C. THE HODGE CONJECTURE

Let’s begin by reviewing the ground covered thus far: in the classical algebraic geometry of
curves, Abel’s theorem and Jacobi inversion articulate the relationship (involving rational
integrals) between configurations of points with integer multiplicities, or zerc-cycles, and an
abelian variety known as the Jacobian of the curve: the latter algebraically parametrizes the

cycles of degree 0 modulo the subgroup arising as divisors of meromorphic functions.

Given a family X of algebraic curves over a complete base curve S, with smooth fibers over
§* (S minus a finite point set ¥ over which fibers have double point singularities), Poincaré
defined normal functions as holomorphic sections of the corresponding family of Jacobians
over S which behave ‘normally” {or “logarithmically™) in some sense near the boundary.
His main result, which savs essentially that they parametrize 1-dimensional cycles on X,
was then used by Lefschetz (in the context where X' is a pencil of hyperplane sections of a

projective algebraic surface} to prove his famous (1,1} theorem for algebraic surfaces.

Lefschetz’s result later became the basis for the Hodge conjecture, which says that certain

topological-analyiic invariants of an algebraic variety must come from algebraic subvarieties:

Conjecture 1. For a smooth projective compler algebraic variety X, with Hg™(X)g the
classes in Hfff,jgf XE Q) of type (m,m}, and CH™(X) the “Chow group” of codimension-m
algebraic cycles modulo rational equivalence, the fundemental class map CH™(X) @ @ -
Hg™ (X )g ts surjective,

You can think of this as a “metaphor for transforming transcendental computations into
algebraic ones”. For example, if you're handed period matrices (with parameter) of families
of algebraic varieties and asked to find some kind of morphism between the corresponding
Hodge structures (i.e. a Hodge class in one variation of Hodge structure tensor the dual of
the other), that might be too hard . . . wunless you can find an algebraic correspondence

between the two families {a cycle in their fiber product) indueing such a morphism.

The Chow group is defined below. Hodge's original formulation (¢. 1950) was that the
fundamental class map was infegrally surjective; this was shown to be false by Atiyah and
Hirzebruch.

In this section we shall describe the attempts to directly generalize Lefschetz's success to

higher-codimension cycles which led to Griffiths’s Abel-Jacobi map {from the codimension m

eycle group of a variety X to its m* “intermediate” Jacobian), horizontality and variations

of mixed Hodge structure, and S. Zucker’s “Theorem on Normal Functions”. The upshot
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will be that the breakdown (beyond codimension 1) of the relationship between cvcles and
{intermediate} Jacoblans, and the failure of the Jacobians to be algebraic, meant that the

same game played in 1 parameter does not work outside very special cases.

HODGE STRUCTURES: A QUICK REVIEW

As we know, a Z-Hodge structure (HS) of weight m comprises a finitely generated abelian
group Hy together with a descending filtration F* on He = Hg &g C satisfying FPHy &
Fr=s+THe = He, the Hodge filtration: we denote the lot by H. Examples include the
m™ (singular/Betti + de Rham) cohomology groups of smooth projective varieties /C, with
FPHT{X, C) being that part of the de Rham cohomology represented by O forms on X
with at least p holomorphic differentials wedged together in each monomial term. (These are
forms of Hodge type (p, m—p)+(p+1,m—p=1)+---; note that HE™F = FPHNF" 1)
To accommodate H™ of non-smooth or incomplete varieties, the notion of a (Z-)mixed Hodge
structure (MHS) V' is required: in addition to F* on Vg, introduce a decreasing weight
filtration W, on Vi such that the (Grl' Vi, (Grl¥ (V. F*)) ) are weight ¢ Q-HS. Mixed Hodge
structures have Hodge and Jacobian groups Hg"{V) = ker{Vp & FPWy, Ve — V¢ } {for for
V7, torsion-free becomes Vz M FPWo, Vi) and JP{V) = prapxizij‘;%pv@mv;z ., with special cases
Hg™(X) = Hg™(H*™X)) and J™(X) = J™(H* X)), Jacobians of HS vield complex
tori, and subtori correspond bijectively to sub-HS.

A polarization of a HS H is a morphism ) of HS (defined over Z; complexification respects
F*) from H x H to the trivial HS Z(—m) of weight 2m {and type {m,m)), such that viewed
as a pairing () is nondegenerate and satisfies a positivity constraint generalizing that in §1.1
(the second Hodge- Riemann bilinear relation). A consequence of this definition is that under
¢}, F? is the annihilator of F™ P! (the first Hodge- Riemann bilinear relation in abstract
form). If X is a smooth projective variety of dimension d, [} the class of a hyperplane
section, write (for & < d, say) H™(X,Q)prim = ker{ H™(X, Q) w3 R 230 00,
This Hodge structure is then polarized by Q{&,n) := (-1)(7;) Sy EAn A QFE Q] the class

of & hyperplane section {obviously since this is a (-HS, the polarization is only defined /Q).

(FRIFFITHS’S AJ MAP

Let X be a smooth projective (2m — 1)-fold: we shall consider some equivalence relations on
algebraic cycles of codimension m on X. Writing {as in §V.B) Z™(X} for the free abelian
group on irreducible {complex-)codimension m subvarieties of X, two cycles Zy, Zo € Z™(X)
are homologically equivalent if their difference bounds a C® chain I' & CL%_ (X% Z) (of
real dimension 2m — 1). Algebraic equivalence is generated by (the projection to X of)
differences of the form W - (X x {p1}) — W - (X x {p2}) where C is an algebraic curve,




W e ZMX % C), and py,py € CC) {or C(K} if we are working over a subfield K « C).
Rational equivalence is obtained by taking C to be rational (i.e. C 2 P, and for m = 1 is
generated by divisors of meromorphic functions. We write Z™(X ), for cycles =,4 0, ete;

: MY e 20X my e 22X g - o prm o By
note that CH™(X) == T CH™ X\ pom = e D OH (X)ag = TR are
proper inclusions in general.

Now let W C X x C be an irreducible subvariety of codimension m, with 7,7 the pro-
jections from a desingularization of W to X resp. C. If we put 7Z; = wx, wi{p:}, then
L) Faig Lo = ) Epom 2z, which can be seen explicitly by setting T = 7 x, 75(g.p) (s0
that 2y — Zo = O}

Let w be a d-closed form of Hodge type (4.2m — 7 — 1) on X, for § at least m. Consider
Jrw= [pq K, where & 1= n¢, Thw is a d-closed I-current of type (j —m-+1,m—7) as integration
along the (m — 1)-dimensional fibres of 7o eats up (m — 1,m — 1), So s = { unless j = m,
and by a standard regularity theorem in that case & is holomorphic. In particular, if O is

rational, we have fr w = {. This is essentially the reasoning behind the following result:

Proposition 2. The Abel-Jacobi map

‘4‘]‘, (.}:‘m‘HQmMI(XJ(C))V N Jm(X)

Joy e

(i) CHm(X)hom

induced by Z = 01 — [.(-), is well-defined and resiricts to

AJ, o FmHQﬂ‘zfiJ«X‘IC\ ‘
2) CH™(X gy o T 00de 5] o om0y = ()

f T
Hom . (X.2) L

where Hi;’;"} (X) is the largest sub-HS of H* (X)) contoined {after @C) in H™ 4™ X, )G
H™m=H X C). While J™(X) is in general only o compler torus, JU(X) is an abelian variets
4 / \ h ) ¥

and defined {along with the point AJy (Z)) over the field of definition of X

Remark 3. (i) As for Jacobians of curves, to see that J*(X) is an abelian variety, one uses

the Kodaira embedding theorem: by the Hodge-Riemann bilinear relations. the polarization




of H#"=1(X} induces a Kihler metric h(u,v) = —iQ(u,v) on JP(X) with rational Kihler

clags.

(i) The mapping (1) is neither surjective nor injective in general, and {7) is not injective
a a

iq\)‘)

im(AJy,) © JMX) is in fact a sub-abelian-variety. This is because W ¢ X x ' induces

in general; however, (2) is conjectured to be surjective, and regardiess of this J7

a map on cohomology H'(C) - H** 1 X} which descends to a map of Jacobians J{() —

(X,

J7T(X); taken over all ¢ and W, the sum of images of such maps is JIj,

(ili} A point in J™(X) is naturally the invariant of an extension of MHS
0 (H=)H" X Zim)) = E — Z(0) =0

{where the “twist” Z(m) reduces weight by 2m, to {(~1)). The invariant is evaluated by
taking two lifts vp € FOW,Ep, vp € WeEy of 1 € Z(0), so that vy — 1p € WoHe is well-
defined modulo the span of FOWoHe and WoHy hence is in JY(H) = J™(X). The resulting
isomorphism J™(X) & Exti o (Z(0), H¥"H X, Z{m))) is part of Carlson’s extension-class
approach to AJ maps described in §IV.C.

HORIZONTALITY
Generalizing the setting of §V.B, let X be a smooth projective 2m-fold fibred over a curve
S with singular fibres {X, } each of either
(i) NCD(=normal crossing divisor) type: locally (21, ... o) — []5 o1 Tji OT
(i) ODP{=ordinary double point) fype: locally (z) s T2 2,

An immediate consequence is that all T, € Aut (H* (X, Z)) are unipotent: (T, ~I)" =0
for n 2 2m in case (i) or n > 2 in case (ii). (If all fibers are of NCD type, then we say the
family { X} of {(2m — 1)-folds is semistable.)

The Jacobian bundle of interest is J = | J,_o. J™( X} (D Juy). Writing
{]:{m] = Rsz \*QET/TE;} o {% e W{melﬂ*ﬂk e } ») {E‘Lz sz wa(w},

and noting F¥ 2 X via @ : H*™ 7 x W™ 5 O, the sequences (V.B.2) and (V.B.4), as
well as the defmitzons of NF and topological invariant [-], all carry over. A normal function

of geometric origin, likewise, comes from 3 € Z™X ) with Zo, 1= 3 Xy, =jom 0 (on

Keo)r bt now has an additional feature known as herizontality, which we now explain.

Working locally over an analy'tic ball (s €) U C 8%, let & eDl( &y, FPH AT 1 bhe a “lift” of
& 7
w(s) € T(U,F™Y), and T, € C0F | (X,; Z) be a contimuous faraily of chains with 80, = Z..




Let P° be a path from sy to s +¢; then I = | _,. T, has boundary I'y o — Ty 4 U pe Zo,
and

(5‘% fl“s w(s))s_io = Hm, o = ffsoﬂ*?m &=

lim, g+ (fd“, _ {‘50~I~e fgg ) _
fTsO <d/d6 dw> — f W (s0)

where r*m/s = (/ds (with % tangent to [, Z).

o
<
R

The Gauss-Manin connection V : H — H @ (. differentiates the periods of cohomology
classes (against topological cycles) in families, satisfies Griffiths transversality V{F™)
Fmle L., and is computed by Vi = <d/ ds, dw> ¢ df. Mareover, the pullback of any
form of type F™ to Z, (which is of dimension m — 1} is zero, so that | P {s0) = 0 and
frﬁo Vw is well-defined. If I' € T(U, #) is any lift of AJ(T,) € T(U, J), we therefore have

d -
Q (Vajalw) = —Q(F,w) = QF, Vajaw)

dg/w“/qu/d

which is zero by (3) and the remarks just made. We have shown that V41 kills F77 and
so Vel is a local section of Fm-L

Definition 4. A NF v ¢ H®(S*, 7} is horizonial if for any Eocal it o e UH), Vi €
DU, F™ @ Q). Bquivalently, if we set Hy., = ker (’H 5 P,, e ® (2L ) D FT o= F
(FV Y hor 1= H’;_F“ and Jhor = ——L—’h—& then NFq, i= H(S, Thor).

Much as an AJ image was encoded in a MHS in Remark 3{ii), we may encode horizontal
normal functions in terms of variations of MHS. A VMHS V/5* consists of a Z-local system
VY with an increasing filtration of Vg = Vz ®g @ by sub- local systems W; Vg, a decreasing
filiration of Vg 1= Vg ®g Os- by holomorphic vector bundles 77 (= F7V), and a connection
VoV = V@ such that (i) V(V) = 0, (i} the fibres (V,, W,, Vi, F?) yield Z-MHS,
and (ili) {transversality] V(FY) < Fi* @ Q.. (Of course, a VHS is just a VMHS with
one nontrivial Gr}" Vg, and ((Hz, H, 7°), V} in the geometric setiing above gives one.} A
horizontal normal function corresponds to an extension of VMHS

wi, -1

VHS

(4) Gwﬁ?{m;ﬁ»c,m%zé(())w—%{)

“varying” the setup of Remark 3(iii), with the transversality of the ift of vris) (together

with flatness of vz{s)) reflecting horizontality.




An important resulf on VHS over a smooth quasi-projective base (mentioned already in §V.B
for families of curves) is that the global sections HY(5*, V) {resp. HO(S", Vg), H'(5*,V¢))
span the (-local system (resp. its @R, @C) of a (necessarily constant) sub-VMHS < V,
called the fived part Vyy, (with constant Jacobian bundle Jy,).

INFINITESIMAL INVARIANT

Given v € NFpge, the “Vo7 for various local liftings patch together after going modulo
VF™ ¢ Frl@ Q. Ve = Vf for f € T(U,F™), then the alternate ift 7 — f 1s flat,
Le. equals >, ¢y where {v} C I'(I,Vz) is a basis and the ¢; are complex constants. Since
the composition (s € $*) H7HX R) ey HP X, C) — w is an isomorphism,
we may take the ¢; € R, and then they are unique in R/Z. This implies that [¢] lies in the
torsion group ker (H'(Hg) — H'(Hg}), so that a multiple Nv lifts to H°(S", Hp) C H .
This motivates the definition of an infinitesimal invariant

if &

- - . v IR - 1 1Yy
(5) S e HY (S*,Pn‘ -3 Frol g Ql *> H° (55 il v )

- i
affine F

as the image of v € H (S " L*i%gg_) under the connecting homomorphism induced by
(6) 0~ Cone (7= 5 7=l g 0b) [=1] =+ Cone (H S He 0L} -1] - Hr 0

Proposition 5. If 6v = 0, then up to torsion, [v] =0 and v is a (constant) section of T

An interesting application to the differential equations satisfied by normal functions is es-
sentially due to Manin. For simplicity let S = P!, and suppose H is generated by w €
HO(§7, F*™*) as & D-module, with monic Picard-Fuchs operator F(V; _ o) € CF) Ve,
killing w. Then its periods satisfy the homogeneous P-F equation F{4,) fm“) = 0, and one
can ook at the multivalued holomorphic function Q(¥,w) {(where @ is the polarization, and
v is & multivalued lift of v 10 Hyo,/F), which in the geometric case is just [ w(s). The

resulting equation
(7) (2m0) ™ F(8,)Q(7w) =: G(s)
is called the inhomogeneous Picard-Fuchs equation of v,

Proposition 6. (7) {del Angel +— Miiller-Stach] G € C(PH)* is @ rational function holomor-
phic on S*.

(#) [Manin., Griffiths] G =0 <= dv =10

Returning to the setting described above (cf. “HORIZONTALITY”), since we are assuming

unipotent local monodromies, there are canonical ertensions He, Fe of H,F* across the




$; as holomorphic vector bundles resp. subbundles (25 in §IV.D); e.g. if all fibres are

of NCD type then .T-"p - REm En*ﬂfﬁpq(log(i’\k*}). Writing' Hy, = R*™ %7, and

Heohor 1= ker { H. S e FoT @ % (log M}}? we have short exact sequences

He(,hor)

(8) O HZ’;,E - ]Tgn

— j@(,har) =3

and set ENF 00 = HY(S, To por) -

Theorem 7. (i) 3 € Z™(X)pri, == Nuy & ENF,, for some N € N; and

(it) v € ENFy, with [ {orsion == dv = 0.

Remark 8. (i) derives from a recent result of M. Saito. For v € ENF),,., v lies in the sub-
space H* (5‘. 7L Fm e Olllog Ej)E the restriction of H! (S“",fm 5 Frlg Q1> —

H(S* He) to which is injective,
NO DICE

Putting together Theorem 7(ii) and Proposition f(ii}, we see that a horizontal ENF with
trivial topologicdl invariant es in HY(S, Tpy) = J™(X/S) s, (constant sections). In fact,
the long-exact sequence associated to (8) yields

Hgm (_X};ori.m

0= J™X/S) e — ENFor & — i
X Bl — ENE T L)

-+ {3,

with [vs] = [3] (if v € ENF) as before. If X 5 P! = § is a Lefschetz pencil on a 2m-fold
A, this becomes

' i i ; Hgm—i(g)
(9 JX) -~ ENF e H M X ) i @ ker

. - ey T G i & e ~ Hg™(X)

I/(._} \ T

AT CHm(X}pmm v ‘& (id.,n}

5 !

8- |

J

er(1]) = CH™ (X )prim

L

Hgm(—y)pmm

Lot}
LAk

where surjectivity of {*) is Zucker’s “Theorem on Normal Functions” (which followed on work
of Griffiths and Blc)cn establishing the surjectivity for sufficiently ample Lefschetz pencils).
What we are after (@) is surjectivity of the fundamental class map (**). This would clearly
follow from surjectivity of .y, Le. a Poincaré existence theorem, as in §V.B. By Remark

3(i1) this cannot work in most cases; however we do have

1V»"arn'mg: while H. has no jumps in rank, the stalk of Hz . at s, € I is of strictly smaller rank than at

LS
L S B



Theorem 8. The Hodge Conjecture HC(m, m) is true for X if J™X,) = J™ (X )y for a

general member of the pencil.

Example 10. As J? = J;flg is true for cubic threefolds by the work of Griffiths and Clemens,
HC(2,2) holds for cubic fourfolds in P°.

TAKE TWO

The Lefschetz paradigm, of taking a 1-parameter family of slices of a primitive Hodge class
to get a normal function and constructing a cyele by Jacobi inversion, appears to have led us
{for the most part) to a dead end in higher codimension. A beautiful new idea of Griffiths and
Green, replaces the Lefschetz pencil by a complete linear system (of higher degree sections
of X) so that dim(S) > 1, and proposes to recover algebraic cycles dual to the given Hodge
class from features of the {(admissible) normal function in codimension > 2 on 8. T'll give
only the briefest account of this here; probably the easiest place to read about it in more

detail is in my paper with Greg Pearlstein.

The story begins with the Deligne cvcle-class map, which replaces the fundamental and AJ
classes of an algebraic cycle by one object. Writing Z(m) = {27i)™Z, define the Deligne

cohomology of X (smooth projective of any dimension) by Ha(X*, Z(m)) =
H* (Cone {C},, (X Z(m)) & FD*(X*) — D*(X™)} 11},

and cp : CH™X) — HFY(X,Z{m)) by 2 — (2mi)"™(Zi0p, 67,0). One easily derives the
exact sequence

0 — J™X) = HEYX,Z(m)) = Hg™X) — 0,
which invites comparison to the top row of (9).

Let X be a smooth projective variety of dimension 2m and L — X be a very ample line
pTO) ; 3
bundle.” Let 8 = |L! and

(10) X ={{z,5) e X x5|s(x)=10}

be the incidence variety associated to the pair (X, L). Let # : A — S dencte projection on
the second factor, and let X ¢ § dencte the dual variety of X {t.e. the points s € S such
that X, = #7'(s) is singular). Let H{m) be the variation of Hodge structure of weight —1
over 8% = S\ X attached to the local system H(m) = BRI A (m),

For a par (X.L) as above, an integral Hodge class ¢ of type (m,m) on X is primitive

s

with respect to m*™ if and only if it is primitive in the usual sense of being annihilated

by cup product with ¢;(L). Let Hg™{X )y denote the group of all such primitive Hodge

“you can think of L as Opv {1)]x for some embedding of X into a PV




classes, and note that J¢™(X ) m Is unchanged upon replacing L by L% for k > 0. Given
¢ &€ Hg™ X )prim, & simple chase of the diagram

(11) 0
f—[gm (‘Xw)pm‘m

0 — JMX) —— HZ(X,Z(m)) ——s Hg™(X) s

!
|

1 \4; .
0 — J™(X,) —= HEW X, Z(m)) —mee Hg™(X,) ——s O

0

vields a well-defined class in J™(X) for each s £ S, and hence a normal function ve. Viewing
Ve as an extension of VMHS

G — Him) = & = Z{0)e — 0,
we define its singularity op{v;) at p € X 1o be the image of | under the composition
HOY(SY Z{0)) — HY(S", H(m)) - limH (U N S, H(m)),
L Bp
where the limit is taken over all analytic open neughborhoods of p in S.

With this terminclogy in place, we can at last state the beautiful

Theorem 11. {Griffiths-Green, 2007; Brosnan-Fang-Nie-Pearlsteir, 2009; de Cataldo-Migliorini,
2009) The Hodge Congecture (HC) on a 2m-dimensional smooth projective variety X is equiv-
alent to the following statement for each primitive Hodge (m,m) class ( and wvery ample line
bundle L — X : there exists k > 0 such that the natural normal function ve over |L*|\ X

{the complement of the dual variety in the linear system) has a nonforsion singulariy ot
some point of X .

This is & highly nontrivial result with an equally nontrivial drawback: so far it has not led
to a single new proof of the Hodge Conjecture.




