C. Extensions of MHS

It is convenient at this point to officially drop our convention that a Hodge structures \(V \), the weight \(n \) and \((p,q)\)'s are non-negative. The preferred measure of complexity of \(V \) is then its

\[
\text{level}(V) := \text{difference between lowest & highest values of } p.
\]

When Hodge theorists talk about properties which emerge in "higher weight" they really mean "higher level". This notion extends to MHS, where one also has the

\[
\text{length}(V) := \text{difference between lowest & highest weights}.
\]

Now let \(C \) be an abelian category with enough injectives, \(X \in C \) and

\[
0 \to A \to B \to C \to 0
\]

a short exact sequence in \(C \). By Example I.F.11 & Prop. I.F.1, we have a long exact sequence

\[
(C.1) \quad 0 \to \text{Hom}_C(X, A) \to \text{Hom}_C(X, B) \to \text{Hom}_C(X, C) \to \text{Ext}_C^1(X, A) \to \text{Ext}_C^1(X, B) \to \text{Ext}_C^1(X, C) \to \ldots
\]

Taking an injective resolution \(A \to I^* \), we have

\[
\text{Ext}_C^1(X, A) := \frac{\ker f \text{Hom}_C(X, I^0) \to \text{Hom}_C(X, I^1)}{\text{im} f \text{Hom}_C(X, I^0) \to \text{Hom}_C(X, I^1)}
\]

\[
\cong \text{Hom}_C(X, K) \quad \text{(writing } K := \ker (I^1 \to I^2))
\]

\[
(C.2) \quad \cong \text{s.e.s. } A \to E \to X
\]

\[
\text{split s.e.s.}.
\]
Since in \[0 \to A \to I^0 \to K \to 0 \]
\[0 \to A \to E \to K \to 0 \]
\[\ker(I^0 \otimes X \to K) \overset{\phi}{\to} \phi \text{ factors through } I^0, \]

one has a splitting \(X \to E \Leftrightarrow \phi \text{ factors through } I^0 \).

Now MHS does not have enough injectives, but there is a general theory due to Verber & Yomda \& H. that extends (C.1) \& (C.2) to our setting.

I'll give a more down-to-earth presentation that doesn't prove everything.

Let \(A, B \) be MHS:

Definition 1: \(H^g(A) := \text{Hom}_{\text{MHS}}(\mathbb{Z}(0), A) \sim A_2 \otimes \omega_0 A \otimes F^g A \).

More generally, \(H^g(A) := \text{Hom}_{\text{MHS}}(\mathbb{Z}(-p), A) \sim A_2 \otimes \omega_p A \otimes F^p A \).

These are called the \{Hodge class in \(A \), Hodge class \} in \(F^p \).

Definition 2: (a) An extension of MHS is just an exact sequence of MHS \[0 \to A \to H \to B \to 0 \]

A section is a morphism \(s : B \to H \) s.t. \(\pi \circ s = \text{id}_B \); an extension with section is split.

A morphism of extensions is a diagram
\[
\begin{array}{ccc}
0 & \to & A & \to & E & \to & B & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & A' & \to & E' & \to & B' & \to & 0
\end{array}
\]

A congruence of extensions is an isomorphism \(s, \beta \) s.t. \(s, \beta \) = identity.

(Split extensions are congruent to \(0 \to A \to A \oplus B \to B \to 0 \).

* cf. the appendix A in [Peter-Sueling]*
(b) \(\text{Ext}^1_{\text{maps}}(B, A) := \frac{\text{extensions, congruence}}{\text{Bac-summation}} \) with the addition group structure given by Bac-summation (with split extension as "0")

\[
\begin{align*}
&\text{O} \rightarrow A \rightarrow E \rightarrow B \rightarrow \text{O} \\
&\text{O} \rightarrow A \oplus A \rightarrow E \oplus E' \rightarrow B \oplus B \rightarrow \text{O} \\
&\text{O} \rightarrow A \oplus A \rightarrow E'' \rightarrow B \rightarrow \text{O}
\end{align*}
\]

(This requires some work, but is the same as the proof for \(R \)-modules in MacLane's book "Homology".)

(c) \(J(A) := \frac{W_0 A_C}{P^0 W_0 A_C + (W_0 A A_2)} \) (generalized) Torsion of \(A \)

\[
J'(A) := \frac{W_{2p} A_C}{P^0 W_{2p} A_C + (W_{2p} A A_2)}
\]

(These are not in general algebraic, even for pure \(H^S \)'s, where they are compact complex tori. The problem is the independence of the polarizing form in higher level.)

Ex/ \(J'(A) \) is a Lie group \(\iff W_{2p} A = W_{2p-1} A \).

[Hint: draw the picture, and determine the condition under which \(W_{2p} A A_2 \) is a lattice in \(W_{2p} A C / (W_{2p} A P^0) A_C \).]

Theorem 1: There is a canonical 1-functor isomorphism of groups

\[
\text{Ext}^1_{\text{maps}}(B, A) \cong J(\text{Hom}(B, A))
\]

Viewed as \(\text{MRS} : \{ W, \text{Hom}(B, A) = \{ \phi \in \text{Hom} | \phi(W_0)(\text{Hom}) \} \}

Proof: Let \(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0 \in \text{Ext}^1 \), and choose a section \(\sigma : B \rightarrow E \) strictly preserving \(W_0 \).

Any 2 differ by \(\text{Hom}(B, A)_Z \cap W_0 \), and we define...
Next, choose a section \(\sigma_F : B_0 \to E_0 \) satisfying \(\text{pr}_0 \circ F^0 \circ W_0 = F^0 \).

Use Deligne's \(\mathbb{Z}^{p,q} \). Any \(2 \) differ by \(\text{Hom}_c(B, A) \circ W_0 \circ F^0 \), and we define

\[
A_0 \otimes B_0 \xrightarrow{f} E_0
\]

\[
(a, b) \mapsto a(a) + \sigma_F(b).
\]

Curvilinear

\[
f(\sigma_F)^* \circ f(\sigma_0) \in \text{Aut}_c(A_0 \otimes B_0) \circ W_0
\]

\[
= \left(\begin{array}{cc}
1_A & \phi \\
0 & 1_B
\end{array} \right),
\]

where \(\phi = \partial \circ (\sigma_0 - \sigma_F) + W_0 \text{Hom}_c(B, A) \).

Clearly the extension class

\[
[\phi] \in \frac{W_0 \text{Hom}(B, A) \circ}{F^0 (\text{Hom}) + (\text{Hom}) \otimes} = J(\text{Hom}(B, A))
\]

is well-defined and if the extension is split gives zero.

To show that all classes in \(J(\ldots) \) occur: let \(\phi \in \text{Hom}(B, A) \circ W_0 \).

Then \(g_\phi := \left(\begin{array}{cc}
1_A & \phi \\
0 & 1_B
\end{array} \right) \in W_0 \text{Aut}_c(A_0 \otimes B_0) \), and we define a

MHS \(E \) by

\[
F^*_\phi(A_0 \otimes B_0) := g_\phi \left(F^*(A_0) \otimes F^*(B_0) \right)
\]

\[
= F^*(A_0) + (\mathbb{Z}_n \otimes \phi) F^*(B_0).
\]

Example 1: \(\text{Ext}^1_{\text{mhs}}(\mathbb{Z}(0), \mathbb{Z}(n)) \equiv J(\text{Hom}(\mathbb{Z}(0), \mathbb{Z}(n))) \equiv J(\mathbb{Z}(n)) = \mathbb{Q} \mathbb{Z} \equiv \mathbb{C}^* \mathbb{Z}
\]

\[
\mathbb{Q}(n) = \mathbb{C}/(\mathbb{Z})^n \otimes \mathbb{C}.
\]
Example 2: \(\text{Ext}^1_{\text{mhs}}(\mathbb{Z}(0), A) \cong J(A) \)
\(\text{Ext}^1_{\text{mhs}}(\mathbb{Z}(p), A) \cong J^p(A) \)

Example 3: \(\text{Ext}^1_{\text{mhs}}(\mathbb{Z}(1), \mathfrak{H}(C)) \cong \text{Ext}^1_{\text{mhs}}(\mathbb{Z}(0), \mathfrak{H}(C)(1)) \) \[\cong \frac{\mathfrak{H}(C, C)}{\mathfrak{H}^1 + \mathfrak{H}^2} \cong J(C) \text{ (Tamagawa) or } C \text{.} \]

Theorem 2: All \(\text{Ext}^1_{\text{mhs}} \) for \(i \geq 2 \) vanish.

Proof: This is a formal consequence of the surjectivity of \(J(\mathfrak{g}) \to J(C) \) when \(\mathfrak{g} \to C \) (clear from Thm. 1), using the aforementioned general theory.

A new result in Carlson's article on \(\text{Ext}_{\text{mhs}} \) is a Torrelli theorem for open curves. That is, the extensions in Deligne's MHS capture "where the points lie" (up to \(\epsilon \)) on \(C \) (compactification of open curve). The content of this, beyond Torrelli for curves, is really just AbrL theorem, which we shall prove in \(\& \text{ Thm. 1.} \)

Appendix: At top of p. 229, if \(\exists \text{ lift } \phi: X \to I^\circ \) of \(\phi \),
you don't need to use injectivity of \(I^\circ \) to get a splitting \(X \to E \).
It's more trivial than that: just recall \(E := \ker \left\{ I^0 \otimes X \to K \right\} \) and map \(X \) to \(E \) by \(x \mapsto (x, -\phi(x)) \). That's it.