Problem Set 2

due Wednesday Sept. 30

(1) (a) Prove Proposition I.B.4.1; and (b) verify the first two bullets of Example I.B.4.1.
(2) Prove the “\implies” direction of Proposition I.B.4.5 (which should really be Prop. 4, not 5...).
(3) (a) Referring to the construction on p. 7 of I.B.4, determine the projections π for Sp_4 which induce Hodge numbers $(2, 2)$ and $(1, 1, 1, 1)$ [weights 1 and 3 resp.] on the standard (4-diml) representation V.
[Note: the roots may be visualized as a three-by-three grid of dots,\footnote{The usual convention is to tilt this picture 45 degrees, but the “square” picture is a little easier to work with for our purposes.} with the center “dot” representing the 2-diml Cartan subalgebra t, and the other root-spaces 1-dimensional. Usually the root at $(1, -1)$ is called σ_1, and that at $(0, 1)$ is called σ_2; the others are $\sigma_1 + \sigma_2$, $\sigma_1 + 2\sigma_2$, and the negatives of all these. The compact roots are $\pm \sigma_2$. The weights of V are $\pm \frac{1}{2} \sigma_1$ and $\pm (\frac{3}{2} \sigma_1 + \sigma_2)$.
(b) What are the dimensions of the Mumford-Tate domains so constructed? What is the rank of the horizontal distribution?
(c) Why doesn’t (a) work for Hodge numbers $(1, 2, 1)$ (weight 2)?
(4) Exercise I.B.6.1 (p. 13 of I.B.6)
(5) Exercise I.B.6.2 (same page)
(6) Find a VHS to which Prop. I.B.6.5 applies!