B. NORMAL FUNCTIONS AND LEFSCHETZ (1.1)

We now wish to vary the Abel-Jacobi map in families, over a smooth projective curve {i.e.

compact Riemann surface} S. Let & be a smooth projective surface, and 7 : X — 5 a
{projective) morphism which is

{a) smooth off a finite set ¥ = {sy,..., 8.} .5, and
(b) locally of the form (21, 2q) = z129 at singularities (of #).

Write X, = 771(s) (s € 5) for the fibres. The singular fibres X, (i = 1....,e) then have
only nodal, or “ODP” (ordinary double point) singularities
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and writing A for their complement we have 7 : X" -+ 5% := S\X. Fixing a general sy € 5%,
the local monodromies T, €
Aut (HY X, Z) =: Hy ) of the local system Hy := R, Zy- about each s, are then com-
puted by the Picard-Lefschetz formula

(1) (T, = Dy =" (v 8,)8;.
J

Here {6;} are the Poincaré duals® of the (quite possibly non-distinct} vanishing cyele classes
€ ker {H( X, Z) — H(X,,.7)} associated to each node on X, and “7 the intersection
form. A brief sketch of proof is provided in the appendix to this section.

Exercise. Show that (T, — I)? = (.
For a family of elliptic curves, (1} is the so-called Dehn twist:
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.. the tmages under Hy(Xg,,Z) = HY(X,,.Z)
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A s - DT =T

(For the reader new to such pictures, the two crossing segments in the previous “local real”

picture become the two touching “thimbles”, i.e. a small neighhorhood of the singularity in

- B, in this diagram.)

For a family with singular fibers, the notion of relative differentials has to change. The
relative canonical {or “dualizing”) sheaf wy s 1= Q3 @ 705 = Qp (log 77 (T)) is a sheaf
on X which restricts to 0y on smooth fibers. Its restriction to singular fibers, denoted
wx, , identifies away from the ODF with the sheaf of holomorphic 1-forms; at the ODP, its

sections are holomorphic 1-forms with log poles whose residues cancel.

ABSTRACT NORMAL FUNCTIONS

Now, in our setting, the bundie of Jacobians J = |, ¢ J'(X,) is a complex (algebraic)
manifold. It admits a partial compactification to a fiber space of complex abelian Lie groups,
- F1/ e HNwx, ) : ' . ..

by defining JY{X,,) = T 2] and J. = Ugeg/ {(X). {How to topologize this is

discussed for example in Clemens {1983).) The same notation will denote their sheaves of

sections,
(2) 0~ Hz — F' — T =0 {on 57)
(3) 0— Hz, — (F)Y — T — 0 {on 5)

with F = mawx g, Fo = Fuways, Hz = Riun,Z, Hy, = R'7,Z.

Note that the stalk of Hz . at a “singular” point s; is the part of cohomology invariant under
monodromy, Le. ker(Ty, — 1) € HY (X, 7Z).

Definition 1. A normal function (NF) is a holomorphic section {over S*) of 7. An eztended
(or Poincaré) normal function (ENF) is a holomorphic section {over §) of J,. A NF is
extendable if it lies in im{ H°(S, J.) — HO(S*. )}




Next consider the long-exact cohomology sequence (sections over S*)
(4) 0— HYHZ) = HYFY) = HYT) = HY (Hz) — H(FY),
the topological invariant of a normal function v € H%(7) is its image [v] € H'(S*, Hy).

& T

Exercise. Show that the restriction of [v] to HY(AI Hz) (A; a punctured disk about s;)
computes the local monodromy (T, — 1) (where ¥ is a multivalued local lift of v to FV)

H

modulo the monodromy of topological cycles.

We say that v is locally liftable if all these restrictions vanish, i.e. if (T, — I)0 € im{(T}, —
IHgz .+ Together with the assumption that as a (multivalued, singular) “section” of 7', ¥
has at worst logarithmic divergence at &;, this is equivalent to extendability,

Remark. The “at worst log divergence” aspect is the reason for the term “normal™

INTERLUDE ON ALGEBRAIC CYCLES

In-our discussion of Abel’s theorem, we used the notation Div(M) for divisors on a com-
pact Riemann surface M, with Div"(M) for divisors of degree zero, PDiw{M) for divisors
of meromorphic functions, and Pic’(M) for their quotient. Replacing M by a projective

algebraic n-manifold V', we introduce the more general notation:

o ZPY) for codimension p algebraic cycles, Le. the free abelian group generated by
subvarieties of codimension p; and

e (Y m for algebraic cveles which, viewed as topological ones {of real dimension
2n — 2p), are trivial in homology.

For now we shall just take p = 1 (and n = dim Y < 2 for the most part}, so we are really still
dealing with divisors, A divisor Z = % ¢;V; is said to be rationally equivalent to zero, Z = ¢,
if it 18 the divisor of a rational {equivalently meromorphic) function; and T will just rerr;:'md
vou that such functions on surfaces (unlike those on curves) have points where they are not
well-defined: so the zeroes and poles can intersect. 1t is clear that f~'(Rsg) bounds on the
divisor {f) = (f)o — {[/ ), 80 that topological cycle class is well-defined modulo rational
equivalence. Defining
o CHMY) = 250 (Chow group),
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we therefore have a map []: CHYY) — Hy oY 2) & H*(V,Z), with kernel

& C}I.[ (}/—}hom s Z Y dhom .
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(Of course, this identifies with Pic®(Y) as defined above when ¥ is a curve.} The most
important cbservation is this: one can also view [] as being defined by integration over Z
and duality, CH (V) — {H* (¥, )} = H3Y,C). Since pulling back to the components
Vi of Z kills (n,n — 2) forms and (n — 2,n) forms, but not (n — 1.n — 1) forms, the image
lies in HH(Y, C). Hence, the cycle class map is

[]: CHYY) — H¥Y,Z) 0 HM (Y, C) = Hg" (V).
NORMAL FUNCTIONS OF GEOMETRIC ORIGIN

Let 3 € Z'(X)pim be a divisor properly intersecting fibres of # {i.e. no component of 3
lies in a fibre} and avoiding its singularities, and which is primitive in the sense that each
Zy=3-X, (s € 8 is of degree 0. In fact, the intersection conditions can be done away
with, by moving the divisor in a rafional equivalence. The main point is that 3 is “fiberwise
homologous to zero on smooth fibres”, but not in general homologous to zero on X, When
this is true, s — AJ(Z,) defines a section vy of 7, and it can be shown that a muitiple

Nrs = vyy of 3 is always extendable. One says that vy itsell is admissible.

Now assume 7 has a section ¢ : 5 — & (alsc avoiding singularities) and consider the analogue
of (4} for T.

0 v
H(F)

HO(Hg,)

— HY T} = ker {H'(Hg.) — HYF)} = 0.

By a deep result in Hodge theory (due to Griffiths, Deligne, and Schmid) called the Theorem
of the Fixed Part, A°(Hz,) — regarded as a constant sub-local-system of Hz — underlies
an actual constant sub-VHS # s, C H1L. e called the fized part. The Jacobian of the fixed
part JUX/8) py = JUX,) (Vs € §) gives a constant sub-bundie of 7., and the left hand
term of the above sequence is but constant sections of this.” Next, if H2(X )., denotes
H* X7

the classes restricting to O on a general fibre X, of %, then Vg 1= == T & HY(Hy.)
LTS g
while V% = H'(F)). So the right hand term becomes ker{Vz — Vo/F'Ve} 2V NV =

Hg*{V'). The upshot is that with some work, the above short-exact sequence becomes

(5) 0 = JYX /) pue — ENT — o 28 Xhorim
- Iy

where the primitive Hodge classes Hg (X Jprim aTe the Q-orthogonal complement of X in
Hg' (&),

Proposition 2. Let v be an ENF.
(i) If [v] = 0 then v is a constant section of Ty = Uses JHX/S) g1 © T

“for curves, this fived part business could be dealt with explicitly via curvature or degres arguments {which
are beyond our scope here)




(i1} If (v =)us is of geometric origin, then jv3] = 3] (13] = fundamental class):

(iii) |Poincaré Existence Theorem] Every ENF is of geometric origin.

We note that (i) follows immediately from (5). To see {iii), apply “Jacobi inversion with
parameters” and g;(s) = o(s) (Vi) over §* (really, over the generic point of S}, and then fake
Zariski closure.” Finally, when v is geometric, the monodromies of a lift & (to F.) around
each loop in S (which determine [v]) are just the corresponding monodromies of a hounding
1-chain T’y (0T = Z,)

which identify with the Leray (1.1} component of [3] in H?(X); this gives the gist of (ii).
(

A normal function is said to be motwated over K (K C C a subfield) if it 1s of geometric
origin as above, and if the coefficients of the defining equations of 3, &', 7, and S belong to
K.

Tue LerscaeTz (1,1) THEOREM

Now take X C PN to be a smooth projective surface of degree d, and {X, .= X - H,},em a
Lefschetz pencil of hyperplane sections: the singular fibres have exactly one {nodal} singu-
larity. Let §: A — X denote the blow-up at the base locus B = [ .5 X, of the pencil,

and 7 : X — P! =: S the resulting fibration. We are now in the situation considered above,
with () replaced by d sections Ey II--- 1L Ey = 57 *(B), and fibres of genus g = (“'}; and
with the added bonus that there is no torsion in any H*(A}, Hz), so that admissible =

extendable” Hence, given Z € ZH X )prm (deg(Z - X)) = 0): %2 is primitive, vz 1= vg.z
. - . 5 . 4 . I i ’ L i
is an ENF, and [uz] = 8*[Z] under 7 : Hg' (X )prim — %%—
HED
If on the other hand we start with a Hodge class € € Hg' (X )rim, 47¢ is (by (5) — Poincaré

existence) the class of a geometric ENF w5; and 3] = i3] = 5% mod Z {(X,,]) ==

SHere the g;(s) are as in Jacobi Inversion (Theorem A.2) (but varying with respect &6 a parameter). If at a
generic point v(n) is a special divisor then additional argument is needed.

“since removing the one node will not disconnect the singular fibre, we can always draw a chain I';, bounding
on 7, to avoid the node, and compute AJ{Z,,) directly.
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Hel(X) 7

== 1A3=2n = ¢ = (2] for some 7' & 7' (X }pimy- This is the gist

F (X))
of Lefschetz’s original proof (1924) of

Theorem 3. Let X be a (smooth projective algebraic) surfoce. The fundamental class map
CHYX) it Hg (X)) is (integrally) surjective.

This continues to hold in higher dimension, as can be seer from an inductive treatment with

ENFE"s or (more eagily) from the “modern” treatment of Theorem 3 using the exponential
g

exact sheaf gsequence

2rie)
0= Zyx — Ox — Oy = 0.

One simply puts the induced long-exact sequence in the form
HYX, O)
e
HYX,Z)

and interprets it as

0 — HY{X,O") = ker {HHX,Z) = H*(X. 0}} = 0,

i phic :
©) 0 TX) h.olom()lp] it H (X 0
line bundies /, _
v
CHYX;

where the dotted arrow takes the divisor of a meromorphic section of a given bundle. Ex-
istence of this meromorphic section is the hard part of this approach, and is proved in
Appendix A (last page).

We note that for X' — P! a Lefschetz pencil of X, in (3) JUA/PY = JHXY) =

RSN ST WAL which is zero if X is a complete intersection; in that case ZNF is finitely

L i .
generated and Hg* (X ) ppim — ENF.

Example 4. For X a cubic surface € P?, divisors with support on the 27 lines already
surject onto Hg'(X) = H*(X,Z) = Z7. Differences of these lines generate all primitive
classes, hence all of im(#7)(= Z°%) in ENF(¥ Z%). Note that J. is essentially an elliptic
surface and ENF comprises the {holomorphic) sections passing through the C*'s over points
of . There are no torsion sections.

APPENDIX: PICARD-LEPSCHETZ FORMULA

Given a family of curves over a disk A&, with singular fiber {singularities of ODP type only) at
) ; g ! s Yo 3
the center O € A the idea is that a topological 1-cycle meeting a vanishing cvcle gets twisted

by a copy of the vanishing cvele as ¢ goes around 0. This is a completely local phenomenon.




All T'm going to do now 18 give the basic computation which exhibits this twist. A much
more detailed, much more careful version is in Vol. I of Voisin.

We consider just a local degeneration zy = ¢, and only lock at what happens inside a ball
jzi? - yl* < 1. Here z and y denote complex coordinates, and ¢ is considered to vary over the
unit disk with the singular fiber over ¢ = 0. The “fbres” X = {zy =t} N {jz]* + |y|* < 1}
for ¢ # 0 look like tubes which are pinched to a point at their center as ¢ — (. Consider the

“piece of 1-cycle”
y L . 1 ]
(x(s),yls)) = (es(l 42T T 4 M) 2) , e [0,1]
in X, which runs along the tube, from end to end. Now we let t(d) = e go around
0 while holding the endpoints of this segment (on the sphere {z{* + y|? = 1) as close as

possible to fixed, we want to see that the segment gets twisted. For our endpoints, we need
: - IR . R ot : . 3
(2(6,0),9(6,0)) = (\/1 + g2, £ ) and {z(0, 1), y(0,1)} = (\;ﬁ? V14 52) since these are

LRV
the ones that limit to (1,0} and (0,1) as ¢ — 0. Now fixing €, a short computation gives us
J : g b g

. \ Log omifs  —siq 4 2ve—1 omi ;
(x(f,s),y(8,5) = (62(1 4 g?)Tstmibs clms (] 2y 262“63) . s 0,1]

on Xygy. which you will notice is not the same for § = 0 and ¢ = 1 {even though ¢ is). Voila:
the twist,
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