $B = z$

\[z^* \mathbf{T} z = 0\]

\[\sqrt{-1} \left(\frac{z^* \mathbf{T} z}{z} \right) > 0\]

and hence the

Theorem 2:

Ricci-Čech Bilinear Relations:

1. $z = z^*$
2. $\text{Im}(z) > 0$

Complex tori

Now we shall approach these "bilinear relations" from within a different (but related) context. Let $\Lambda \subset V \cong \mathbb{C}^n$ be a full lattice, $\mathcal{T} := V/\Lambda$ the complex n-torus. Clearly $V \cong \mathcal{T}$, and we also write $W := V^\mathbb{C}$. There are 2 natural choices of basis for $W_\mathbb{C} (= T_{\mathbb{C},0}^\mathbb{R})$:

- given a basis $\lambda_1, \ldots, \lambda_{2n}$ of Λ (hence of $W \oplus W_\mathbb{C}$),
 - let $\mathcal{B} := \{ dx_1, \ldots, dx_{2n} \}$ denote the dual basis of $W_\mathbb{C}$.

* viz., \[\mathbf{T} = \begin{pmatrix} \omega_i & \sigma_i \\ \sigma_i & \omega_i \end{pmatrix} \Rightarrow A^{-1} \mathbf{T} = A^{-1} \begin{pmatrix} \omega_i & \sigma_i \\ \sigma_i & \omega_i \end{pmatrix} = \begin{pmatrix} \omega_i \sigma_i \\ \sigma_i \omega_i \end{pmatrix} \]
\[W^0 \cong W^+_0 \oplus W^-_0 \ (\cong V \oplus \overline{V}), \quad \text{where} \ V \xrightarrow{\phi} W^+_0 \text{ is some basis for } W^+_0 \xrightarrow{n \mapsto n - i \ I(n)} \text{ co-spin.} \]

One can obviously extend these to translation-invariant differential forms on \(\mathcal{T} \), and this leads to isomorphism (as in problem set 1 Ex. 6 solution)

\[\Lambda^k W^\vee_0 \cong H^{dr}_{\mathcal{T}}(\mathcal{T}, \mathbb{C}) \]

for each \(k \). In fact, using the \((p, q)\) decomposition of the left-hand side \(\cong \bigoplus_{p+q=k} \Lambda^p W^+_0 \otimes \Lambda^q W^-_0 \) we set the

Proposition 3: (Hodge decomposition)

\[H^k_{dr}(\mathcal{T}, \mathbb{C}) \cong \bigoplus_{p+q=k} \mathbb{C} \langle \left\{ \frac{d\omega_I \wedge d\overline{\omega}_J}{\left| I,J \right|^2} \right\} \rangle \]

\[\text{"} H^{p,q}(\mathcal{T}) \text{"} \]

It is also clear that we have

\[H^k(\mathcal{T}, \mathbb{Z}) \cong \mathbb{Z} \langle \left\{ dx^k \right\} \rangle, \quad k < n. \]

Recall that a necessary condition for \(\mathcal{T} \) to possess a
projective embedding, is for it to have a Kähler metric whose Kähler class is integral — or equivalently, a d-dual (using transluscent invariant) positive (1,1)-form with integral class in H^2.

This is called a polarizing form, and we look for conditions (essentially on Λ) under which one exists.

Start by identifying

$$[Y_i]_i \in \Lambda$$

where we think of Y_i as a straight segment in V from 0 to $i\epsilon \Lambda$, and $d\epsilon_1$ as differentials of coordinates on $V \cong \mathbb{C}^n$. In fact, with these identifications we have

$$\mathcal{T} (= \frac{V}{\Lambda}) \cong \frac{\mathbb{R}^n(T) \setminus \Lambda}{H_1(T, \mathbb{Z})}$$

Define the period matrix

$$\Pi = \{\pi_{ij} = \int_{Y_j} d\epsilon_i\}$$

so that the change-of-basis matrix

$$n^\ast [id] = \left(\begin{array}{c|c} \Pi & 0 \\ \hline 0 & \end{array}\right) = \tilde{\Pi}$$

with inverse

$$[id]_n = \Pi^{-1} \left(\begin{array}{c|c} \Xi & 0 \\ \hline 0 & \end{array}\right)$$

so that

$$d\epsilon_i = \frac{\partial}{\partial \epsilon_i}$$

and

$$d\epsilon_i = \frac{\partial}{\partial \epsilon_i}$$
\[dx_j = \sum \delta_{ij} \, dx_i + \sum \delta_{ij} \, dx_j \quad \text{or}, \quad \text{writing} \quad dx = \left(\begin{array}{c} dx_1 \\ \vdots \\ dx_n \end{array} \right) \quad \text{and} \]
\[\delta^i_j = \left(\begin{array}{c} \delta^i_1 \\ \vdots \\ \delta^i_n \end{array} \right) = \left(\begin{array}{c} \delta^i_1 \\ \vdots \\ \delta^i_n \end{array} \right), \quad \prod \delta^{-1} \, dx = dx \]

Let \(\omega \) be a translation - invariant, \(d \)-closed
2-form with integral cohomology class: so
\[\omega = \frac{1}{2} \sum q_{ij} \, dx_i \wedge dx_j \quad (q_{ij} \in \mathbb{Q} \ n \times n \text{ skew-symmetric} \text{ matrix}) \]

We will prove the linear algebra

Lemma 1: We may choose the \(x_1' / \ldots / x_n' / dx \) - basis so that
\[Q = Q_{\Delta} = \left(\begin{array}{cc} 0 & \Delta \\ -\Delta & 0 \end{array} \right), \]
where
\[\Delta = \left(\begin{array}{ccc} \delta_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \delta_n \end{array} \right) \]
and \(\delta_1, \ldots, \delta_n (\in \mathbb{N}) \) are invariants of \(Q \).

If \(as \rightarrow 0 \) then (by corollary E.2) \(\omega^n \neq 0 \Rightarrow \) all \(\delta_i \neq 0 \).
Assume this linear form.

Now then
\[\omega = \frac{1}{2} \, dx \wedge Q \, dx = \frac{1}{2} \, \prod \, dx \wedge \prod \, Q \, \prod \, \Delta \]
\[= \frac{1}{2} \left(\prod dx_i \wedge dx_j \right) \left(\begin{array}{c|c} \prod Q_{ij} & \prod Q_{ij} \\ \hline \prod Q_{ij} & \prod Q_{ij} \end{array} \right) \left(\begin{array}{c} dx_i \\ dx_j \end{array} \right) \]

\[\text{Clearly, calling this} \]
\[a = -a \Rightarrow \]
\[a = -a \Rightarrow \]
\[a = -a \Rightarrow \]
and \(\omega \) is \(\{ \text{of type } (1,1) \text{ and } \sigma > 0 \} \)

\[
\text{pf of } \text{Thm E.1} \quad \text{with } \eta > 0
\]

\[
\Longrightarrow \quad \tau_{\hat{\Pi}} Q^{-1} \hat{\Pi}^{-1} = i \begin{pmatrix} 0 & \eta \\ -\eta & 0 \end{pmatrix}
\]

\[
\text{take inverse } \eta = \eta^{-1}
\]

\[\begin{pmatrix} \eta & 0 \\ 0 & \eta \end{pmatrix} \quad \text{with } \eta > 0.
\]

Writing \(\hat{\Pi} = (A \ B) \) as in the CRS setting, we get

\[
i^* \tau_{\hat{\Pi}} Q^{-1} \hat{\Pi} = i \begin{pmatrix} A & B \\ \tilde{A} & \tilde{B} \end{pmatrix} \begin{pmatrix} 0 & -\Delta_\sigma^{-1} \\ \Delta_\sigma & 0 \end{pmatrix} \begin{pmatrix} \tilde{t} A & \tilde{t} \tilde{A} \\ \tilde{t} B & \tilde{t} \tilde{B} \end{pmatrix}
\]

\[
= i \begin{pmatrix} B \Delta_\sigma^{-1} A - A \Delta_\sigma^{-1} \tilde{B} & \mathbf{X} \\ B \Delta_\sigma^{-1} \tilde{A} - A \Delta_\sigma^{-1} \tilde{B} & \mathbf{X} \end{pmatrix}
\]

So that \(\eta > 0 \iff i \begin{pmatrix} B \Delta_\sigma^{-1} A - A \Delta_\sigma^{-1} \tilde{B} \end{pmatrix} > 0 \Rightarrow \text{ A invariant.}
\]

Assume this happens.

\[
\Rightarrow \text{ write with } \hat{\Pi} = (\Delta_\sigma \ Z).
\]

Hence, our 2 conditions on \(\omega \) become \(Z \Delta_\sigma^{-1} \Delta_\sigma - \Delta_\sigma \Delta_\sigma^{-1} \tilde{Z} = 0 \)

\(\Rightarrow \tilde{Z} = Z \), and \(i(\bar{Z} - Z) > 0 \). We conclude.

Theorem 3: \(\hat{\Pi} \) admits a polarizing form \(\Leftrightarrow \)

\[
\exists \text{ basis for } H_1(T; \mathbb{Z}) (\cong \Lambda) \text{ and } \mathcal{S}'(T) (\cong V^*) \text{ such that }
\]

the period matrix \(\hat{\Pi} \) is of the form \((\Delta_\sigma \ Z) \) with

\[
\text{Im } \bar{Z} > 0 \quad \text{AND} \quad \bar{Z} Z = Z.
\]
Remark 4: (i) There are the conditions under which \(T \) admits a projective embedding, i.e., is an abelian variety (and usually denoted \(A \)). Clearly, the general one is not.

(ii) There are 2 ways to embed it in \(\mathbb{P}^r \) in this case:
- Kodaira’s theorem, or explicit construction of theta functions.

If all \(d_i = 1 \), then \(\tau \) is called a principal polarization of \(T \).

Given a CRS \(M \), then its Jacobian \(J(M) \cong \Omega^1(M) / H_1(M, \mathbb{Z}) \) is polarized is a tautology; in fact, by taking \(\Omega^1(M) / H_1(M, \mathbb{Z}) \) it is principally polarized.

Moduli

The \(g \)-th Siegel upper half-space

\[\mathbb{H}_g := \left\{ Z \in \mathbb{M}_{g \times g}(\mathbb{C}) \mid \tau Z = Z \quad \text{and} \quad \text{Im}(Z) > 0 \right\} \]

parametrizes the set of principally polarized abelian varieties (PPAV's). Over \(\tau \in \mathbb{H}_g \), we have \(\mathbb{A}_\tau = \mathbb{C}^g / \Lambda_\tau \) where \(\Lambda_\tau = \mathbb{Z} \langle \text{column } \tau \rangle \).

In order that each isomorphism class of PPAV occur any one, we take the quotient by \(\mathbb{P}_g := \text{Sp}_{2g}(\mathbb{Z}) \)

\(\mathbb{H}_g \) is just the familiar upper half-plane. For \(g=1 \), any \(\tau \) (i.e., \(\tau \in i \mathbb{R} \) is a lattice) is in \(\pm \mathbb{H}_2 \), so all complex tori are algebraic. (False for \(g \geq 3 \)).
\[A_g := \Gamma_g \backslash \mathbb{H} \]

where \(g = (A \, B) \) acts by \(g(z) := (Az + B)(Cz + D)^{-1} \). This action on the "period point" is equivalent to a symplectic-linear change of integral basis; this preserves the polarizing form.

Remark 5: The genuine miracle here is that \(A_g \) has a projective embedding and is therefore an algebraic variety, called the \(g \)th Siegel modular variety. The embedding is given by Siegel modular forms (more on these later).

What about moduli of curves? First some more general discussion.

Kodaira & Spencer developed the theory of deformations of complex structures on manifolds. Since manifolds are made up of charts, a "deformation" should be a shifting of the chart (on the overlaps). The tangent to a deformation should therefore identify with a class in \(H^1(M, \Theta'_M) \), where \(\Theta'_M := \Theta(T^{(1,0)}_M) \) is the sheaf of holomorphic vector fields.

To be more precise, suppose \(\pi : X \to \mathbb{D} \) is a submersive holomorphic map from a complex \(n \)-manifold onto the unit disk, with compact fibers. Then the \(\{X_t := \pi^{-1}(t)\}_{t \in \mathbb{D}} \) are a family of
compact complex \((n-1)\)-manifolds, all diffeomorphic \(*\) but with varying complex structure. Considering the short exact sequence of sheaves on \(M := X_0\)

\[
0 \to \Theta^1 \to \Theta^1 | _{X_0} \to \left(\pi^* T_{D, \phi_0}^{(1,0)} \right) \otimes \Theta^0_M \to 0
\]

the image of \(\frac{1}{2} \delta t \otimes 1\) under the connecting homomorphism

\[
H^0(M, (\pi^* T_{D, \phi_0}^{(1,0)}) \otimes \Theta^0_M) \to H^1(M, \Theta^1_M)
\]

defines the Kodaira–Spencer class. This will be used later in the course.

Now consider the case where \(M\) is a CRS of genus \(g\).

I ask you to believe, for the next proof, that \(H^1(M, \Theta^1_M)\) is the "tangent space to \(M\) (moduli space of genus \(g\) CRS's) at \(M\)."

For a proof of this theorem without such an assumption, see p. 292 of my Alg. geom. book online.

Theorem 4 (Riemann): Compact surfaces of genus \(g \geq 2\) have

\(\text{up to isomorphism} \) \(3g - 3\) moduli. So

\[
\dim(M_g) = \begin{cases}
3g - 3 & g \geq 2 \\
1 & g = 1 \\
0 & g = 0
\end{cases}
\]

\(*\) This is a consequence of Fubini's theorem. Any \(C^\infty\) lifting of the vector field \(\partial_\phi\) on \(D\) to \(X\) defines a rank-one, hence integrable, distribution and thus an isomorphism \(X \cong M \times D\) of \(C^\infty\) manifolds. (It does \(\neq\) respect the complex structures \(\).)
Proof: \[H'(\theta'_m) = (H'(\theta'_m))^{\psi} = H'(\mathcal{O}(2K)) \cong H^0(\mathcal{O}(2K))^\vee \] (numerical divisor)

The dimension of this space is

for \(g \geq 2 \):
\[
\tilde{h}(-K) = g - \deg(-K) - 1 = 3g - 3
\]

\[(\deg(K) = 2g - 2 \leq 0 \text{ for } g \geq 2) \]

\[\Rightarrow \tilde{h}(K) = 0 \]

for \(g = 1 \):
\[\tilde{h}(O) \Rightarrow \dim = 1 \]
(or \((\mathcal{M}, \mathcal{T})\), introduced by "de"

for \(g = 0 \):
\[\deg K < 0 \Rightarrow \dim = 0. \square \]

Corollary 7: A general CRS of genus \(g \geq 3 \) is non-hyperelliptic.

Proof: Hyperelliptic CRS's are determined by the \(2g+2 \) branch points of their 2:1 mapping to \(\mathbb{P}^1 \), modulo the action of \(\text{PGL}_2(\mathbb{C}) \) which can send any 3 of these branch points to 0, 1, \(\infty \). So they have \(2g-1 \) moduli, which is less than \(3g-3 \) for \(g \geq 3 \). \square

Corollary 8: For \(g \geq 4 \), the genus \(g \)-dimensional PPAV is not the Jacobian of a CRS.

Proof: First note that
\[\dim (\mathcal{A}_g) = \dim (\text{space of symmetric g symmetric matrices}) = \binom{g+1}{2}. \]
New look at the table

<table>
<thead>
<tr>
<th>g</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim M_g</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>...</td>
</tr>
<tr>
<td>dim J_g</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>...</td>
</tr>
</tbody>
</table>

Certainly, $\dim M_g \geq \dim J_g(M_g)$, and so we are done.

In fact, the Jacobian mapping is an embedding — this is called the **Torelli theorem**, and we’ll eventually prove it using Hodge theory later. The **Schofflag problem** is to describe the Jacobian locus (image of J) in A_g. It is still open for $g \geq 5$.

\[
\text{Jacobian mapping}
\]