Problem Set 4 (Solutions)

(1) \[0 \to \beta \to \gamma \to \delta \to \epsilon \to 0 \]

Given \(c \in C \), \(j_4(g^{-1}(i_3(c))) = i_4(k(c)) = 0 \Rightarrow \[
\exists \bar{c} \in Y \ s.t. \ j_3(\bar{c}) = g^{-1}(i_3(c)) = \]
\[l_3(f(\bar{c})) = g(j_3(\bar{c})) = i_3(c) \Rightarrow l_3(f(\bar{c})-c) = 0 \Rightarrow \]
\[\exists b \in B \ s.t. \ i_2(b) = f(\bar{c})-c \text{ and } b \text{ s.t. } e(b) = b \Rightarrow \]
\[f(\bar{c}-j_2(b^\ast)) = f(\bar{c}) - f(j_2(\bar{c}^\ast)) = f(\bar{c}) - (i_2(e(b))) = f(\bar{c}) - (f(c) - c) = c. \]

(2) (a) \[0 \to A \to B \to C \to 0 \text{ exact} \]

\[0 \to \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, B) \to \operatorname{Hom}(X, C) \]

To prove exactness here, main point is: given \(f \in \operatorname{Hom}(X, B) \) with \(\beta \circ f = 0 \), define \(g \in \operatorname{Hom}(X, A) \) by

\[g(x) = \text{unique element of } A \text{ mapping by } \alpha \text{ to } f(x) \left(\exists \alpha \text{ s.t. } \beta(f(c)) = 0 \right) \]

by injectivity of \(\alpha \).
(b) $0 \to \mathbb{Z}_m \to \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z} \to 0$

(c) \[\text{Ext}^1(\mathbb{Z}_m, \mathbb{Z}_n) = \left(R^1 \text{Hom}(\mathbb{Z}_m, -) \right)(\mathbb{Z}_n) \]

\[= \frac{H^1 \{ \text{Hom}(\mathbb{Z}_m, \mathbb{Q}/\mathbb{Z}) \rightarrow \text{Hom}(\mathbb{Z}_m, \mathbb{Q}/\mathbb{Z}) \}}{n \cdot \text{Hom}(\mathbb{Z}_m, \mathbb{Q}/\mathbb{Z})} \]

identified with \(\left\{ \frac{\mathbb{Z}}{m} \left| \alpha \in \mathbb{Q}/\mathbb{Z} \right. \right\} \)

With (b) or when \(\mathbb{Z}_m \) is exact

\[= \frac{\mathbb{Z}_m}{n \cdot \mathbb{Z}_m} \cong \mathbb{Z}(m, n). \]

(3)

- For surfaces \(X \) and divisors with support in \(X \).

These are also divisors with support in any open subset \(U \), so \(D(W)\rightarrow D(U) \). Note that this is only true for \(\dim M = 1 \)

- We have \(0 \to \Omega^1 \to M^* \to D \to 0 \) (show \(M \))

So \(0 \to H^0(\Omega^1) \to H^0(M^*) \to \Gamma^0(D) \to H^1(\Omega^1) \to H^1(M^*) \to H^2(D) \)

\[= 0 \to 0 \to \mathfrak{M}(M)^* \to \text{Div}(M) \\xrightarrow{\Delta} \text{Div}(M) \]

\[\xrightarrow{\text{splitly}} \beta = 0 \iff H^1(M^*) = 0 \]

and \(\Delta \) surjective \(\Rightarrow \beta = 0 \iff H^1(M^*) = 0 \)

...what we want

- need a little argument to show that \(\Delta \) sends a divisor \(D \to \Theta(D) \). Done in Čech cohomology, this is almost a tautology (left to you).
(4) Identity \(\omega(D) = H^0(X(-D)) \).

(a) \(\omega \in \mathcal{K}^1_m \), \(\omega + \mathcal{O}(D) \) then

\(\omega \geq 0 \), which yields

\[2g - 2 = \deg(\omega) \geq \deg D \, \text{ at } \mathcal{O} \]

If \(\deg D > 2g - 2 \), this is impossible since there are no (nonzero) meromorphic forms in \(\omega \).

(b) Likewise, if \(f \in \mathcal{O}(D) \) then \(\deg f + D \geq 0 \)

\[\Rightarrow 0 = \deg(f) \geq -\deg D \]

so if \(\deg D < 0 \) (i.e., \(-\deg D > 0 \)), we again get a contradiction.

(5) (a) \(p \in M \)

\[\lambda((g_1)(p)) = \overline{(g_1)(p))} + (g_1) - g_1 \geq 2 \]

\[\Rightarrow \lambda((g_1)(p)) \text{ contains a nonconstant term } f \]

The mapping degree is the "Cardinality with multiplicity" of \(f^{-1}(x) \) for any \(x \in \mathcal{P} \). For \(x = 0 \) as to that number counting order of 0's or poles.

Now \(f \) has only pole at \(p \), so

\[\deg(f) = \deg_0(f) \leq g + 1 \]

or \(\deg(f_{\{x_0\}}) \).
(b) By Riemann-Roch, for any $p \in M$,

$$\ell((g-2)[p]) = g - (g-2) - 1 + \chi((g-2)[p])$$

$$\geq 1 \quad \text{(constans constant term)}$$

$$\geq 2.$$

Hence, there are 2 linearly independent holomorphic forms ω_1, ω_2 with $\ell((2j - (g-2))[p]) = D_j > 0 \quad (j = 1, 2)$, and $\deg D_j = (2g - 2) - (g-2) = g$. Set $f := \frac{\omega_1}{\omega_2} \in M(M)^*$, so that $(f) = D_1' - D_2' = D_1 - D_2$ where D_1', D_2' are effective divisors of degree $\leq g$ with no points in common.

We have that the mapping degree

$$\deg(f) = \deg(f^{-1}(0)) = \deg D_1' \leq g.$$