2. Sketch of Borel's Theorem

(2) Sketch of proof of Theorem 2 (following Soulé)

\[\text{Res}_{F/\mathbb{Q}} \text{SL}_N(F) =: G \quad \text{w} \quad G(\mathbb{Q}) = \text{SL}_N(\mathbb{Q}_F) =: \Gamma \]
\[G(\mathbb{R}) = \text{SL}_N(\mathbb{R}) \]
\[G(\mathbb{C}) = \prod_{\sigma \in \text{Hom}(F, \mathbb{C})} \text{SL}_N(\mathbb{C}) \]

(\(\mathbb{Q} \)-alg. group)

Prop. 1 (Borel): \(G \) a \(\mathbb{Q} \)-alg. group s.t. \(G(\mathbb{R}) \) connected
\[\Gamma \leq G(\mathbb{R}) \text{ arithmetic} \]
\[\implies H^q_{\text{cont}}(G) \cong H^q(\Gamma, \mathbb{R}) \quad \text{for } q \ll \text{rk}_\mathbb{Q} G. \]

Sketch: Put \(X = G/\Gamma \), \(X(\mathbb{R}) = G(\mathbb{R})/\Gamma \). Assume \(\Gamma \) torsion-free, so that
\[\Gamma \subseteq G(\mathbb{R}) \text{ freely} \quad X \text{ contractible} \implies \]
\[H^q(\Gamma, \mathbb{R}) = H^q(\pi_1(X), \mathbb{R}) = H^q(\pi_1(X(\mathbb{R}))) = H^q(G(\mathbb{R}), \mathbb{R}). \]

What is \(H^q_{\text{cont}} \)? Cohomology of complex
\[\cdots \rightarrow C^0_{\text{cont}}(G) \rightarrow C^1_{\text{cont}}(G) \rightarrow \cdots \]
\[\text{(continuous } \mathbb{R} \text{-valued fun on } G^{p+1}, \text{ d} p(\gamma_0, \gamma_1) = \sum_{i=0}^{p+1} \text{cont} (G^{p+1}, \mathbb{R}) \]
\[X \text{ contractible} \implies [\mathbb{R} \rightarrow \mathcal{L}^*(X)] \implies \text{ horizontal diffeo in } E_0^{p+1} \subseteq \text{cont}(G^{p+1}, \mathcal{L}^*(X))^G \]
\[\text{is exact off } E_0^{0,2}, \text{ so can replace dual complex by } \mathcal{L}^*(X)^G = \ker(\partial) \subseteq E_0^{0,2} \]
\[\implies H^q_{\text{cont}}(G) \cong H^q(\mathcal{L}^*(X)^G). \]

Moreover, b/c Cartan involutions act by \((-1)\) on the cotangent space (\(X \) is a symmetric space) compatibly w/ differentials, it acts by \((-1)^2\) on forms \(\Omega^2 \) forcing
\[\Delta: \Omega^2(X)^G \rightarrow \Omega^{2+}(X)^G \text{ to be 0}. \]

\(\blacklozenge \) this section is so far very rough
So we must show \(\Omega^q(x)^G = H^q(X^\omega) \to H^q(X^\omega)_G \) is \(\cong \).

\[
\begin{pmatrix}
H^q_{cont}(G) \\
H^q(G, \mathbb{R})
\end{pmatrix}
\]

Idea: do Hodge theory on \(X(\mathbb{R}) \). Fix \(h \) smooth \(G \)-equiv. metric on \(TX \), define volume form \(\rho \), \(\Delta = dd^* + d^*d \). Clearly \(R^*_G(X)^G \subset \ker \Delta \).

One defines \(R^*_G(X)_\log \), shows \(\subseteq R^*_G(X)_L^2 \left[\|1\|_{L^2}^2 = \int_X h(\omega, \omega) \rho < \infty \right] \),

and that \(\text{any } L^2 \text{ cohom. class has a harmonic } L^2 \text{ representative } + \text{ harmonic } L^2 \text{ exact } \Rightarrow 0 \)

\[
\Rightarrow H^q(R^*_G(X)) = H^q(R^*_G(X)_\log) = \ker \Delta \cap R^*_G(X)_L^2 \cong R^*_G(X)^G.
\]

if \(\delta \) small

Now write \(\delta y = \text{Lie } G(\mathbb{R}) = \delta \theta \otimes \rho \) (Cartan decmp.)

\[
\delta y = \delta \theta \otimes \rho = \text{Lie } G_u(\mathbb{R}) \quad \text{, } G_u(\mathbb{R}) \text{ compact.}
\]

We have \(R^*_G(X)^G = \text{Hom}_G(\Lambda^q(\delta y), \mathbb{R}) = \text{Hom}_u(\Lambda^q(y_w), \mathbb{R}) \in R^*_u(X_u)^G \)

where \(X_u = G_u(\mathbb{R})/K \) (compact).

The \(\delta y \) maps on \(H^q_{cont}(G) \) are constant. Since \(G_u \) compact, we may arrange in cohomology class \(\Omega^*G_u(\mathbb{R})/K) \Rightarrow \Omega^*(G_u(\mathbb{R})/K)^G \). So clearly we get

\[
\Omega^*G_u(\mathbb{R})/K) \Rightarrow \Omega^*(G_u(\mathbb{R})/K)^G = H^q(X_u, \mathbb{R}).
\]

Prop. 2 (Borel):

\[
H^q_{cont}(SL_N(\mathbb{R})) \cong H^q(SO(N)/SU(N), \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R})
\]

\[
H^q_{cont}(SL_N(\mathbb{R})) \cong H^q(SU(N)/SU(N), \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R})
\]

where \(\varepsilon_1, \varepsilon_2 \in \Lambda^*(\mathbb{R}^N, \mathbb{R}) \).

So

\[
\Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R}) \cong \Lambda^*(\mathbb{R}^N, \mathbb{R})
\]

where \(\varepsilon_1, \varepsilon_2 \in \Lambda^*(\mathbb{R}^N, \mathbb{R}) \).

Therefore,

\[
K_m(\mathbb{R}) \cong \mathbb{R} \cong \mathbb{R} \cong \mathbb{R}
\]
\[
\frac{\pi}{2} \left\{ I \left((\lambda^* e_i s)^{\otimes r_1} \otimes (\lambda^* e_j s)^{\otimes r_2} \right) \right\}^2 \cong \left\{ R \left(e_{m-1, \ldots, e_m} \right) \right\}^2
\]

Prop. 2, in dimension

\[
= R \left(e_{m-1, \ldots, e_m} \right) \cong \left\{ R \left(e_{m-1, \ldots, e_m} \right) \right\}
\]

\(m = 2n+1 \n \)

\(n \) even.

\[
\begin{array}{l}
\text{(ii) Sketch of proof of Theorem 3 (following Bloch)} \\
\end{array}
\]

Let's start with a computation: how many pts. on \(SL_n \) over a twin field \(F_q, q = p^m \)?

\(SL_2 \) for 1st vector orbit \(q(q^2 - 1) \)

\(SL_3 \) for 1st vector orbit \(q^2(q^3 - 1) \)

\(SL_n \) for 1st vector orbit \(q^2(q^3 - 1)^n - q(q^2 - 1)^n \)

\[
p = \prod_{j=2}^{n} q^{j-1} (q^j - 1) = \prod_{j=2}^{n} (1 - q^{-j}) \prod_{j=2}^{n} q^{j-1} q^{-j} = q^{n^2 - 1} \prod_{j=2}^{n} (1 - q^{-j})
\]

Now there is something called \(p \)-adic integration:

\(V = \text{smooth dim.} \text{n}/\text{Fricke F} \Longrightarrow V(\Omega_p) \text{ "invertible model" } \subseteq V(\Omega_p) \text{ "p-adic vector space"} \)

\(\omega = \text{nonsingular n-form on} \ V/F \text{ measure } \omega_p \text{ on} \ V(\Omega_p) \)

\[
\begin{align*}
\int_{V(\Omega_p)} dx &= 1 \\
\int_{\Omega_p/\theta_p} dx &= q^{-1} \\
\int_{(p)} dx &= q^n \quad \Rightarrow \int_{V(\Omega_p)} \omega_p = q^{-n} |V(F_q)| \quad \Rightarrow \int_{V(F_q)} \omega_p = \prod \int_{V(\Omega_p)} \omega_p \\
\Rightarrow \int_{SL_n(A_{F,F})} \omega_p &= \frac{1}{n} \prod_{j=2}^{n} q^{-(n^2 - 1)} q^{-n} \prod_{j=2}^{n} (1 - q^{-j}) = \prod_{j=2}^{n} \frac{1}{p} \prod_{j=2}^{n} S_F(j)^{-1}.
\end{align*}
\]
Next recall two from above \(\bigcup \mathcal{X} = G(\mathbb{R})/K \)
compact\[X_n = G_n(\mathbb{R})/K \]
regular\[H^m_{conn}(G_n(\mathbb{R}),, H^m_{luc}(G_n(\mathbb{R})/K)) \Rightarrow H^{m+1}(\mathcal{X}_n, K; \mathbb{R}) = H^{m+1}_{conn}(\mathcal{X}_n, \mathbb{R}) \]
\(\lambda^* \) and \(\varphi \).

Put \(G_n = \text{Res}_{F/\mathbb{Q}} SL_n(F) \). Then
\[I^{2n+1}(H^m_{conn}(G_n, \mathbb{R}),, H^m_{luc}(X_n, \mathbb{R})) = I^{2n+1}(H^m_{luc}(X_n, \mathbb{R}),, \mathbb{R}) \]
\(\lambda^* \) and \(\varphi \).

Set \(Y_N(\Gamma) = \Gamma \setminus G_n(\mathbb{R}), X_n(\Gamma) = Y_N(\Gamma)/K_N \), where \(\Gamma = SL_n(\mathbb{Q}_F) \) etc.

\[H^m_{luc}(K_n, \mathbb{C}) \otimes H^m(\mathcal{X}_n, \mathbb{C}) \overset{\lambda^*}{\approx} H^m_{luc}(G_n, \mathbb{C}) \]
\(\lambda \overset{\lambda}{\to} \lambda \overset{\lambda}{\to} \lambda \)

\[H^m_{luc}(K_n, \mathbb{C}) \otimes H^m(\mathcal{X}_n, \mathbb{C}) \overset{\lambda^*}{\approx} H^m_{luc}(G_n, \mathbb{C}) \]
\(\lambda \overset{\lambda}{\to} \lambda \overset{\lambda}{\to} \lambda \)

View \(\mu \) as map from \(H^m_{luc}(X_n, \mathbb{C}) \to H^m(\mathcal{X}_n, \mathbb{C}) \).

Now \(H^{2n+1}(G_n, \mathbb{Q}),, H^{2n+1}(G_n, \mathbb{Q}) \)
\[I^{2n+1}(\mathcal{X}_n, \mathbb{Q}) \]
\(\mathcal{X}_n \)

Write
\[L_n(a_{\mathbb{Q}} T, \mathbb{Q}) = \bigwedge^d \bigotimes a T \]
\[L_n(G_{n}, \mathbb{Q}) = \bigwedge^d \bigotimes G_{n} \]
\[L_n(X_{n}, \mathbb{Q}) = \bigwedge^d \bigotimes X_{n} \]

Claim 1:
\[\lambda^* \quad L_n(a_{\mathbb{Q}} T, \mathbb{Q}) = (\bigotimes a T)^{m+1} \mathcal{X}_n = L_n(G_{n}, \mathbb{Q}) \]
Claim 2:
\[\beta^* \quad L_n(a_{\mathbb{Q}} T, \mathbb{Q}) = i^{r_2} S_{\mathcal{X}_n} \quad L_n(Y_{n}, \mathbb{Q}) \]

Claims 1 & 2 \(\Rightarrow \)
\[L_n(G_{n}, \mathbb{Q}),, L_n(X_{n}, \mathbb{Q}) = \bigwedge^d \bigotimes G_{n} \]
\[\bigwedge^d \bigotimes X_{n} \]

Claim 1 & 2 \(\Rightarrow \)
\[L_n(\mathcal{X}_n, \mathbb{Q}) = L_n(G_{n}, \mathbb{Q}) \]

Write \(K_{2n+1}(T, \mathbb{Q}) \)
\[\bigwedge \bigotimes T \]
\[P_{2n+1}(T, \mathbb{Q}) = \bigwedge \bigotimes T \]
\[\bigwedge \bigotimes T \]
We will only say something about Claim 2. Suppose
\[\beta^* L_j(y_{N}, q) = \sum_{l} L_j(y_{N(l)}, q) \text{ for some } s \in \mathbb{C}, 1 \leq j \leq n. \] We have generators \[\mathcal{R}(q_1, q_{2j+1}) \] for \[L_s(y_{N}, q). \] Define \[q_j = \prod_{s=1}^{n} R_{F/q_{2j+1}}. \]

Then we get \[\beta^*(q_j) = \prod_{i=1}^{j} \mathcal{H}(q_j^{2i+2j})(y_{N(r)}, q). \]

If we can exhibit compact subvarieties \[Z_j \subset Y_M(r) \] with \[d(q_j^{2i+2j}) = d(z_j) \]

\[0 \neq \sum_{j=1}^{n} \beta^*(q_j) \in \prod_{i=1}^{n} \mathcal{F}(q_i) \cdot q_j, \quad 1 \leq j \leq n, \]

then we get (up to factors) \[s_j \in \mathcal{F}(q_j) \cdot q_j \text{ as desired.} \]

We now construct the \(Z_j. \)

- Let \(D = \text{ division algebra of dim. } (j+1)^2/F, \) tensor over archimedean place \(\mathcal{H} \subset D^* \) s.t. \(\mathcal{H} \) is an order of \(\mathcal{H} \).

\[H = R_{F/q} \mathcal{H} \]

\[H'(A_F)/H'(F) \text{ is compact; let } U \subset H'(A_F) \text{ be compact open} \]

strong oppn. \(\Rightarrow H'(A_F) = H'(k_{F(R)}). U \cdot H'(F) \)

Set \(T = (H'(k_{F(R)}). U) \cap H'(F); \text{ then} \)

\[U \to H'(A_F)/H'(F) = H(A_F)/H(F) \]

(\(\star \star \))

\[H'(k_{F(R)}/T) = H(k_{F(R)}/T) \text{ is a fibration w/compact fibers.} \]

- Embed \(H' \hookrightarrow SL_N, \) hence \(H \hookrightarrow G_N. \)

(by regular rep. of \(H' \subset D \subset F^{(j+1)^2} \))

Take subvariety \(\mathcal{F}_j = H(R)/(H(R) \cap M) \) of \(\mathcal{F}_M(R)/M \)

New \(\beta^*(q_j)|_{\mathcal{F}_j} \) is a form of max. degree (Borel proves \(\neq 0 \)), so we can integrate.

In fact, we can replace \(H \) by any invariant volume form defined on \(H \):
\[\omega = \sqrt{10} \omega^{(j+4j)/2} \wedge \omega \]

(\(\star \star \))

In the fibration (\(\star \star \)), let \(\omega_{\mathcal{F}_j} \) denote the measure on \(U, H(k_{F(R)})/T \) induced by \(\omega \). We have...
$$Q = \int_{\mathcal{R}} \frac{H(A_\mu)}{H(\mathcal{Q})} \cdot \int_{U_\mu} w_{\mu} \cdot \int_{H(\mathcal{R})/T} w_{\mathcal{R}} \ .$$

given worst on Tamagawa's of
gradients at D^μ/T^μ

The first factor is (up to Q)
$$\int_{H(\mathcal{R},f)} w_{\mathcal{R}} \cdot \varepsilon\left(\prod_{k=2}^{j=1} S_{\mathcal{R}}(h)^{-1}\right) \cdot Q \ .$$

$$\Rightarrow \int_{H(\mathcal{R})/T} w_{\mathcal{R}} \cdot \varepsilon\left(\prod_{k=2}^{j=1} S_{\mathcal{R}}(h)^{-1}\right) \cdot Q \ .$$

$$\Rightarrow \int_{\mathcal{R}} \beta \eta_j \cdot \left(\prod_{k=2}^{j=1} S_{\mathcal{R}}(h)^{-1}\right) \cdot Q \ .$$