D. Limit MHS and boundary components

Let \(V = (V_2, Q, F^*) \) be a weight \(n \) MHS over \(\Delta^* \), with \(T = \text{monodromy generator} \)

\[
\Phi : \Delta^* \to \langle T \rangle \quad \text{the period map.}
\]

We can associate to this a MHS \(V_{\text{in}} \) which describes how \(V \) "degenerates" at \(s \to 0 \). Let \(s \in \Delta^* \). The monodromy theorem is \((T^m - 1)^{m+1} = 0 \) for \(m \leq n \).

Assume unipotent monodromy \((m = 1) \Rightarrow \) can define the unipotent endomorphism.

\[
N := \log (T) = \log (1 - (1 - T)) = \sum_{k \geq 1} \frac{(y - 1)^k}{k} \quad (T - I)^k \in \text{End} (V_2, s_0).
\]

Remark: \(T \) preserves \(Q \Rightarrow Q(N(\cdot, \cdot)) = -Q(\cdot, N(\cdot)) \).

Consider a basis \(\{ Y_i \} \subset V_{2, s_0} \) (view as multi-valued section of \(V \)), and define the single-valued (!) sections of \(V \)

\[
\tilde{Y}_i := e^{-\langle s | N \rangle} Y_i \in \Gamma (\Delta^*, V).
\]

These give a trivial ("untwisted") local system

\[
\tilde{W}_2 := \mathbb{Z} \langle \{ \tilde{Y}_i \} \rangle
\]

and we define the pruned extension of \(V \) to \(\Delta^* \) by

\[\text{†} \text{ carefully, this means that the period matrix entries will blow up like powers of } \log(s). \]
\[V_e := W_{\mathbb{Z}} \otimes O_A. \]

(The point is that any holomorphic vector bundle over \(\Delta^* \) extends to \(\Delta \), but this is a special choice of extension.) Pretending \(V_{\mathbb{Z}} \) is our "true \(\mathbb{Z} \)-structure" and writing \(\{ \mathbb{Z}^\text{+} \}\) defines a new "period map"\(^{1+}\)

\[\widetilde{\mathcal{F}} := e N \mathcal{F} : h \to D. \]

\(^{1+}\)strictly speaking, it really isn't one — it doesn't correspond in general to a VHS.

Theorem 1 (Schmidt): This descends to \(\mathcal{F} : \Delta^* \to \tilde{D} \) and extends across the origin.

Remark 2: \(\widetilde{\mathcal{F}}(0) \), not the "naive" (or "Baily-Borel") limit (in \(\overline{N}(0) \in \Delta \)), is equivalent to considering the limiting flag \(F_{\infty} \subset \mathcal{F}_{\infty} \subset \mathcal{F}_{0} \) against \(\mathcal{F}_{z_0} \) and is the "right" object. The point is that the "re-normalization" prevents periods from blowing up meaning that the limit will carry more information.

Example 1: Recall Example III.C.1 \((n=1)\)

\[W_{z_0} = \langle \beta, \lambda \rangle, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{so} \quad N = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \]

\[F_s = \mathbb{C} \langle \omega_s \rangle, \quad \omega_s = \beta + (g(s) - \lambda(s)) \lambda \]

\[\tilde{\omega} = \lambda, \quad \tilde{\beta} = \beta - \lambda(s) \lambda \Rightarrow \omega_s = \tilde{\beta} + g(s) \tilde{\omega}, \quad \text{with} \]

\[\lim_{s \to 0} \tilde{\beta} + g(s) \tilde{\omega}. \]

So \(\widetilde{\mathcal{F}}(0) = g(s) + \mathbb{C} \tilde{\omega} = \tilde{D} \) (and this may not be in \(h \)).

\[\text{Ex/} \quad \text{The reparameterisation by } g(s), \text{ in getting rid of } g, \text{ makes } \widetilde{\mathcal{F}}(0) = 0 \in \mathbb{C} \tilde{\omega}. \]

* This is a consequence of a theorem of Seindorf called the \(\alpha \)-point orbit theorem.*
Remark 3: Schmid showed that the nilpotent orbit
\[\Phi_{\text{nilp}} = e^{-\lambda(0)N} \Phi(0) : \Delta^* \to \mathfrak{g} \]
"strongly approximates" the original period map. (This is the closest thing to a "constant" PVHS when the local system has monodromy.)

In particular, this satisfies transversality because
\[2\pi i \text{Res}_{\infty}(\nabla) = N \quad \Rightarrow \quad N(F^* \Phi) \subset F^* \Phi. \]

Example 1 (contd): The PVHS corresponding to \(\Phi_{\text{nilp}} \) is given by
\[w_{\text{nilp}} = \beta + (g(0) - \lambda(0)) \ll \]

Remark 4: Kato & Usui have constructed a theory of boundary components for period domains. Given a strongly convex, finitely generated rational polyhedral cone \(\Sigma = \sum_{j=1}^{\infty} N_j \subset \mathbb{R}^m \),
the \(\{ N_j \} \) commuting nilpotents, and \(F^* \in D^* \),
\[e^{\lambda(0)N_j} \text{ is a } \Sigma^* \text{-nilpotent orbit} \iff \begin{cases} e^{\sum_j N_j y_j} F^* \in D \text{ for } y_j >> 0 \\ N_j F^* \subset F^{*-1} \end{cases} \]

The boundary component \(D_0 \) is then the set of \(\Sigma^* \)-nilpotent orbits.

Now back to our PVHS \(V \) over \(\Delta^* \). Associated to the nilpotent \(\mathbf{N} \in \text{End}(W_{\infty}, \mathbf{s}_0) \) is a unique filtration
\[W_{-1} = \mathbf{0} \subset W_0 \subset W_1 \subset \ldots \subset W_{n-1} = W_{\infty}, \mathbf{s}_0 \]
such that
(i) \(N(W_k) \subset W_{k-1} \quad \text{and} \)
(ii) \(N^k : \mathfrak{g}^W_{n+k} \to \mathfrak{g}^W_{n+k} \) is an isomorphism.
(This is just linear algebra. The elegant way to do it is by extending \(N \) to an \(SL_2 \)-representation.) By (i), \(W_0 \)
is preserved under monodromy hence extends to a filtration of \(V_\mathbb{Q} \) by sub-local-systems, and also to a filtration \(W \) of \(V_\mathbb{E} \).

Theorem 2 (Schmid): \((W_{\mathbb{Q}}, W, \Gamma_{\mathbb{Q}})\) defines a MHS on \(V_{\mathbb{E}} \), called the limiting mixed Hodge structure (LMHS).

Example 1 (cont’d): Write \(\omega = \omega \circ, B = \beta \circ, A = \alpha \circ \). Then

\[
V_{\text{lim}} = \mathbb{Z} \langle B, A \rangle, \quad \{ W_0 V_{\text{lim}} = \mathbb{Q} \langle A \rangle \}, \quad F^1 = \omega = B + g(0) A.
\]

[note \(N(B) = A \)]

The extension class is given by \(g(0) \in C/\mathbb{Z} \cong \text{Ext}^1_{\text{MHS}}(\mathbb{Z}(1), \mathbb{Z}(0)) \).

Notice that this captures the constant term of the log-period of the VHS.

Example 2: For a VHS of weights and Hodge type \(h^{3,0} h^{2,1} h^{1,2} h^{0,3} \), the possible LMHS “look like”:

\[
T = I \quad (T-I)^2 = 0 \quad (T-I)^4 = 0
\]

The crazy Example III. 2 (p. 201) has of Hodge-Tate type with

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

In this is a consequence of a bigger theorem called the \(SL_2 \)-orbit theorem.