2. Cycles modulo algebraic equivalence

Let \(X \) be a smooth projective variety over \(\mathbb{C} \).

We first recall the story for divisors. As in the proof of Thm. I.B.1, the exponential exact sequence on \(X \) gives

\[
0 \rightarrow \frac{\mathcal{H}^1(\mathcal{O})}{\mathcal{H}^1(\mathcal{O}_X)} \rightarrow \mathcal{H}^1(\mathcal{O}_X) \xrightarrow{\partial} \ker \left\{ \mathcal{H}^1(\mathcal{O}_X) \rightarrow \mathcal{H}^2(\mathcal{O}_X) \right\} \rightarrow 0
\]

\[
\text{or} \quad \mathcal{L}c(X) [L_0] \quad \mathcal{L}y(X)
\]

\[
\text{or} \quad \mathcal{H}^1(\mathcal{O}_X) \cong [D]
\]

In particular, we have

1. \(\mathbf{AJ}_X : \mathcal{H}^1(\mathcal{O}_X) \xrightarrow{\cong} J^1(X) \)

in which (esp. for \(\dim X = 1 \)) injectivity is usually referred to as Abel's theorem and surjectivity as Jacobi inversion. Note that

\[
(J^1(X) = \mathcal{C}h^1_{\text{hom}}(X) = \mathcal{C}h^1_{\text{alg}}(X) ,
\]

since any two points in \(J^1(X) \) can be connected by a curve (with a tautological cycle over it). Also, as the Jacobian of a level-one PHS \(H^1(X) \), \(J^1(X) \) is an abelian variety;

by the H-R bilinear relations, the polarization induces a Kähler metric \(h(u,v) = -iQ(u,v) \) on \(J^1(X) \) with rational Kähler class, and so \(J^1(X) \) is projective algebraic by the Kodaira embedding theorem.
Moving on to higher codimension, we begin with the

restriction

\[AJ_{\text{alg}, x} : C_{\text{H}^k}(x) \to J^k(x) \]

of the Abel–Jacobi map to cycles algebraically equivalent to zero.

The first main point is that Jacobians of Hodge strata of
level > 1 are "generically" non-algebraic complex tori.

Exercise: Show this for level/weight 3, of type \((1, 1, 1, 1) = \frac{1}{2}\).

(a) Given \((V, \phi, \Psi)\) plus of this type, we may view \(\phi\) as
factorizing through a compact 2-torus \(T \leq \text{Sp}_g(\mathbb{R}) = \text{Aut}(V_{\text{irr}, \mathbb{Q}}), \quad \phi|_T \)
acting as \(z^2, z^{-1} z^1, z^3\) on \(V^0, V^1, V^2, \) resp. \(V^3, 0\). We can
also consider \(\hat{\phi}(\mathbb{Q})\) defined to (factor through the same \(T\) and) have
eigenvectors \(z^2, z^{-1} z^1, z^3\) on the same spaces. This defines the HS \(\hat{\phi}\) on
\(H^1(J^2(V))\), where \(J^2(V) = V_G / (F^2 V_G + V_2)\). Show that if it is
polynomial, then \(M_{\hat{\phi}} \neq \text{Sp}_g\) (i.e. smaller).

(b) Prove that for \(\Phi\) off a proper analytic subset of \(D_\Phi\), \(M_{\Phi} \neq \text{Sp}_g\),
and conclude that (by (a)) "most" \(\Phi \in D\) have nonalgebraic Jacobian.
[You'll need to state/use Kodaira embedding theorem or the equivalent.]

(c) Show in particular that \(\text{Sym}^3 H^1(E)\) (\(E\) an elliptic curve) has nonalgebraic
Jacobians if \(H^1(E)\) is not CM.

\[\text{Theorem 1 (Lieberman): } \quad \mathfrak{m} (AJ_{\text{alg}, x}) = : J^k_{\text{alg}}(x) \text{ is an abelian variety}. \]

Proof: \(C_{\text{H}^k}(x) = \sum_{C \text{ curve}} W_x (\mathbb{Z}^k_{\text{hom}}(C)) \]

\[\text{defn. of algebraic equivalence in } 0 \]

\[W \in \mathbb{Z}^k(\mathbb{C} \times X) \text{ cycles}. \]
\[\text{Im} \left(\mathcal{C}^k \right) = \sum \text{Im}(W, J^k(\mathbb{C})) \bigg| (\mathbb{C}, W) \text{ so } A = \text{Im} \left(\mathcal{C}^k \right). \]

Let \(A \subseteq J^k(\mathbb{C}) \) be a maximal abelian subvariety in this image. If \(z \in \text{Im}(W, J^k(\mathbb{C})) \) is not in \(A \), then the image of \(\mu \times W : A \times J^k(\mathbb{C}) \to J^k(\mathbb{C}) \) is abelian and contains \(A \) and \(z \).

Now we have some constraints on the image of (3) arising from the Exercise (or rather the statement preceding it). But the next result actually gives a stronger constraint still.

Theorem 2: Define \(J^k_{\text{alg}}(\mathbb{C}) := J^k \left(\mathcal{H}^{2k-1}_{\text{alg}}(\mathbb{C}) \right) \), where \(\mathcal{H}^{2k-1}_{\text{alg}}(\mathbb{C}) \) is the largest sub-alg. of \(H^{2k-1}(\mathbb{C}) \) with \(\mathcal{H}^{2k-1}_{\text{alg}}(\mathbb{C}) \subseteq H^{2k-1}(\mathbb{C}) \). Then we have that

\[J^k_{\text{alg}}(\mathbb{C}) = J^k_{\text{alg}}(\mathbb{C}). \]

Remark: \(J^k_{\text{alg}}(\mathbb{C}) \) is of course an abelian variety. Equality in (4) is a conjecture, though it is easy to establish in examples.

Proof (of Thm. 2): Let \(W \subseteq X \times \mathbb{C} \) be an irreducible subvariety of codimension \(k \), with \(\pi_X, \pi_\mathbb{C} : \tilde{W} \to X, \mathbb{C} \) the projections from a desingularization of \(W \) to \(X \) resp. \(\mathbb{C} \). If we put \(z_i := \pi_X, \pi_\mathbb{C}(p_i) \),

Exercise: Use Poincaré Complex Reducibility to show that the image of an abelian variety \(A \), under a homomorphism \(A \to J = \text{cx. forms} \), is an abelian variety.
Then \(Z_1^x \subset Z_1 \to Z_1 \) is an abelian variety, and there is a 1-1 correspondence between the subvarieties of \(H^{2k-1}(X) \) and subvarieties of \(J^k(X) \). So the image of (3) must be contained in the Jacobian of a HS contained in \(H^{2k-1}_{	ext{log}}(X) \).

If \(X \) is projective of odd dimension \(2k-1 \), we have the hard Lefschetz decomposition (writing \(L_\star \) for cup-product with hyperplane class):

\[
H^{2k-1}(X) = H^{2k-1}_{\text{perm}}(X) \oplus L_\star(H^{2k-3}(X))
\]
and one may have that $H^{2k-1}_{\text{Hdg}}(X) \subset L_{\mathfrak{g}}(H^{2k-3}(X))$ (exp. if H^{2k-1}_{prin} is irreducible). For X in a Lefschetz pencil on \mathbb{P}^1, we often have image $(H^{2k-1}(\mathbb{P}^1)) \subset L_{\mathfrak{g}}(H^{2k-3}(X))$, and so the following often gives a way to arrange these.

Proposition 1: Let X be very general in a Lefschetz pencil on \mathbb{P}^1 (sm. proj. at dim $2k$), and assume $\text{level}(H^{2k-1}(X)) > \text{level}(H^{2k-1}(\mathbb{P}^1))$. Then $H^{2k-1}_{\text{Hdg}}(X) \subset \mathfrak{g}^{\times} H^{2k-1}(\mathbb{P}^1)$ and $\mathfrak{g}^{\times} J^k(X) \subset \mathfrak{g}^{\times} J^k(\mathbb{P}^1)$.

Proof: If $\{X_s\}_{s \in \mathbb{P}^1}$ is the pencil (of hyperplane sections, $X_s = H_{X_s} \mathbb{P}^1$, in which singular fibers have one ODP each), let $B = X_0 \times X_\infty$ be the base locus and \tilde{X} the blow-up of \mathbb{P}^1 along B. We have a diagram

$$
\begin{array}{ccc}
\tilde{X} & \xrightarrow{\beta} & \mathbb{P}^1 \\
\downarrow{\pi} & & \uparrow{\mathfrak{g}} \\
X & \rightarrow & X_s \\
\end{array}
$$

and $X = X_{s \in \mathbb{P}^1}$ is a very general fiber. It is known that \mathfrak{g}^{\times} is image of Hdg

$$
\rho : \pi_1(U) \rightarrow \text{Aut}(H^{2k-1}(X_s, \mathbb{Q}), \mathfrak{g})
$$

acts irreducibly on $(H^{2k-1}_{\text{Hdg}}(X_s, \mathbb{Q}), \mathfrak{g})$, and $H^{2k-1}_{\text{Hdg}} = \mathfrak{g}^{\times} H^{2k-1}(\mathbb{P}^1)$.

Since the MTC of $H^{2k-1}(X_s, \mathbb{Q})$ is generic, $H^{2k-1}_{\text{Hdg}}(X)$ extends to a level 1 sub VHS of $R^i\pi_*\mathbb{Q} \cong (\mathfrak{g}^{\times}) H^{2k-1}(\mathbb{P}^1) \oplus H_{\text{var}}$. Assumptions imply that H_{var} has level > 1. Since H_{var} has no sub VHS, $H^{2k-1}_{\text{Hdg}}(X) \subset \mathfrak{g}^{\times} H^{2k-1}(\mathbb{P}^1)$, and we are done by Theorem 2. □
Now we turn to the "quasitri" or "reduced" AJ map on the Cartier map
\[\text{Griff}^k(X) : \text{Griff}^k(X) / \text{Z}_0(X) \to \text{CH}^k(X) / \text{CH}^k_{\text{crys}}(X), \quad \text{This is,} \]
\[(5) \quad \overline{AJ}_X : \text{Griff}^k(X) \to J^k(X) / J^k_{\text{hdg}}(X) \to J^k(X) / J^k_{\text{hdg}}(X) =: \overline{J}^k(X). \]

Proposition 2: \(\text{Griff}^k(X) \) (and thus \(\text{im} (\overline{AJ}_X) \)) is at most countable.

Proof: Given a cycle \(\overline{z} / L \) on \(X / K \) (\(L \supset K \) both are fields)

consider the \(\overline{Q} \)-spread

\[(6) \]

\[X \supset X \times \mathbb{A}^1 \]
\[\downarrow \quad \downarrow \]
\[B \supset B_{\text{to}} \]
\[\downarrow \quad \downarrow \]
\[\overline{y} \in \{ \overline{a} \} \] (all defined in \(\overline{a} \)),

where \(\overline{Q}(5) = K \) and \(\overline{Q}(8) = L \). Now there are only countably manifolds like (6), and all cycles \(\overline{z} \in \text{Griff}^k(X / \overline{a}) \) occur as some fiber \(\overline{z}_s^i \), \(s \in B_{\text{to}}(C) \), in some situation "(6)". But all the fibers \(\overline{z}_s^i \), \(s \in B_{\text{to}}(C) \), in any given situation "(6)" are algebraically equivalent as there is always a (chain of) curves connecting any \(s, s' \in B_{\text{to}}(C) \)!

\[\square \]

Remark (on "cardinalities"): Note that \(\underset{\overline{a}}{\text{Griff}}^k(X) \) would still be a countably \(\Omega \)-dim \(\overline{Q} \)-vector space. Contrast this...
to the image of A^*_{alg}: any complete torus (e.g. elliptic curve C) over \mathbb{Q} is of countably infinite dimension as a \mathbb{Q}-vector space. But $\text{im}(A^*_{\text{alg}})$ is still parameterized by a finite dimesional algebraic variety. Later we will speak of cycle groups not being pro-representable", which means this is impossible. So there are 3 levels of “boyness” here. One should think of $\text{Ch}_{k^*}(X)$ as the discrete/totally disconnected part, and $\text{Ch}_{k^*}^\text{cont}(X)$ as the “continuous” part, of $\text{Ch}_{k^*}(X)$.

Corollary: Jacobian inversion fails for $\text{Ch}_{k^*}^\text{cont}(X)$. If $H_{2u-1}(X)^{k^*} \neq H_{u-1}(X)^{k^*} \oplus H_{u-1}(X)^{k^*}$

\[\Gamma \]

We now turn to an example due to B. Harris, which will be our first computation of an AJ map.

Consider the Fermat quartic curve $C = \{x^4 + y^4 = 1\} \subset \mathbb{P}^2$.

By the degree-genus formula, it has genus 3, with holomorphic forms given by Griffiths's residue formula:

\[\frac{\partial(x, y) \ dx \wedge dy}{x^4 + y^4 - 1} = P \text{ F}_y \frac{dx}{F} = \frac{2\omega}{dy} \frac{dx}{F} = P \frac{dx}{4y^3} \quad \text{deg} \leq \text{deg}(x) - 2 - 1 \]

\[P = 1, x, y. \]

After normalizing, we get the basis of $\mathbb{P}(F)$

\[\omega_1 = \frac{1 - i}{4b} \frac{dx}{y^2}, \quad \omega_2 = \frac{1}{25} \frac{dx}{y^3}, \quad \omega_3 = \frac{1 - i}{4b} \frac{x dx}{y^3} \]
where \(b = \int_0^1 \frac{dt}{(1 + t^2)^{3/2}} \), \(b' = \sqrt{2} b = \int_0^1 \frac{dt}{(1 + t^2)^{3/2}} \).

The reason for this normalization is that we have three morphisms from \(E \) to the elliptic curve given by \(E : \{ v^2 = 1 - w^3 \} \), given by

\[
\pi_1 (x, y) = (x, y^2), \quad \pi_2 (x_1, y_1) = \left(\frac{-1 + i}{\sqrt{2}}, \frac{x_1}{x^2} \right), \quad \pi_3 (x_1, y_1) = (-y, x^2),
\]

and the form \(dz = \frac{1 - i}{\sqrt{2}} \frac{du}{v} \) on \(E \) has \(\pi_j^* (dz) = \omega_j \) (\(j = 1, 2, 3 \)).

Exercise: (i) Check this.

Moreover, \(dz \) has periods \(1 \) \& \(2 \) on a cycle generating \(H_1 (E, \mathbb{Z}) \).

(ii) Check this too! \[\text{So } E \cong \mathbb{C} / \mathbb{Z} \langle 1, i \rangle. \]

Since \(\pi = (\pi_1, \pi_2, \pi_3) : E \to \mathbb{C}^3 \) induces an isomorphism (surjection)
\(\pi^* : H^1 (\mathbb{C}^3, \mathbb{C}) \to H^1 (E, \mathbb{C}) \), we have that \(\pi_k : H_1 (\pi_k, \mathbb{Z}) \to H_1 (E^3, \mathbb{Z}) \) is an injection. (If \(\pi_j (y) \equiv 0 \) (\(y_j \)), then \(0 = \pi_j (y) \cdot dz = \int_{y_j} \pi_j^* dz = \int_{y_j} \omega_j (y_j) \), so \(y_j \equiv 0 \).)

Recall the Abel map
\[
\psi : E \to J^1 (E) = \frac{\mathfrak{M}^1 (\mathcal{F})}{\mathcal{M}_1 (\mathcal{F}, \mathbb{Z})} \cong \mathbb{C}^3 / \Lambda
\]
given by \(\psi : \mathcal{A} J (\mathcal{F} - \mathcal{O}_E) \) \(\psi (p - \mathcal{O}_E) = \int_0^p (\cdot) = \left(\int_0^p \omega_1, \int_0^p \omega_2, \int_0^p \omega_3 \right) \)
where \(\mathcal{O}_E = (1, 0) \). But the RHS clearly \((\pi_1 (p), \pi_2 (p), \pi_3 (p)) \), and so

\[
\begin{align*}
\psi & \quad \pi \quad \mathcal{E}^3 \\
\psi & \quad \pi \\
\psi & = \text{isogeny (induced by } (\pi^*)^*)
\end{align*}
\]

(9)

\[
\begin{align*}
\phi & \quad \mathcal{E}^3 \\
\phi & \quad \pi \\
\phi & \quad \psi = \text{isogeny (induced by } (\pi^*)^*)
\end{align*}
\]

commutes.
Now we consider the Ceresa cycle

\[(10) \quad \frac{\tau_m}{m} : = \phi'(\bar{\tau}) - \phi(\bar{\tau})^- \in \mathbb{Z}_{\text{hom}}^2(J'(\bar{\tau}))\]

where \((-)^-\) means to apply the involution \(y \mapsto -y\) on \(J'(\bar{\tau})\).

(If \(\bar{\tau}\) were hyperelliptic, this would just be zero; but, as we shall see, it isn't.) Note that this involution acts as the identity on \(H^4(J'(\bar{\tau}))\), which is why \(\frac{\tau_m}{m} \in \mathbb{Z}_{\text{hom}}\). Our question is: is it algebraically equivalent to zero?

One way to show it is not \(\equiv 0\) is to show it has no nonzero image under

\[(11) \quad AJ^2_{J'(\bar{\tau})} : \mathbb{Z}^2(J'(\bar{\tau})) \to \overline{J^2}(J'(\bar{\tau}))\]

but it turns out to be easier to work with

\[(12) \quad \overline{AJ}^2_{E^x^3} : \mathbb{Z}^2(E^x^3) \to \overline{J}^2(E^x^3)\]

and \(\phi'(\bar{\tau}) = \pi'(\bar{\tau}) - \pi(\bar{\tau})^-.\) Write \(d_{ij}(j = 1, 2, 3)\) for the copy of \(\mathbb{Z}\) on each factor of \(E^x^3\).

Exercise: Since \(E\) is CM, \(H^2_{\text{alg}}(E^x^3)\) is the \(L\)-complement of \(\langle d_2, nd_2, nd_3, d_3, nd_1, nd_3, \rangle\).

Conclude that \(\overline{J}^2(E^x^3) = \mathbb{C} \langle d_2, nd_2, nd_3, d_3, nd_1, nd_3, \rangle / \mathbb{Z}(1, 1) \subseteq \mathbb{C} / \mathbb{Z} \otimes \mathbb{Z}.

So, writing \(\Gamma\) for a 3-chain on \(E^x^3\) with \(\Delta \Gamma = \pi'(\bar{\tau}) - \pi(\bar{\tau})^-\), if we can show that

\[(13) \quad \int d_2, nd_2, nd_3 \notin \mathbb{Z} \otimes \mathbb{Z}\]

then we win.
Suppose first that we want to draw a chain Γ^+_{α} with boundary

$\pi^{+}(\mathcal{F}) = \{ \text{stuff supported on } \sigma \in \mathcal{F} \}$. To do this,

draw cuts

$\alpha \neq \beta$ on E:

and write $\varepsilon_j := \int_{0}^{x} dz_j$ on the shaded region with jumps along $\alpha \neq \beta$,

and $0 \neq \beta$ ($\beta \in E$) to draw the shortest path from the origin to p (which changes as we pass through the cuts!). Then we set

$$
\Gamma^+_{\alpha} = \left\{ (0, \pi^-(\beta), \pi^+(\alpha), \pi^+(\beta)) \mid \beta \in \mathcal{F} \right\}
$$

$$
+ \left\{ (\beta, 0, \pi^+(\alpha), \pi^+(\beta)) \mid \beta \in \pi^+(\mathcal{F}) \right\}
$$

$$
+ \left\{ (\alpha, 0, \pi^-(\beta), \pi^+(\beta)) \mid \alpha \in \pi^-(\mathcal{F}) \right\}
$$

and

$$
+ \left\{ (\beta, \beta, 0, \pi^+(\alpha)) \mid \beta \in \pi^+(\mathcal{F}) \cap \pi^-(\mathcal{F}) \right\} + 3 \text{ more terms}
$$

where the idea is that β of the first term gives $\pi^+(\mathcal{F})$ if we stay away from $\pi^+(\mathcal{F})$, but at the cuts, the jump in $\pi^-(\mathcal{F})$ creates an extra boundary term, which the next two terms' boundary cancel, and so on.

Integrating $d\varepsilon_1 d\varepsilon_2 d\varepsilon_3$ over Γ^+ yields $\int_{0}^{x} d\varepsilon_1 d\varepsilon_2 d\varepsilon_3$ which is zero.
by type. The next two terms yield (since $\int_{\Delta} dx_1 = 0$, $\int_{\Delta} dx_2 = i$)

$$i \int_{\pi^{-1}(2)} z_2 \omega_3 + \int_{\pi^{-1}(\beta)} z_2 \omega_3$$

\text{(i.e. z_2 is pulled)}

\text{(back to $\overline{\sigma}$)}

where $z_j := z_j \circ \pi_j$, and the final terms yield

$$- \sum_{\rho \in \pi^{-1}(\alpha) \cap \pi^{-1}(2)} \frac{1}{\rho} \sum_{\rho \in \pi^{-1}(\beta)} \omega_2 \omega_3 \quad \text{for $V \in \pi^{-1}(\overline{\sigma})$, $\rho \in \overline{\sigma}$}$$

\text{Exercise: If $\int_{Y \beta} \omega_2 \omega_3 := \int_{\beta} (\ast \rho) \omega_2 \omega_3$ (for $V \in \pi^{-1}(\overline{\sigma})$, $\rho \in \overline{\sigma}$)}

\text{show that the final terms sum the function of correcting the top two terms to}

$$-i \int_{\pi^{-1}(\alpha)} \omega_2 \omega_3 + \int_{\pi^{-1}(\beta)} \omega_2 \omega_3$$

Next we do the same thing for $\pi^{-1}(\overline{\sigma})$, with $\Gamma_- = (\Gamma_+)^{-}$, and observe that the integrals $-\int_{\Delta} dx_1 \Delta_2 \Delta_3$ simply double the term above.

Finally, Γ will be $\Gamma_+ - \Gamma_- + (\text{stuff supported on $\overline{\sigma} \times E \times E$})$ on $\overline{\sigma}$, which determines Δ_3.

$$\therefore \int_{\pi^{-1}(\alpha)} \omega_2 \omega_3 = -2i \int_{\pi^{-1}(\alpha)} \omega_2 \omega_3 + 2 \int_{\pi^{-1}(\beta)} \omega_2 \omega_3$$

$$= 8 (1+i) \int_{(1,0)} \omega_2 \omega_3 = 8 (1+i) \int_{(0,0)} \omega_2 \omega_3$$

\text{using automorphism $(\xi, \eta) \mapsto (\frac{\xi}{1+\eta x} \frac{1}{1+i})$?}

$$= 8 (1+i) \int_{0}^{1} \frac{(1-i)}{4b} \frac{dx}{\sqrt{1-x^2}} \frac{1}{2b} \frac{dx}{(1-x^2)^{3/2}}$$
\[4 \int_0^1 \frac{dt}{\sqrt{1-t^4}} \cdot \frac{d\tau}{(1-\tau^4)^{3/4}} = \kappa (\mathbb{C}/\mathbb{Z}(1,1)). \]

Of course, \(\kappa \in \mathbb{R} \) so we win if \(\kappa \not\in \mathbb{Z} \). Here's numerically compute that \(\kappa \approx 1.24108 \ldots \), and so we get that

\[\mathbb{Z}_{\kappa} \]

is not algebraically equivalent to zero in \(\mathcal{J}^1(\mathbb{R}) \).

Unfortunately, one doesn't know whether \(\kappa \) is irrational, and so one does not get the

Theorem 3 (Bloch): \(\mathbb{Z}_{\kappa} \) is of infinite order in \(\text{Griff}^2(\mathcal{J}^1(\mathbb{R})) \).

Which is proved indeed using the 2-adic AL map \((x/12) \)

\[\text{AL}_2^2 : \text{CH}^2 \left(X \right) \to H^1_{\text{cont}}(\text{Gr}^1(\mathbb{R}/\mathbb{Q}), H^2_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}(2))). \]

Formally speaking, this map is easy to construct: one has a cycle map

\[\text{CH}^2(X) \to H^2_{\text{et}}(X, \mathbb{Z}(2)) \]

and a spectral sequence

\[\text{H}^1_{\text{cont}}(\text{Gr}^1(\mathbb{R}/\mathbb{Q}), H^2_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}(2))) \]

and then:

\[\text{CH}^2_{\text{num}}(X) = \ker (\text{CH}^2(X) \to H^2_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}(2))) \]

What is interesting about Bloch's proof is that \(\text{AL} \) of \(\mathbb{Z}_{\kappa} \), once shown to be nonzero, is almost "automatically" of infinite order (see p. 4 of his paper "Algebraic cycles and values of L-functions").

It though this does follow from Theorem 3 if the Bloch-Beilinson conjectures (which we'll discuss later) hold.