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Abstract. We study certain real Lie-group orbits in the compact
duals of Mumford-Tate domains, verifying a prediction of [GGK1]
and determining which orbits contain a limit point of some period
map. A variety of examples are worked out for the groups SU(2, 1),
Sp4, and G2.

1. Introduction

In a previous work [KP], we introduced and studied boundary com-
ponents for Mumford-Tate domains, which are homogeneous classifying
spaces D = G(R)◦/H for Hodge structures with additional symmetries
(in a Tannakian sense) [GGK1]. Here G is a reductive, connected
Q-algebraic group, G(R)◦ the identity component of the (Lie) group
of real points, and H a compact subgroup. The boundary compo-
nents B(N) essentially parametrize all possible LMHS (limiting mixed
Hodge structures) for period maps Φ : S → Γ\D into such a domain
with given monodromy logarithm N , and also admit a homogeneous
description. A feature of that work was the interesting representa-
tion theory that arises from considering symmetries and asymptotics
of Hodge structures in tandem.

The purpose of the present study is to better understand the interac-
tion between asymptotic Hodge theory and the G(R)◦-orbit structure
of the compact dual Ď = G(C)/Q of D. Here Q ≤ G(C) is a parabolic
subgroup, and Ď a projective variety containing D as an analytic open
subset. The “naive boundary strata” of the title are the orbits in the
topological boundary of D in Ď, and a natural question is which ones
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are Hodge-theoretically “accessible” in the sense of containing a limit
point of (a lift Φ̃ of) some period map Φ. In addition to obtaining
a nice answer to this question (§5.2), we shall clarify the relationship
of these “boundary orbits” to the boundary components, and obtain a
mixed-Hodge-theoretic parametrization of all the orbits and description
of their incidence structure.

Now the traditional way to record the asymptotics of a period map
Φ is via the limiting mixed Hodge structure, and not the “naive” limit
point of Φ̃ in ∂D. There is a good reason for this: because of log-
arithmic growth of periods, the latter loses information recorded by
the LMHS. One has the classic example (cf. [Cat]) of a degenerating
family of genus-2 curves in two parameters, with two cycles vanishing
at the origin. The degenerate fiber is a rational curve with two pairs
of points identified, and the cross ratio of these 4 points is encoded
in the extension data of the LMHS, while the “naive” limit and even
the cohomology of the singular fiber record nothing. From an algebro-
geometric point of view, then, it is unclear why one would want to
study the interaction between variational Hodge theory and the orbit
structure of Ď.

Our motivation for this work arose instead from a perspective heavily
influenced by problems in complex geometry and representation theory,
where the (finitely many) G(R)◦-orbits are objects of some importance
[FHW, Wo1]. Recent work of Robles [Ro] has finally settled the ques-
tion of maximal dimensions of integral manifolds of the infinitesimal
period relation on Ď (and hence of images of period maps in Γ\D). It
seems that one way of producing interesting maximal-dimensional VHS
is by threading integral manifolds through “accessible” orbits in ∂D,
and that this approach holds some promise for the much-studied ques-
tion of smoothing Schubert varieties in Ď in their cohomology classes
. We also mention that in the forthcoming work [GGK2], the proof of
psuedo-convexity of D will be recast in terms of our Hodge-theoretic
analysis of ∂D.

On the representation-theoretic side, the G(R)◦-orbits are related to
the construction of infinite-dimensional unitary representations ofG(R)
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via parabolic induction. Moreover, one reason for writing [KP] was to
see for which M-T domains one might extend H. Carayol’s approach
[Car] to putting an arithmetic structure on automorphic cohomology.
Our analysis of codimension-1 boundary strata suggests (cf. §5.3) how
to generalize his definition of Fourier coefficients to at least some cases
where G is an exceptional group. We shall pursue these connections in
future works.

Summary: In the remainder of the Introduction, we briefly describe
the main results. Given a polarized Hodge structure (V, ′B, ′ϕ0) with
Mumford-Tate group ′G, let Ad : ′G � ′Gad =: G be the adjoint map,
and set Z := ker(Ad)(C) = Z(′G(C)), ϕ0 := Ad ◦ ′ϕ0. Let Θ be the
Cartan involution of G induced by conjugation by ϕ0(

√
−1).

For any g ∈ ′G(R)◦, if ′ϕ1 = g−1 ◦ ′ϕ0 ◦ g satisfies Ad◦ ′ϕ1 = ϕ0, then
′ϕ1/

′ϕ0 is a cocharacter of Z◦, whereupon it must clearly be trivial. So
we have a diagram

′Ď := ′G(C)/QF •′ϕ0

����

′G(R)◦/H′φ0 =: ′D

∼=
��

? _oo

Ď := G(C)/QF •ϕ0
G(R)◦/Hϕ0 =: D? _oo

in which Z belongs to QF •′ϕ0
and the left-hand side is finite-to-one. But

the parabolic subgroup QF •ϕ0
is necessarily connected, and so in fact ′Ď

and Ď are the same.
On right and left, we therefore have isomorphisms of complex mani-

folds (though not as homogeneous manifolds). For this reason, we may
work without loss of generality in the adjoint setting. Note that we
view the points of the compact dual Ď as flags on g := Lie(G(C)).
We shall make the simplifying assumptions that the polarization on
(g, ϕ0) induced by ′B is a multiple of the Killing form B, and that the
horizontal distribution on Ď (equiv. ′Ď) is bracket-generating.
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In [GGK1, (VI.B.10)], it was conjectured that one should be able
to parametrize Ď via pairs (H,χ), where H ≤ GR is a maximal alge-
braic torus and χ ∈ X∗(H(C)) a complex co-character of H, in G(R)◦-
equivariant fashion. This is proved in §3 (Theorem 3.5), the take-away
from which is summarized in the following

Proposition. (a) Given any point F • ∈ Ď, there exists a pair (H,χ)
as above such that F • = F (H,χ)• (cf. (2.1)-(2.2)).

(b) The pair (H,χ) determines a bigrading gC = ⊕p,qgp,qχ with F • =
⊕p≥•gp,qχ and gp,qχ = gq,pχ .

(c) The G(R)◦-orbit containing F • has real codim. ∑p,q>0 dimC(gp,qχ )
in Ď.

In §4, this is used to index the G(R)◦-orbits in Ď and describe their
incidence relations, beginning with the

Corollary. Write F •ϕ0 = F (H0, χ0)•. Let {H0, H1, . . . , Hn} be rep-
resentatives of the G(R)◦-conjugacy classes of Cartan subgroups of
G(R)◦, obtained by Cayley transforms from H0, with complex [resp.
real] Weyl groups WC(Hj) [resp. W ◦

R(Hj)]. Let χj ∈ X∗(Hj(C)) be
obtained from χ0 in the same manner, with stabilizers Wj ≤ WC(Hj).
Then F induces an “orbit map” from the finite set

Ξ :=
⋃
j

W ◦
R(Hj)\{(Hj, wχj) | j ∈ {0, . . . , n}, w ∈ WC(Hj)/Wj}

onto the set of G(R)◦-orbits. This map is a bijection if Ď is a complete
flag variety (cf. Lemma 4.9).

Denoting analytic closure by cl, the partial order on orbits given by
O1 ≥ O2 ⇐⇒ cl(O1) ⊇ O2 is known as Bruhat order, and is generated
(at least in the complete flag setting) by Cayley transforms and cross
actions in a sense made precise in [Ye]. In §4.3 it is briefly explained
how to understand these processes in terms of “naive” limits of Hodge
flags and the framework of the Corollary.

In the remainder of the paper, we are interested in those orbits inci-
dent to D itself:
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Definition. An orbit O ⊂ cl(D) is called a naive boundary stratum.

Given a polarized variation of Hodge structure Φ over a punctured
disk with monodromy logarithm N , one can take the limit in two ways.
The limiting flag F̃ (Φ) ∈ B̃(N) ⊆ Ď associated to the LMHS is ob-
tained by first twisting by e−

log(q)
2πi N and then taking the q → 0 limit;

the naive limit F̂ (Φ) ∈ B̂(N) ⊆ cl(D) is the limit with no twist. (See
Definitions 5.1 and 5.2ff for the precise meaning of B̃(N) and B̂(N).)
They are related by the naive limit map1

FN
lim : B̃(N)→ cl(D)

defined and studied in §5.1. For instance, if a MHS (F̃ •,W (N)•) ∈
B̃(N) is R-split, then FN

lim(F̃ •) is the flag obtained by flipping the
associated bigrading about the antidiagonal; moreover, FN

lim factors
the projection B̃(N) → D(N) induced by passing to the Q-splitting
of the LMHS. In the classical case where D is Hermitian symmetric,
the maps from open strata in a smooth toroidal compactification to
those in the Baily-Borel compactification admit a natural description
in terms of naive limit maps (see Theorem 5.21).

As we described above, the instinctive question is how to determine
whether a given naive boundary stratum O = G(R)◦.F (H,χ)• con-
tains a naive flag, or equivalently some B̂(N). To this end, we introduce
(cf §5.2) the following terminology:

• O is rational if the filtration W̃• := ⊕−p−q≤•gp,qχ is G(R)◦-
conjugate to a Q-rational one; and
• O is polarizable if there exists a nonzero element N̂ ∈ g−1,−1

R

such that N̂ j : gp,j−pχ

∼=→ gp−j,−pχ (∀p ∈ Z, j ∈ N) and a positivity
condition holds.

Two of our main general results (cf. Theorem 5.15ff ) may then be
stated as follows:

Theorem. A stratum O contains a B̂(N) if and only if O is rational
and polarizable. All strata of codimension one are polarizable.
1In forthcoming related work of Green and Griffiths, this will be called the reduced
limiting period mapping.
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In §6, we work out for a variety of examples (including the three G2-
domains of [GGK1]) the complete incidence diagram and the associ-
ated bigradings for G(R)◦-orbits, and determine which of the boundary
strata are polarizable.

Acknowledgments: This paper has some overlap with recent work of M.
Green and P. Griffiths, and we wish to thank them as well as J. Carlson,
R. Kulkarni, C. Robles and S. Zucker for helpful conversations and
correspondence. We also thank the referee for a helpful and thorough
job. The authors acknowledge partial support from NSF Grant DMS-
1068974 (Kerr) and NSF Grant DMS-1002625 (Pearlstein).

2. Preliminaries

LetG be a connectedQ-algebraic adjoint group, HC ≤ GC a maximal
algebraic torus subgroup. The groups of complex points G(C), H(C)
have natural Lie group structures, and we let g, h denote the complex
Lie algebras. From G, g inherits an underlying Q-Lie algebra gQ, and
we let B : gQ×gQ → Q denote the (symmetric, nondegenerate) Killing
form B(X, Y ) = Tr(adX ◦ adY ).

Consider the lattice

Λ∗ := ker {exp(2πi(·)) : h→ H(C)} .

Sending φ ∈ Λ∗ to the co-character

χφ : C∗ → H(C)
z 7→ elog(z)φ

yields an isomorphism

Λ∗
∼=−→ X∗(H(C)),

with inverse χ 7→ χ′(1). Writing Λ := Hom(Λ∗, 2Z) ⊂ h∗, we have

g = h⊕
⊕
α∈∆

gα = h⊕
⊕
α∈∆

C〈Xα〉,

where the roots ∆ ⊂ Λ generate Λ, and

ad(h)Xα = α(h)Xα (∀h ∈ h).
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In particular, for χ = χφ ∈ X∗(H(C)), we define

πχ : Λ → Z
λ 7→ 1

2λ(φ)

so that ad(φ)Xα = 2πχ(α)Xα, and

Ad(χ(z))Xα = elog(z)adφXα

= e2 log(z)πχ(α)Xα

= z2πχ(α)Xα.

We shall write for i > 0

(2.1) F (H,χ)igC :=
⊕{
α ∈ ∆

πχ(α) ≥ i

gα

and for i ≤ 0

(2.2) F (H,χ)igC := h⊕
⊕{
α ∈ ∆

πχ(α) ≥ i

gα;

note that the (partial) flag F (H,χ)• depends only on H and πχ.

Remark 2.1. G(R) and G(C) operate on flags in gC via Ad. This will
often be tacit; that is, Ad(g)F • will be written g.F •. This is especially
necessary in §5 where the notation would otherwise become unwieldy.

Next, we specialize to the case where H is defined over R. More
precisely, let Θ = ΨC ∈ Aut(GR) (conjugation by C) be a Cartan invo-
lution, so that θ := AdC ∈ Aut(gR) satisfies θ2 = id and−B( · , θ( · )) >
0. Take H ≤ GR to be a Θ-stable Cartan subgroup, and let gR, hR be
the Lie algebras of G(R), H(R). We have decompositions into ±1-
eigenspaces

gR = k⊕ p , hR = t⊕ a = (hR ∩ k)⊕ (hR ∩ p)

of θ, and clearly −B > 0 [resp. < 0] on k [resp. p]. A root α ∈ ∆
is real if α(tC) = 0, imaginary if α(aC) = 0, and otherwise complex.
Indeed, we have Λ∗ ⊂ it⊕ a, and so the action of θ resp. ρ := complex
conjugation on the root vectors Xα ∈ g sends α 7→ −ᾱ resp. ᾱ. In
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particular, for α imaginary, we have

θ(α) = α =⇒ θXα ∈ R〈Xα〉 =⇒ θXα = Xα [resp. −Xα]
=⇒ Xα ∈ kC [resp. pC]

in which case we say α is compact [resp. noncompact] imaginary. So
we have a decomposition

∆ = ∆R ∪∆C ∪∆c ∪∆n,

with complex roots occurring in quadruplets and other types in ± pairs.
Note that every G(R)◦-conjugacy class of Cartans contains a Θ-stable
member. We will write

WR(H) := N(G(R), H(R))
H(R) ≤ N(G(C), H(C))

H(C) =: WC(H)

for the real and complex Weyl groups. The latter is of course generated
by the reflections in the roots ∆. An algorithm for computing the
real Weyl group (as implemented by the ATLAS computer software) is
described in [Ad, sec. 6] and [Tr]. More germane for our purposes is
the connected Weyl group

W ◦
R(H) := N (G(R)◦, H(R)◦)

H(R)◦ ≤ WR(H),

which contains the subgroup generated by reflections in ∆R ∪ ∆c but
may be larger than this unless H(R) is compact or split.

Now assume that there exists a maximal torus T ≤ GR with T (R)
compact. Taking H := T , all roots are imaginary (in the sense that
ρ : α 7→ −α), and we define the compact [resp. noncompact] ones to
be those with −B(Xα, Xα) > 0 [resp. < 0]. (We may normalize so
that Xα = X−α resp. −X−α for α ∈ ∆n resp. ∆c.) Setting

k := t⊕

⊕
α∈∆c

C〈Xα〉

 ∩ gR , p :=
 ⊕
α∈∆n

C〈Xα〉

 ∩ gR,

K := exp(k) is maximal compact, and the involution θ defined by
linearly extending θ|k := id, θ|p := −id is Cartan. In particular, T is
Θ-stable, and ∆ = ∆c ∪∆n.
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Assume further that there exists a co-character χ0 ∈ X∗(T (C)) such
that πχ0(∆c) ⊂ 2Z and πχ0(∆n) ⊂ 1+2Z. Let ϕ0 denote the restriction
of

C∗ χ0−→ T (C) ↪→ G(C)

to S1 → G(R), and Ad : G(R) → Aut(gR, B) the adjoint homomor-
phism. Then (gQ,Ad◦ϕ0,−B) is a polarized Hodge structure of weight
0, with decomposition gC = ⊕j∈Zgj,−j, where

gj,−j :=
{
γ ∈ gC |Ad(χ0(z))γ = z2jγ

}
=

⊕{
α ∈ ∆,

πχ0 (α) = j

C〈Xα〉

if j 6= 0 and g0,0 := tC ⊕
⊕
α∈(kerπχ0)∩∆ C〈Xα〉. (Note that C = ϕ(i).)

The conjugacy class of ϕ0 (or “connected Hodge domain”)

D := G(R)◦.ϕ0 ∼= G(R)◦/Hϕ0

parametrizes a set of (−B)-polarized Hodge structures on gQ with the
same Hodge numbers; a very general point in D has Mumford-Tate
group G. Writing

F k
0 gC :=

⊕
j≥k

gj,−j
(
= F (T, χ0)kgC

)
,

D is an analytic open subset in its compact dual

Ď := G(C).F •0 ∼= G(C)/QF •0
.

Flags2 F • ∈ Ď are called semi-Hodge. A Hodge flag is one which sat-
isfies gC = ⊕p∈ZF p ∩ F−p; equivalently, F • is of the form F (T, χ)• for
some compact T ≤ GR [GGK1, (VI.B.9)]. As above χ has an asso-
ciated weight 0 (but not necessarily (−B)-polarized) Hodge structure
ϕ : S1 → G(R), and we write F • = F •ϕ. We denote the non-Hodge
locus in Ď by Z, and shall (by abuse of notation) write ϕ ∈ Ď\Z.

Finally, taking ∆+ to be a system of positive roots with πχ(∆+) ⊂
Z≥0, assume that πχ takes values 0 and 1 on the simple roots. Then
it is known (cf. [Ro]) that the G(C)-invariant horizontal distribution

2In this paper, “flag” will mean what is sometimes called a “partial flag”, i.e. not
necessarily “maximal” or “complete”.
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W ⊂ TĎ given (at ϕ) by

F−1gC/F
0gC ⊂ gC/F

0gC

is bracket-generating; that is,

W + [W ,W ] + [W , [W ,W ]] + · · · = TĎ

(or equivalently, F−1 + [F−1, F−1] + · · · = gC on the Lie algebra level).
The three assumptions delineated in the last three paragraphs will

remain in effect for the rest of this paper. With T , θ as above, we
can obtain θ-stable representatives of all G(R)◦-conjugacy classes of
(real) Cartans by taking successive Cayley transforms in imaginary
noncompact roots. Given H ≤ GR and α ∈ ∆n, the Cayley transform
in α is defined in terms of conjugation by cα := exp

(
π
4 (X−α −Xα)

)
,

where the root vectors X±α are assumed to be normalized so that
X−α = Xα and [[Xα, X−α], Xα] = 2Xα (in particular, [Xα, X−α] ∈ Λ∗).
More precisely, it replaces H by the real algebraic torus underlying
Ψcα(HC), which by abuse of notation shall be denoted Ψcα(H). This
has the effect of increasing the real rank dimR a of H by 1, replacing
hR by (kerα|hR)⊕R〈Xα +X−α〉. (Conjugation by the square c2

α, which
stabilizes H, yields the Weyl reflection in α.) Up to scaling, the new
root vectors are the images of the old ones by Ad(cα), and Ad(cα)X±α
in particular are real root vectors.

The process may be reversed by applying (inverse) Cayley transforms
Ad(dβ) in β ∈ ∆R, cf. [Kn, sec. VI.7]. In more detail, if X±β are
normalized so that θ(Xβ) = −X−β and [[Xβ, X−β], Xβ] = 2Xβ, these
are given by dβ := exp

(
−iπ4 (X−β +Xβ)

)
. Assuming additionally that

Xβ = iAd(cα)Xα, one has X−β = −iAd(cα)X−α and

dβ = eAd(cα)π4 (Xα−X−α) = Ψcα(c−1
α ) = c−1

α .

Remark 2.2. One may pictorially represent the situation in a graph
with G(R)◦-conjugacy classes of real Cartans as nodes and Cayley
transforms as edges; the ATLAS software can compute these so-called
Hasse diagrams (cf. [Ad], [AdC]).
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3. From semi-Hodge flags to Cartan data

Take G, H0 = T0 ≤ GR, χ0 ∈ X∗(T (C)), and ϕ0 ∈ D ⊂ Ď to be as
in §2, with associated flag F •0 . The points of D are the (−B)-polarized
Hodge structures G(R)◦-conjugate to ϕ0. In this section we will give a
similar characterization of the points of Ď.

3.1. The bigrading. Let F • ∈ Ď, with QF • ⊂ G(C) the parabolic
subgroup preserving F •. Inside Ď ∼= G(C)/QF • we have the connected
G(R)◦-orbit

OF • := G(R)◦.F • ∼= G(R)◦/{QF • ∩QF • ∩G(R)◦}.

Lemma 3.1. There exists a Cartan subgroup H ≤ GR with

H(R) ⊆ QF • ∩QF • ∩G(R).

Proof. See [Wo1, Thm. 2.6(1)] or [FHW, Lemma 2.1.3]. �

Fix an H (as in Lemma 3.1), and write (h)R := Lie(H(R)), h :=
Lie(H(C)) for the corresponding Lie subalgebras. From F • we obtain
a filtration

(3.1) W̃−kgC :=
⊕
p∈Z

(
F p ∩ F k−p

)
gC

which is stabilized byQF •∩QF • hence byH(C); this is of course defined
over R. Its nontriviality “measures” the failure of F • to be a (pure)
Hodge flag.

Lemma 3.2. Given F • and H as above, there is a unique bigrading

(3.2) gC =
⊕

(p,q)∈Z
gp,q

satisfying:

(i) each gp,q is a sum of root spaces of (g, h) (and h, if (p, q) = (0, 0));
(ii) F a = ⊕{ (p, q)

p ≥ a

gp,q;

(iii) gp,q = gq,p;
(iv) W̃−k = ⊕{ (p, q)

p+ q ≥ k

gp,q;
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(v) B|gp,q×gp′,q′ nondegenerate for (p′, q′) = (−p,−q), and otherwise 0.

The {dim(gp,q)} do not depend upon the choice of H.

Proof. We know that F •0 := F •ϕ0 = F (H0, χ0)•, and that G(C) acts
transitively on Ď. Taking g ∈ G(C) so that g.F •0 = F •, we have
F (Ψg(H0,C),Ψg(χ0))• = F •, and Ψg(H0,C) ≤ ΨgQF •0

= QF • . Since
QF • is connected, any two Cartans of QF • (i.e. Cartans of G(C) con-
tained in QF •) are conjugate by an element of QF • (cf. [Bo, 11.16
and 12.1(a)]). Hence, we may arrange to have Ψg(H0,C) = HC; write
Ψg(H0) = H and Ψg(χ0) =: χξ =: χ.

Since H is real, we have χ, χ̄ ∈ X∗(H(C)), and so

gp,q :=

γ ∈ gC

∣∣∣∣∣∣ Ad(χ(z))γ = z2pγ

Ad(χ̄(z)) = z2qγ


= ⊕

α∈∆,
{

πχ(α) = p

πχ̄(α) = q

C〈Xα〉 (⊕h,
if (p, q) = (0, 0))

gives a bigrading. Since

(3.3)


F a = F (H,χ) = ⊕

(p, q)
p ≥ a

gp,q

F b = F (H, χ̄) = ⊕
(p, q)
q ≥ b

gp,q,

this gives (i)-(iv), and (v) follows from the fact that Xα ∈ gp,q ⇐⇒
X−α ∈ g−p,−q. Uniqueness is clear, as is the last statement since
dim gp,q = dim

(
{F p ∩ F q}/{F p ∩ F q+1 + F p+1 ∩ F q}

)
. �

There are several easy remarks at this point. The first is that
[gp,q, gp′,q′ ] ⊆ gp+p

′,q+q′ and so the isotropy Lie algebra qF • := Lie(QF •)
identifies with F 0gC. Next, setting

WkgC :=
⊕
p+q≤k

gp,q

(which is clearly defined over R),3 we see that (gR, F •,W•) give the
data of a split R-mixed Hodge structure, which is split by property (iii)

3To a Hodge theorist, this filtration is much more familiar than W̃•, but (unlike
W̃•) depends on the choice of H.
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in the Lemma. From the end of the proof, it satisfies the symmetry
dimGrWj g = dimGrW−jg. Defining new cocharacters χY , χφ by

(3.4) Y := ξ + ξ̄

2 , φ := ξ − ξ̄
2 ,

the mixed Hodge representation associated to (gR, F •,W•) is

ϕ̃F • : R∗ × S1 → H(R) ↪→ G(R)
(w, z) 7→ χY (w)χφ(z) =: ϕ̃F •(w, z).

The composition of its complexification with Ad, mapping C∗ ×C∗ →
Aut(g, B), restricts on gp,q to multiplication by wp+qzp−q. Since we can
act with G(R)◦ (via Ad) compatibly on F •,W•,H,φ,Y , and {gp,q}, we
have

Corollary 3.3. The
hp,qO := dimC(gp,q)

are well-defined invariants of the G(R)◦-orbit O.

Finally, there is the

Proposition 3.4. F • is Hodge ⇐⇒ W̃• is trivial ( ⇐⇒ W• is
trivial).

Proof. Y grades W̃•, so if GrW̃j = {0} for j 6= 0 then Y = 0 and
ϕ := ϕ̃F •|S1 is a Hodge structure with F • = F •ϕ. Conversely, if F • is
Hodge then the p-opposed condition F p ∩ F−p+1 = {0} holds, and so
W̃−1 = {0}; by symmetry, g/W̃0 = {0}. �

3.2. From Cartan data to semi-Hodge flags. We are now prepared
to parametrize the flags in Ď by Cartan data. Let ξC denote the set of
maximal tori ′H ≤ GC, and ΞC the set of pairs (′H,χ) (χ ∈ X∗(′H(C)))
G(C)-conjugate to (H0,C, χ0). Define subsets ξ̃R ⊂ ξC resp. Ξ̃R ⊂ ΞC

by imposing the requirement that ′H = HC for H defined over R, and
smaller subsets ξR resp. ΞR by insisting that H(R) be compact. Finally
let Ξ◦R ⊂ ΞR be the G(R)◦-orbit of (H0, χ0). Applying F produces a
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G(R)◦-equivariant4 commutative diagram

ξR ξR
� � // ξ̃R

� � // ξC

Ξ◦R

π◦R

OOOO

F◦R
����

� � // ΞR

πR

OOOO

FR
��

� � // Ξ̃R

π̃R

OOOO

F̃R
��

� � // ΞC

πC

OOOO

FC
����

D �
�

// Ď \ Z � � // Ď Ď

in which surjectivity of the leftmost and rightmost upward arrows fol-
lows from the G(R)◦-conjugacy [resp. G(R)-conjugacy] of all compact
maximal real [resp. maximal complex] tori. The desired parametriza-
tion of Hodge and semi-Hodge flags is then given by the following

Theorem 3.5. (i) F̃R and (ii) FR are surjective.

Proof. (i) Given F • ∈ Ď, by (3.3) we have F • = F (HC, χ)• for some
H ≤ GR.

Let g ∈ G(C) be such that g.F •0 = F • in Ď. Then

F • = g.F (T0,C, χ0)• = F (Ψg(T0,C),Ψg(χ0))•

and the {F i} are sums of root spaces of Ψg(T0,C), so that Ψg(T0,C) ⊂
QF • . We also haveHC ⊂ QF • , and so (as in the proof of Lemma 3.2)HC

and Ψg(T0,C) are conjugate by ρ ∈ QF • . That is, Ψρg(T0,C) = HC and
ρg.F •0 = F •; and we conclude that F • = F (HC,Ψρg(χ0))• ∈ F

(
Ξ̃R
)
.

(ii) Given ϕ ∈ Ď\Z, there is a compact maximal torus T ≤ GR with
T (R) ⊃ ϕ(S1), and F •ϕ = F (TC, χϕ). The rest of the argument is as in
(i). �

Remark 3.6. (a) (ii) is essentially part of Theorem (VI.B.9) in [GGK1],
while (i) establishes the conjecture made in Remark (VI.B.10) of [op.
cit.].5

4G(R)-equivariant if the left-most column is removed; right-most column G(C)-
equivariant.
5Note that the uniqueness of semi-Hodge decompositions asserted there is not cor-
rect; it depends upon the choice of Cartan.
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(b) In the proof of (i), for any µ ∈ X∗(H(C)) we have µ = χ ⇐⇒
F (HC, µ) = F •. Hence ψρg(χ0) = χ and the original (HC, χ) belongs
to Ξ̃R. This shows that a real-Cartan/co-character pair not in Ξ̃R (i.e.
not G(C)-conjugate to (T0, χ0)) does not yield a flag in Ď.

(c) Suppose F (H,χ) = F •ϕ is the flag of a (−B)-polarized Hodge
structure ϕ. ThenB(·, ·) is definite on each gp,−pϕ . SinceG ⊂ Aut(g,−B),
the isotropy group Hϕ ⊂ G(R) is compact. Moreover, H(R) commutes
with ϕ(S1), whereupon we have ϕ(S1) ⊂ H(R) ⊂ Hϕ, forcing H(R)
compact. We conclude that F

(
Ξ̃R\ΞR

)
avoids the (−B)-polarized lo-

cus (which resides between D and Ď\Z).

For later reference we emphasize the obvious

Proposition 3.7. If F • ∈ Ď is FC of (′H,χ) ∈ ΞC, then ′H(C) ⊂
QF •.

Proof. The F i are sums of eigenspaces of ad(χ(z)) (which are sums of
root spaces of ′H), and ′h belongs to the “trivial” eigenspace hence to
F 0g(= qF •). �

3.3. Discretizing the Cartan data. Now any givenH ∈ ξ̃R isG(R)◦-
conjugate to some Cartan in the list of all successive Cayley transforms
of H0 in noncompact imaginary roots ([Kn, p. 394]). Removing all but
one Cartan in each G(R)◦-conjugacy class, we shall fix henceforth:

• the resulting sublist {H0, H1, . . . , Hn} =: ξ̃θR;
• c(j) := product of Cayley transforms with Ψc(j)(H0) = Hj;
• χj(z) := elog(z)ad(ξj) := Ψc(j)(χ0(z)) ∈ X∗(Hj(C));6

• the Cartan involution Θ := Ψϕ0(i)(=identity on H0);
• its ±1-eigenspaces k, p ⊂ gR.

For any Θ-stable H, α ∈ ∆n =⇒ θ(X±α) = −X±α =⇒ Θ(cα) = c−1
α

=⇒ Θ(Ψcα(H)) = Ψc−1
α

(H) = ΨcαΨc−2
α

(H) = Ψcα(H) since c±2
α = wα

is the Weyl element. Hence every H ∈ ξ̃θR is Θ-stable. If GR is split,
then we shall take Hn to be the (unique) split Cartan in ξ̃θR.

6Note that ξj ∈ hj := Lie(Hj(C)) is defined by the second equality.
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Noting that ξ0 = φ0 ∈ i(h0)R, we have ξj = Ad(c(j))φ0. Given any
w ∈ WC(Hj), w̃ := Ψc(j)−1(w) belongs to WC(H0) and

ξ
[w]
j := Ad(w)ξj = Ad(c(j))Ad(w̃)φ0 =: Ad(c(j))φ[w̃]

0 ,

hence

θ(ξ[w]
j ) = Ad (Θ(c(j))) θ(φ[w̃]

0 ) = Ad(c(j))φ[w̃]
0 = Ad(c(j))φ[w̃]

0

= −Ad(c(j))φ[w̃]
0 = −ξ[w]

j .

Writing Y [w]
j := ξ

[w]
j +ξ[w]

j

2 , φ[w]
j := ξ

[w]
j −ξ

[w]
j

2 ,

aj := (hj)R ∩ p , kj := (hj)R ∩ k,

this yields φ[w]
j ∈ itj, Y

[w]
j ∈ aj. This allows us to associate (nonuniquely)

Hodge-compatible Cartan data to any flag in Ď:

Proposition 3.8. Given any F • ∈ Ď:
(i) there exist Hj ∈ ξ̃θR, w ∈ WC(Hj), and g ∈ G(R)◦ such that

F • = F
(
Ψg(Hj),Ψg(χ[w]

j )
)•

(=: F (H,χ)•) ;

and
(ii) referring to (3.4), there is a Cartan involution ΘF • and corre-

sponding kF • , pF • ⊂ gR, tF • , aF • ⊂ hR such that

Y ∈ aF • and φ ∈ itF • .

Proof. (i) By Theorem 3.5, F • is F of some (H,χ) ∈ Ξ̃R; clearly H is
some Ψg(Hj). So (Hj,Ψg−1(χ)) is G(C)-, hence WC(Hj)-, conjugate to
(Hj, χj).

(ii) Put ΘF • := Ψgϕ0(i)g−1 ; then H is ΘF •-stable and we have aF • =
Ad(g)aj and tF • = Ad(g)tj, so the result follows from the above com-
putations. �

Corollary 3.9. Given F • = F (H,χ) ∈ Ď, with the bigrading gC =
⊕gp,q associated to H, ΘF •(gp,q) = g−q,−p.
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Proof. By Prop. 3.8(ii), θF •(Y ) = −Y and θF •(φ) = φ, whereupon the
formula for ϕ̃F • gives

Ad(ϕ̃F •(w, z)) ◦ θF • = θF • ◦ Ad(ΘF •(ϕ̃F •(w, z))
= θF • ◦ Ad(ϕ̃F •(w−1, z)).

Restrict this to gp,q. �

Corollary 3.10. If F • ∈ Z, then for some p > 0, dimC(gp,p) 6= 0.

Proof. The idea is to use the basic fact that G(R) has a compact Car-
tan. Any noncompact Cartan is then an iterated Cayley transform of
such and so must have a real root.

Clearly H is noncompact (i.e. H ∈ ξ̃R\ξR) and Y ∈ aF •\{0} (where
hR = aF •⊕tF •). Since the dim(gp,q) depend only on F •, we may take H
to be of minimal (positive) real rank. Suppose β(Y ) = 0 ∀β ∈ ∆R(6= ∅),
and let Ĥ be the (inverse) Cayley transform of H in some β0 ∈ ∆R.
Then âF • = ker(β0|aF• ) 3 Y and t̂F • ⊃ tF • 3 iφ =⇒ ϕ̃F • still factors
through Ĥ =⇒ F • = F (Ĥ, χ̂), in contradiction to the presumed
minimality of the real rank of H.

So β(Y ) 6= 0 for some β ∈ ∆R, while φ ∈ tF •,C =⇒ β(φ) = 0,
whereupon

Ad(ϕ̃F •(w, z))Xβ = Ad(χY (w))Xβ = wβ(Y )Xβ

=⇒ Xβ ∈ g
1
2β(Y ), 12β(Y ). �

Because even the real rank (= dimR(aF •)) of hR may not be unique in
Proposition 3.8 (cf. §6), the question arises as to whether some choices
are better than others. At least in one fairly general setting, we shall
now see that this is so. Consider the (well-defined) real parabolic

Q := QW̃ ≤ GR

defined by (3.1), with Lie algebra q = W̃0gR. This has unipotent
radical n := W̃−1gR and, with the choice of h and ΘF • , the natural
subalgebras m̃ := (⊕p+q=0g

p,q) ∩ gR and (noting aF • ⊂ g0,0
R ⊂ m̃) a :=

ker{ad : aF • → End(m̃)}. Let m be a direct-sum complement to a in
m̃, and M,A,N ≤ GR the subgroups corresponding to m, a, n. This
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gives a Hodge-theoretically defined Langlands decomposition

(3.5) Q =MAN

of the parabolic. Write L := Q/N , l := Lie(L) = GrW̃0 g.

Definition 3.11. Q (resp. q, F •) is cuspidal ⇐⇒ L/Z(L) has a
compact Cartan subgroup.

Assume thatQ is cuspidal; then it admits a Langlands decomposition
in which the reductive group has a compact Cartan. We claim that
(when true) this may be demonstrated Hodge-theoretically, i.e. via
(3.5).

Proposition 3.12. If Q is cuspidal, then we can choose ΘF • and H
(ΘF •-stable) so that a = aF •, making tF • ⊂ m a Cartan subalgebra.
The choices of H which accomplish this are of minimal real rank.

Proof. Suppose we have ΘF • , H, χ, etc. with a ( aF • , and note that
hR ⊂ g0,0

R . If L/Z(L) has a compact Cartan, then the image Ĥ of
H in it may be (inverse) Cayley transformed into one. This requires
the presence of a real root vector Xβ ∈ l/z(l), which can only lie in
(l/z(l))0,0 = g0,0

R /z(l). The preimage H ′ of Ĥ ′ := Ψdβ(Ĥ) has h′R ⊂ g0,0
R

and real rank one less than H. Evidently dβ commutes with ϕ̃F • , and
so we still have χ ∈ X∗(H ′C). Continue until the image in L/Z(L) is
compact. �

4. Connected real orbits and naive boundary strata

Continuing to fix F •0 , (H0, χ0), Θ, and ξ̃R, we now turn to the enu-
meration and analysis of the G(R)◦-orbits in Ď.

4.1. Basic results on orbits.

Proposition 4.1. Given F • = F (H,χ) ∈ Ď with associated bigrading
(3.2), the real codimension of OF • := G(R)◦.F • ⊂ Ď is

cF • :=
∑

(p,q)∈(Z>0)×2

dimC(gp,q).
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Proof. Recalling qF • = ⊕(p,q)∈Z≥0×Zg
p,q and TF •Ď ∼= gC/qF • , we have

dimR TF •O = dimR (gR/{qF • ∩ gR})
= dimC gC − dimC (qF • ∩ qF •)

while
dimR TF •Ď = 2 dimC (gC/qF •)

= 2
∑

(p,q)∈Z<0×Z
dimC g

p,q

=
∑

(p,q)∈(Z\{0})×Z
dimC g

p,q

= dimC gC − dimC (qF • ∩ qF •) + dimC

⊕
p,q>0

gp,q

 .
�

Corollary 4.2. OF • ⊂ Ď is open ⇐⇒ F • ∈ Ď\Z.

Proof. If F • ∈ Z, then by Corollary 3.10 cF • 6= 0; while F • /∈ Z =⇒
only the {gp,−p} are nontrivial =⇒ cF • = 0. �

In Wolf’s study [Wo1] of complex flag manifolds, it is shown that Ď
contains a unique closed orbit Oc (of real codimension cc); this is in
the closure of all the other G(R)◦-orbits, and is acted upon transitively
by K. One has cF • < cc for any F • /∈ Oc; and

(4.1) cc ≤ dimC Ď,

with equality if and only if Oc contains a real flag. We shall say that a
flag is of Hodge-Tate type if its dim(gp,q) are zero for p 6= q.

Corollary 4.3. (i) Equality holds in (4.1) if and only if Ď contains a
Hodge-Tate flag, in which case Oc is the set of such flags in Ď.
(ii) In particular, this happens whenever G is R-split.

Proof. (i) Real flags (F • = F •) are obviously Hodge-Tate, and the
{dim(gp,q)} are constant on orbits. Conversely, if F • is Hodge-Tate,
then dimGrpF • = dimGrpF •0 = dimGr−pF •0 =⇒

dim Ď =
∑
p>0

dim(gp,−pF •0
) =

∑
p>0

dim(gp,pF •) = cF • .



20 MATT KERR AND GREGORY PEARLSTEIN

(ii) GR split =⇒ Hn split =⇒ X∗(Hn(C)) = X∗(Hn(R)) =⇒
F (Hn, χn) is real. �

Before proceeding to the heart of the section, we can say something
about the codimension-1 orbits as well:

Corollary 4.4. If cF • = 1, then g1,1 is spanned by a single real root
vector, and the other {gp,q} with p, q > 0 are zero.

Proof. By Proposition 4.1, only one gp0,q0 with p0, q0 > 0 can be nonzero,
and since dim gq,p = dim gp,q we must have q0 = p0. Now our standing
bracket-generating assumption says that

WF • + [WF • ,WF • ] + [WF • , [WF • ,WF • ]] + · · · = TF •Ď,

whilst by Frobenius

TF •OF • + [TF •OF • , TF •OF • ] + · · · = TF •OF • ,

and so WF •/ {WF • ∩ TF •OF •} 6= {0}. Taking real dimensions,

0 < dimC(g−1,−1) + 2∑q<−1 dimC(g−1,q)
= dimC(g1,1) + 2∑q>1 dimC(g1,q)
= dimC(g1,1)

=⇒ p0 = 1. �

4.2. Orbit inventory. Now let Qj ≤ G(C) denote the parabolic sta-
bilizing F •j := F (Hj, χj)•. The Weyl subgroup

Wj := N(Qj, Hj(C))
Hj(C) = Stabχj ≤ WC(Hj)

is generated by the reflections in the roots belonging to ker(ξj) [Hu,
sec. 30.1].

Consider the finite set

Ξ̃θ
R := π̃−1

R

(
ξ̃θR
)

=
{

(Hj, χ
[w]
j ) | j ∈ {0, . . . , n}, w ∈ WC(Hj)

}
of distinguished θ-stable-Cartan/co-character pairs (and its subset Ξθ

R :=
π̃−1
R ({H0})), where χ[w]

j (z) = Ψw(χj(z)). Let Ξ̃θ
R (resp. Ξθ

R) be the set
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of equivalence classes modulo the relation

(Hj, χ
[w]
j ) ∼ (Hk, χ

[w′]
k ) ⇐⇒ j = k and w′ ∈ W ◦

R(Hj).w.Wj,

and OGR (Ď) denote the set of G(R)◦-orbits. Writing W ◦
R(Hj).w.Wj =:

{w} for the double cosets, we introduce the orbit map

o : Ξ̃θ
R → OGR (Ď)

(Hj, χ
{w}
j ) 7→ O

F (Hj ,χ[w]
j )• =: o{w}j .

Theorem 4.5. (i) o is well-defined and surjective, with7 o−1(D) =
{(H0, χ

{e}
0 )}.

(ii) It restricts to a bijection between Ξθ
R and the set OGR (Ď\Z) of

open orbits.
(iii) The codimension-one orbits are of the form o{w}j for Hj of real

rank 1.

Proof. (i)-(ii): For well-definedness, {w} = {w′} =⇒ χ
[w′]
j = Ψg(χ[w]

j )
for some g ∈ N(G(R)◦, Hj) =⇒

F (Hj, χ
[w′]
j )• = F

(
Ψg(Hj),Ψg(χ[w]

j )
)•

= Ψg

(
F (Hj, χ

[w]
j )

)•
.

Surjectivity is Proposition 3.8(i).
Suppose F • := F (H0, χ

[w]
0 )•

= Ad(g)F (H0, χ
[w′]
0 )• = F (Ψg(H0),Ψg(χ[w′]

0 ))•,

where g ∈ G(R)◦. Using Proposition 3.7, H0(R) and Ψg(H0(R)) are
compact maximal tori of the real reductive Lie group8

HF • := G(R)◦ ∩QF • (= G(R)◦ ∩QF • ∩QF •).

So there exists g′ ∈ HF • such that H0 = Ψg′g(H0); let wr ∈ W ◦
R(H0) be

the element represented by g′g. Then

F • = Ad(g′)F • = F
(
Ψg′g(H0),Ψg′g(χ[w′]

0 )
)•

= F
(
H0, χ

[wrw′]
0

)•

7e denotes the identity element in a Weyl group; so χ{e}0 = χ0.
8While F • is Hodge, the corresponding Hodge structure need not be (−B)-
polarized, and so HF• need not be compact.
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=⇒ χ
[w]
0 = χ

[wrw′]
0

=⇒ w.W0 = wrw
′.W0

=⇒ {w} = {wrw′} = {w′}.

This establishes (ii), and the last statement of (i) follows from this and
Remark 3.6(c).

(iii): Suppose F • = F
(
Hj, χ

[w]
j

)•
has cF • = 1, g1,1 = C〈Xβ〉,

rkRHj (= dimR aj) ≥ 2. Then Ad(dβ)Xβ ∈ C〈Xβ′〉, β′ a noncompact
imaginary root for Hj′ = Ψdβ(Hj). Since rkRHj′ ≥ 1, Hj′ is not maxi-
mally compact and so has a real root β′0, necessarily orthogonal to β′.
Under (conjugation by) cβ′ , β′0 goes to a real root β0 (of Hj) orthogonal
to β, and the vanishing of the {gp,p}p 6=0,±1 forces X±β ∈ g0,0. There-
fore, conjugation by dβ0 replaces Hj by Hj′ of smaller real rank, whilst
leaving Y and φ — hence F • — alone. �

Remark 4.6. Koranyi, Takeuchi and Wolf parametrized the G(R)-orbits
in the case where Ď is Hermitian symmetric (cf. [Wo2, sec. 7]). The-
orem 4.5 extends this to the general case.9

Corollary 4.7. (i) |OGR (Ď)| ≤ ∑n
j=0 |W ◦

R(Hj)\WC(Hj)/Wj| (<∞).
(ii) |OGR (Ď\Z)| = |W ◦

R(H0)\WC(H0)/W0| .

Remark 4.8. WC(Hj) ≥ Wj are the same for each j, whilst W ◦
R(Hj)

varies considerably. If GR is split ( =⇒ Hn is), then WC(Hn) =
WR(Hn) = W ◦

R(Hn) by [BT, 14.6]. Note that Corollary 4.7(ii) is due
to Wolf [Wo1, Thm. 4.9(3)].

When the isotropy group Hϕ0 is abelian, it is a compact maximal
torus in G(R)◦, and we say that Ď is a complete flag variety (owing to
how this situation most often arises).

Recall our standing assumption (cf. §2) that πχ0 takes only the
values 0 and 1 on the simple roots.

Lemma 4.9. The following are equivalent:
(i) Ď is a complete flag variety;

9We thank the referee for this remark.
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(ii) QF •0
is a Borel subgroup of G(C);

(iii) QF • is Borel for any F • ∈ Ď;
(iv) πχ0 takes the value 1 on every simple root.

Under the equivalent conditions of the Lemma, H0(R)◦ = Hϕ0 and
dimC(H0(C)) = dimC(Gr0

F •g), so that for any F • = F (Hj, χ
[w]
j )•, from

g0,0 ⊇ hj we have

(4.2) g0,0 = hj.

Moreover, since every QF •j
is Borel, the {Wj} are all trivial.

Theorem 4.10. In the complete flag setting, o is a bijection and

|OGR (Ď)| =
n∑
j=0
|W ◦

R(Hj)\WC(Hj)|.

Proof. Suppose F • := F (Hj, χ
[w]
j )•

= Ad(g)F (Hk, χ
[w′]
k )• = F (Ψg(Hk),Ψg(χ[w′]

k ))•,

where g ∈ G(R)◦, and let g = ⊕gp,q be the bigrading induced by F •

and Hj. Using Proposition 3.7, Hj(R)◦ and Ψg(Hk(R)◦) are maximal
tori in the identity component of

HF • := G(R)◦ ∩QF •(∩QF •),

and (4.2) says that H◦F •/U(H◦F •) is a torus of the same dimension;
that is, H◦F • is (connected) solvable. By [Bo, Prop. 19.2], there exists
g̃ ∈ H◦F • such that Ψg̃ (Ψg(Hk(R)◦)) = Hj(R)◦; i.e. Ψg̃g(Hk) = Hj with
g̃g ∈ G(R)◦. But then k = j (cf. §3.3), and g̃g represents an element
wr ∈ W ◦

R(Hj); we have

F • = Ad(g̃)F
(
Ψg(Hj),Ψg(χ[w′]

j )
)•

= F
(
Hj, χ

[wrw′]
j

)•
=⇒ χ

[w]
j = χ

[wrw′]
j

=⇒ w.Wj = wrw
′.Wj

=⇒ {w} = {wrw′} = {w′},

done. �
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Continuing to assume Ď a complete flag variety:

Corollary 4.11. The “real rank map” Ď → Z>0 given by

F • = F (H,χ)• 7→ dimR aF •

is well-defined.

We also recover the well-known

Corollary 4.12. The |W ◦
R(H0)\WC(H0)| open orbits are in 1-to-1 cor-

respondence with Weyl chambers up to reflections in the compact roots.
(Explicitly, the correspondence is given by sending o{w}0 7→ w.C0, where
C0 is the chamber associated to QF •0

.)

4.3. Closure order. It remains to address how the various orbits fit
together. Consider the following two operations on the finite set of
points {F (Hj, χ

[w]
j )•} in Ď:

(1) Cayley transforms cα in noncompact imaginary roots:

F • = F
(
Hj, χ

[w]
j

)•
7−→ F

(
Ψcα(Hj),Ψcα(χ[w]

j )
)•

=: cαF •;

(2) Cross actions, i.e. cF •-increasing Weyl reflections wγ in complex
roots:

F • = F
(
Hj, χ

[w]
j

)•
7−→ F

(
Hj, χ

[wγw]
j

)•
=: wγF •.

There is a well-developed theory of Bruhat order (i.e., closure order10)
for the KC-orbits on complete flag varieties, where KC ≤ G(C) is the
complexification of a maximal compact subgroup of G(R)◦.11 (The
foundational article is [RS1]; also see the helpful recent exposition [Ye].)
We can import these results into our setting by way of Matsuki duality,
which produces a 1-to-1 correspondence between KC- and G(R)◦-orbits
in a complete flag variety12 Ď, while reversing closure order. See [Ma1]
and the Introduction to [Ma2].

The upshot of this for us is twofold:
10By this we mean, in general, the partial order on orbits given by O1 ≥ O2 ⇐⇒
cl(O1) ⊇ O2.
11More precisely, one takes KC to be the identity connected component of G(C)Θ.
12In fact, this duality holds in the general case, cf. [RS2, sec. 6.6].
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(a) In the general case, where Ď is not necessarily a complete
flag variety, OcαF • and OwαF • always lie in the analytic
closure cl(OF •) =: OF • q ∂OF • . This may also be deduced
directly from the discussion below.

(b) In the complete flag case, the codimension-one inclusions
obtained as in (a) generate all closure relations in the sense
of [Ye, Theorem 3.15] (the “subexpression property” which
generates more relations than mere iteration of (a)).

Remark 4.13. (i) We should accompany these statements with the
warning that our cα and wγ (which operate differently from the Cayley
transform and cross-action in [Ye]) are not well-defined operations on
the level of orbits: if wr ∈ W ◦

R, it can happen that (while OwrF • = OF •)
OcαwrF • 6= OcαF • and so forth.

(ii) On the other hand, with α ∈ ∆n(Hj) and F • as above, we need
not worry about both cαF • and c−αF •: if β ∈ ∆(Ψcα(Hj)) is cα of
α (more precisely, Xβ = −i(Adcα)Xα), then dβ = c−1

α and d2
β = wβ

=⇒ wβcαF • = c−1
α F • = c−αF • =⇒ OcαF • = Oc−αF • .

(iii) We can further simplify computations by noticing that if wr ∈
W ◦

R(Hj) and α ∈ ∆n(Hj), then we have wr(α) ∈ ∆n(Hj) and so cαwr =
wrw

−1
r cαwr = wrcwr(α) =⇒ Ocwr(α)F • = OcαwrF • .

Discussion. To see what is going on in a simple case, consider an
sl2-triple Xα, hα, X−α with α ∈ ∆n, X−α = Xα, hα = [Xα, X−α] and
[hα, X±α] = ±2X±α. Put

F1 := C〈Xα〉 ⊂ F0 := C〈Xα〉⊥B = C〈Xα, hα〉 ⊂ sl2,C.

Writing

γt := exp
{
t

2(X−α −Xα)
}
∈ SL2(C),

we have

h(t) := Ad(γt)hα = (cos t)hα + (sin t)(Xα +X−α),

X±(t) := Ad(γt)X±α

= −1
2(sin t)hα + 1

2(cos t+ 1)X±α + 1
2(cos t− 1)X∓α.
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In particular, this gives h(π2 ) = Ad(cα)hα = Xα + X−α, X±(π2 ) =
Ad(cα)X±α = −1

2hα + 1
2X±α −

1
2X∓α and h(π) = Ad(wα)hα = −hα,

X±(π) = Ad(wα)X±α = X∓α.

The flag F1(t) := C〈X+(t)〉 ⊂ F0(t) := C〈X+(t)〉⊥B is in fact in the
real (i.e., SL2(R)-)orbit of F• for t ∈ [0, π2 ); explicitly, we have F•(t) =
Ad(µt)F•, where µt = diag

{
f(t) 1

2 , f(t)− 1
2
}
∈ SL2(R) and f(t) = 1+sin t

cos t .
The problem at t = π

2 (where F•(π2 ) = cαF•) is that X+(t) becomes
pure imaginary,13 with real span, and the real group SL2(R) cannot
take a non-real line to a real one. The comparable result in the general
case follows from this one since the flag F • on g along an SL2-orbit is
determined by the restriction of F • to the sl2. For cross-actions, the
analysis is similar except the corresponding “non-real to real” problem
occurs at t = π.

The most interesting general statement (not assuming Ď is a complete
flag variety) we can make beyond Remark 4.13 and (a)-(b) above it,
is that Cayley transforms give all the codimension-one orbits in the
closure of an open orbit:

Proposition 4.14. Let o{w}0 be any open orbit in Ď and o{w
′}

j an or-
bit of codimension 1, where we may take Hj of real rank 1 (cf. Theorem
4.5(iii)). Then o{w

′}
j ⊂ ∂o{w}0 ⇐⇒ (Hj, χ

[w′]
j ) =

(
Ψcα(H0),Ψcα(χ[w0]

0 )
)

for some α ∈ ∆n, w0 ∈ {w}.

Proof. Since “⇐=” is clear from the preceding discussion, we prove
the converse, using the elementary observation that any codimension-1
G(R)◦-orbit can bound on at most 2 open G(R)◦-orbits.

By assumption we have ∆R(Hj) = {β,−β}, so that dβ sends Hj to
H0 (the only real-rank 0 Cartan in ξ̃θR), and β to α ∈ ∆n(H0), F • =

13If one puts X±α = 1
2

(
1 ∓i
∓i −1

)
, hα =

(
0 i
−i 0

)
, then (Adcα)Xα = −iXβ =

−i
(

0 1
0 0

)
. ForXα ∈ g1,−1

F• , Xβ ∈ g1,1
cαF• . The Hodge-theoretically minded reader

will no doubt think that
(

0 1
0 0

)
should be in g−1,−1, since N =

(
0 1
0 0

)
for

the corresponding VHS. This is resolved by the effect of the naive limit map in §5
below, which roughly “flips” indices (p, q) 7→ (−q,−p).
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F (Hj, χ
[w′]
j )• to F (H0, χ

[w1]
0 )• (where χ[w1]

0 = dβ(χ[w′]
j )). Since cα re-

verses the operation (see the end of §2), it gives ∂o{w1}
0 ⊃ o{w

′}
j . Setting

γα := π
4 (X−α −Xα), the Discussion above implies that etγαF (H0, χ

[w1]
0 ) ∈

o{w1}
0 for t ∈ [0, 1). Hence for ε ∈ (0, 1], and setting δβ := −iπ4 (X−β +Xβ),

we have eεδβF • ∈ o{w1}
0 .

Writing wα ∈ WC(H0) for the element induced by c2
α, we have d−1

β =
c2
αdβ hence

d−1
β F (Hj, χ

[w′]
j )• = F (H0, χ

[wαw1]
0 ).

Since c−α = c−1
α is inverse to d−1

β , ∂o{wαw1}
0 ⊃ o{w

′}
j is given by c−α.

By the same argument as above, it follows that e−εδβF • ∈ o{wαw1}
0 for

ε ∈ (0, 1].
As the projection of δβ ∈ g1,1 ⊕ g−1,−1 to TF •Ď is transverse to

TF •o{w
′}

j , the conclusions of the previous two paragraphs establish that
o{w1}

0 and o{wαw1}
0 are the (only) open orbits bounding on o{w

′}
j . Now

apply Theorem 4.5(ii). �

Definition 4.15. The (naive) boundary strata of the Mumford-Tate
domain D are the G(R)◦-orbits in ∂D ⊂ Ď.

Corollary 4.16. (i) To obtain (representatives of) all codimension-
1 boundary strata, it suffices to consider (modulo equivalence) those
F • = cαF (H0, χ

[wr]
0 )•, α ∈ ∆n(H0) and wr ∈ W ◦

R, with cF • = 1.
(ii) In the complete flag case, we have cF • = 1 in (i) ⇐⇒ α is

orthogonal to a wall of wr.C0. The resulting codimension-1 stratum
separates D from the open orbit corresponding to wαwr.C0, the Weyl
chamber “across the wall” from wr.C0.

Proof. (i) is clear from Proposition 4.14. For (ii), it suffices to consider
the case wr = 1. By Remark 4.13(ii), we may assume α ∈ ∆+

n ; cα
transforms H0 7→ Hj, α to β ∈ ∆R(Hj) = {β,−β}, and F •0 to F • :=
F (Hj, χ := Ψcα(χ0))• with associated Y and φ. Now,

α is ⊥ to a wall of C0 ⇐⇒

α is simple for ∆+ ⇐⇒
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(4.3)

 β is simple for the system ∆+(χ) := cα(∆+)
= π−1

χ (Z>0) ∩∆(Hj) of positive roots.

Since πχ of simple roots is 1 by Lemma 4.9, and therefore exceeds 1 for
any other positive root, (4.3) is equivalent to πχ(β) = 1.

If cF • = 1, then by Corollary 4.4 g1,1 = C〈Xβ〉, and so πχ(β) = 1.
Conversely, assume (4.3) and consider γ ∈ ∆\{β} with Xγ ∈ F 1 ( =⇒
γ ∈ ∆+(χ)). Then γ is of the form γ = rβ + iδ, with r ∈ R and δ in
some open half-plane Hj ⊂ tj, and γ̄ = rβ+ i(−δ) =⇒ Xγ /∈ F 1 =⇒
Xγ /∈ F 1. So no root vectors besides Xβ lie in F 1 ∩ F 1, and cF • = 1.

The last statement follows from c2
α = wα. �

Remark 4.17. (i) In the situation of (the proof of) Corollary 4.16,
dim aj = 1, Y ∈ aj, and (adY )Xβ = 2Xβ force {Xβ, Y,X−β} to be
an sl2,R-triple.

(ii) We can reduce the computation of cF • to pictures by computing
the dim(gp,q), but the following can be faster. Let ∆+(χ{w}j ) ⊂ ∆(Hj)
be the roots positively graded by χ

{w}
j . (This is an actual system of

positive roots if and only if Ď is a complete flag variety.) Then cF • =∣∣∣∣∆+(χ{w}j ) ∩∆+(χ{w}j )
∣∣∣∣ .

5. Boundary components and the naive limit map

The reader may have noticed the formal similarity between the R-
mixed Hodge structures associated to flags in Ď (cf. §3) and limiting
mixed Hodge structures. In this section, we shall elaborate on that
relationship by determining precisely when a naive boundary stratum
O ⊂ ∂D contains a flag F • in the “naive” limit of a polarized variation
of Hodge structure into Γ\D, Γ ≤ G(Q) a discrete group.

5.1. Limiting filtrations. For simplicity, let

Φ : ∆∗ → 〈T 〉\D
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be the period map associated to a PVHS over the punctured unit disk,14

with unipotent monodromy T ∈ G(Q), and N := log(T ) ∈ gQ. We can
take the limit of Φ at the origin in two different ways:

(1) Choosing a local parameter q on ∆∗ (and thus τ := `(q) := log(q)
2πi

on H)
Ψ := e−τNΦ : ∆∗ → Ď

is well-defined and extends across the origin by the Nilpotent
Orbit Theorem of [Sc].15 Define the limiting Hodge flag

F̃lim(Φ) := Ψ(0) ∈ Ď,

where the tilde is a reminder of the dependence on q.
(2) Choosing a lift Φ̃ : H → D of Φ, we define the naive limiting

flag by

F̂lim(Φ) := lim
=(τ)→∞

Φ̃(τ) ∈ cl(D),

where the limit is taken whilst confining <(τ) to an arbitrary
compact interval. As we shall see, it depends only on Φ.

Remark that in (1), transversality forces F̃lim(Φ)−1 3 N in the limit.
Write F̃ • := F̃lim(Φ)•, and let W̃• := W (N)• denote the unique

filtration on gQ satisfying

(i) N(W̃`gQ) ⊂ W̃`−2gQ (∀`)

(ii) Nk : GrW̃k gQ → GrW̃−kgQ is an isomorphism (∀k ≥ 0).

Then by the SL2-orbit theorem of [Sc], ψqΦ := (F̃ •, W̃•) is a Q-MHS
on g, called the limiting mixed Hodge structure of Φ (with respect to
the parameter q). Let

gC =
⊕

(p,q)∈Z2

g̃p,q0

14or more generally over any ∆∗ε := {z ∈ ∆∗| |z| < ε}.
15Technically, one chooses also a lift Φ̃ to define Ψ, but here this is absorbed by the
choice of q. If we start with a period map into Γ\D, the lift becomes essential.
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be the unique (Deligne) bigrading16 such that

(a) F̃ agC =
⊕

p≥a; q∈Z
g̃p,q0

(b) W̃bgC =
⊕
p+q≤b

g̃p,q0

(c) g̃b,a0 ≡ g̃a,b0 mod ⊕p<a; q<b g̃
p,q
0 ,

with equality in (c) if and only if ψqΦ is R-split.
Now we clearly have N ∈

(
F̃−1 ∩ F̃−1 ∩ W̃−2

)
R
⊂ g̃−1,−1

0,R . There also
exists a unique element δ ∈

(
⊕(p,q)∈(Z<0)×2 g̃p,q0

)
R
(commuting with N)

and a holomorphic map Γ : ∆ → ⊕p<0; q∈Zg̃
p,q
0 (with Γ(0) = 0) such

that, putting F̃ •R := e−iδF̃ •, (F̃ •R, W̃•) is R-split and Φ̃(τ) = eτNeΓ(q)F̃ •.
Writing gC = ⊕(p,q)∈Z2 g̃p,q for the bigrading associated to

(
F̃ •R, W̃•

)
, we

remark that F̃ •R does not depend on the choice of q, while δ is still in
⊕(p,q)∈(Z<0)×2 g̃p,q and N ∈ g̃−1,−1. Moreover, the element Ỹ ∈ End(gR)
defined by ad(Ỹ )|g̃p,q = (p + q)idg̃p,q (∀p, q) belongs to g̃0,0

R (see the
proof of Lemma 3.2 in [KP], or below) and there is a unique N+ ∈ g̃1,1

R

completing (N, Ỹ ) to an sl2-triple. One consequence of this is that

(5.1) W (N+)−k =
⊕
p+q≥k

g̃p,q.

Computing
Φ̃(τ) = eτNeΓ(q)eiδF̃ •R

= eτNeΓ(q)e−τNeτNeiδF̃ •R
= eAd(eτN )Γ(q)eiδeτN F̃ •R,

we note that by [CKS, p. 478]

(5.2) eτN F̃ •R = e
1
τ
N+F̂ •,

where

(5.3) F̂ a :=
⊕

p∈Z; q≤−a
g̃p,q.

16More canonically, the notation is g̃p,q0 := Ip,q(F̃•,W̃•), cf. for example [Pe].
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So for the naive limit we have (for some n ∈ N)

F̂lim(Φ) = lim
=(τ)→∞

eq`
n(q)O(1)eiδe

1
τ
N+F̂ •

= eiδF̂ •

= F̂ •,

since δ ∈ F̂ 1. We conclude from this that the naive limit can be
determined from the limiting Hodge flag, but is independent of q; in
fact, it only depends on the SL2-orbit eτN F̃ •R canonically associated
to Φ, which shares its naive limit. Therefore it will suffice to restrict
our investigation of which boundary strata contain a naive limit flag to
limits of SL2-orbits. The following definitions will serve to formalize
these observations.

Definition 5.1. Given a nilpotent element N ∈ gQ, let B̃(N) [resp.
B̃R(N)] be (a choice of connected component17 of) the subset of Ď
consisting of flags F̃ • such that eτN F̃ • is a nilpotent [resp. SL2-]orbit:
that is,

(a) eτN F̃ • ∈ D for =(τ)� 0
(b) NF̃ j ⊂ F̃ j−1 (∀j)
[(c)

(
F̃ •,W (N)•

)
is R-split].

The (Hodge-theoretic, rational) boundary component associated to N
is

B(N) := Ad(eC〈N〉)\B̃(N),

with R-split locus BR(N) := Ad(eR〈N〉)\B̃R(N).

Let N be such that B̃(N) 6= ∅. Given F̃ • ∈ B̃(N), eτN F̃ • may
be regarded as a period map Φ(F̃ •,N) : ∆∗ε → 〈eN〉\D with LMHS
ψqΦ(F̃ •,N) =

(
F̃ •,W (N)•

)
. Clearly, we may regard B̃(N) as the set of

possible LMHS for period maps with local monodromy eN .

17The excellent reasons for making such a choice are described in the Introduction
to [KP].
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Definition 5.2. The naive limit map

FN
lim : B̃(N) −→ cl(D)

F̃ • 7−→ F̂lim

(
Φ(F̃ •,N)

)
sends nilpotent orbits to their naive limit flags.

Now, it is clear that FN
lim factors through B̃R(N) (and B(N), hence

BR(N)): we have a diagram

B̃(N)

σR $$ $$

FN
lim

)) ))

B̃R(N)
?�

OO

B̃R(N)
FN
lim

// // B̂(N) � � // cl(D),

where σR is the canonical splitting described above, and

B̂(N) := FN
lim

(
B̃(N)

)
= FN

lim

(
B̃R(N)

)
.

Proposition 5.3. A naive boundary stratum O contains a naive limit
of a VHS if and only if O contains a B̂(N).

There are several important remarks concerning the naive limit map
FN
lim. First, we have the perhaps surprising

Theorem 5.4. Viewed as a mapping from B̃(N) to Ď, FN
lim is holo-

morphic.

Proof. Referring to (5.3) and the discussion preceding it, we have

F̂ a =
⊕
q≤−a

Ip,q(e−iδF̃ •,W̃•) = e−iδ
⊕
q≤−a

Ip,q(F̃ •,W̃•)

=
⊕
q≤−a

Ip,q(F̃ •,W̃•) =
∑
`∈Z

W̃` ∩ F̃ `+a.

(See the appendix of [Pe] regarding the last step.) So F̂ • depends
holomorphically on F̃ •. �

Next, we may regard FN
lim as sending a (Q-)LMHS

(
F̃ •,W (N)•

)
to

the R-MHS
(
F̂ •,W (N+)•

)
, where F̂ • = FN

lim(F̃ •) and N+ is as in the
argument above. By (5.1) and (5.3), this has Deligne bigrading

ĝp,q := g̃−q,−p.
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In other words, viewing MHS in terms of their bigradings, on the R-
split locus B̃R(N) the naive limit map is nothing but the reflection about
the antidiagonal. As an easy consequence, the upside-down “weight”
filtration (3.1) attached to F̂ • ∈ Ď is completely determined by N :∑

p∈Z
F̂ p ∩ F̂ j−p = W (N)−j (= W̃−j).

Furthermore, since Hodge tensors remain Hodge in the limit, the
mixed Hodge representation ϕ̃F̃ •(w, z) attached to the bigrading factors
through G(R), forcing the associated iφ̃ and Ỹ into g̃0,0

R . For F̃ • ∈
B̃R(N), the “flip” merely sends these to iφ̂ := iφ̃ and Ŷ := −Ỹ .18

Taking a Cartan subalgebra h 3 Ỹ , φ̃, h lives in g̃0,0, whereupon the
entirety of Lemma 3.2 holds with gp,q := ĝp,q, F • := F̂ •, and W̃• :=
W (N)•. So the LMHS provides Cartan/co-character data for the naive
limit flag; in particular:

Proposition 5.5. In the complete flag case, and more generally when-
ever dimC g

0,0 = rank(GC), FN
lim|B̃R(N) factors unambiguously through

Ξ̃R.

Finally, we observe that it is possible to make Flim even more “sym-
metric”, by extending Definition 5.1 to the setting of R-nilpotent or-
bits, i.e. where N ∈ gR. The resulting real boundary components
B̃(N) ⊃ B̃R(N) can now only be regarded as parametrizing R-LMHS(
F̃ •,W (N)•

)
(with the attendant much coarser equivalence relation19),

an apparent weakness. On the other hand, a short computation with
formula (5.2) shows that if we let G(R)◦ act on everything in sight
((N, Y,N+), F̃ •R, F̂ •, g̃p,q, etc.) then the naive limit becomes a G(R)◦-
equivariant map

(5.4) FN
lim :

⋃
N∈N

B̃R(N) −→ cl(D),

18From this perspective, the “loss of extension-class information” we shall describe
later seems rather surprising, but has the heuristic explanation that “more Hodge
tensors reside at the bottom of sl2-chains than at the top”: flipping them to the
top annihilates some extensions.
19Obviously, we are not going modulo this relation, or B̃R(N) would reduce to a
point.
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where N is any nilpotent orbit (that is, the G(R)◦-orbit of a nilpotent
element20) in gR. The image of (5.4) is obviously a boundary stratum,
which we shall denote by B̂(N ). In this sense, if one flag in a stratum
is a naive limit, they all are. On the other hand, there can exist strata
of the form B̂(N ) that do not contain a B̂(N) for N ∈ gQ (cf. §6.2.3),
essentially because there can exist nilpotent orbits with no rational
points.

Remark 5.6. We have chosen for simplicity to suppress rational nilpo-
tent (simplicial) cones σ = R≥0〈N1, . . . , Nr〉 ⊂ gR of rank r > 1 and
their corresponding boundary components B̃(σ) (for which we refer
to [KP, sec. 5]). In fact, given F̃ • ∈ B̃(σ), lim=(τ)→∞ e

τN F̃ • is in-
dependent of the choice of N ∈ σ◦ (interior of σ), and this produces
a holomorphic map F σ

lim : B(σ) → Ď, which image B̂(σ). (Here
B(σ) := e〈σ〉C\B̃(σ) is the set of σ-nilpotent orbits, where 〈σ〉C de-
notes the complex vector space spanned by σ.) In general we have
B̃(σ) = ∩N∈σ◦B̃(N) hence B̂(σ) = ∩N∈σ◦B̂(N).

There is however a special case which is important for Theorem 5.21
below: that of D Hermitian, with W = TD. Given σ (with nonempty
B̃(σ)) and F̃ • ∈ B̃(σ), let Q ≤ G(R) be the parabolic subgroup with
Lie(Q) = W (σ)0gR, and {g̃p,q}−1≤p,q≤1 the bigrading of gC attached to
(F̃ •,W (σ)•). Then the description of B̃(σ) in [KP, sec. 7] leads at
once to B̃(σ) = eg̃

−1,−1Q.F̃ • = B̃(N), and hence also B̂(σ) = B̂(N),
for any N ∈ σ◦.

5.2. Main results. Returning to the question motivating this section,
we wish to determine when a naive boundary stratum contains a B̂(N)
(or more generally, is a B̂(N )). The key is given by the following two
definitions, which concern the situation

F • = F (H,χ)• ∈ O ⊂ cl(D)

together with its associated

20This is the usual meaning of the term in Lie theory (as opposed to Hodge theory).
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• bigrading (cf. Lemma 3.2)

(5.5) gC =
⊕
p,q

gp,q, gp,q = gq,p,

• filtration

W̃−jgC :=
∑
p∈Z

F p ∩ F j−p =
⊕
p+q≥j

gp,q

defined over R, and
• R-parabolic subalgebra q := W̃0g.

Definition 5.7. O is rational ⇐⇒ W̃• is G(R)◦-conjugate to a filtra-
tion defined over Q.

Remark 5.8. In Definition 5.7, it suffices to assume q isG(R)◦-conjugate
to a Q-parabolic, provided g1 := ⊕p∈Zgp,1−p bracket-generates W̃−1.
(This does not follow from our bracket-generating assumption on the
horizontal distribution.) This is because q = Lie(Q) = W̃0 defined
over Q =⇒ W̃−1 = Lie(U(Q)) and W̃1 = W̃⊥

−1 are defined over Q,
and bracket-generation then implies W̃−2 = [W̃−1, W̃−1] and so forth,
so that all filtrands are defined over Q.

Definition 5.9. (a) O is polarizable if and only if there exists N̂ ∈
g−1,−1
R such that:

(i) N̂ j gives isomorphisms gp,j−p
∼=→ gp−j,−p for each p, j; and

(ii) i−j(−1)p+1B(v, N̂ j v̄) > 0 for each p, j, and nonzero

v ∈ P̂ p,j−p := gp,j−p ∩ ker(N̂ j+1).

(b) O belongs to the nilpotent closure ncl(D) ⇐⇒ there exists a
nilpotent N̂ ∈ F−1 ∩ gR such that eiyN̂F • ∈ D for y > 0. (Clearly
ncl(D) ⊆ cl(D).)

The criteria (a) and (b) are useful in different situations, and will turn
out to be equivalent (cf. Theorem 5.15 below). Evidently (b) is inde-
pendent of the choice of F • ∈ O and H, and hence well-defined. (That
the same is true for (a) follows from the proof of Theorem 5.15.)
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Remark 5.10. Unlike the {gp,q}, the P̂ p,q need not be sums of root
spaces, precisely because N̂ need not be a multiple of a root vector, cf.
§6.2.1.

An additional criterion, which will make an appearance in the ex-
amples in §6, is given by

Definition 5.11. A boundary stratum O [resp. boundary component
B(N)] is cuspidal ⇐⇒ q [resp. W (N)0g] is a cuspidal parabolic
subalgebra.

Since the anti-diagonal flip sends W (N)0g exactly to q, the naive
limit map sends cuspidal boundary components to cuspidal strata.

Proposition 5.12. Codimension-one boundary strata are cuspidal.

Proof. This is an immediate consequence of Corollary 4.16(i), as the
Cartan Ψcα(H0) will have real rank 1, with “noncompact part” A =
eR〈Y 〉 centralizing the Levi. �

To put definition 5.9(a) in context, recall the notion of a polarized
R-MHS (on (g,−B)), which for us shall mean a triple (W•, F •, N) such
that:

(I) W• is an increasing filtration of gR, and (F •,W•) is an R-
MHS (not necessarily split), with associated Deligne bigrad-
ing {gp,q} of gC;

(II) N is a nilpotent element of F−1 ∩ gR, with W (N)• = W•

(which implies N ∈ g−1,−1); and
(III) the Hodge structure induced by F • on

ker
{
N j+1 : GrWj → GrW−j−2

}
=: Pj

is polarized by −B(·, N j(·)), for each j ≥ 0.

Conditions 5.9(a)(i,ii) are nothing but a translation of (II,III) for the
specific (split) setting considered there. We shall require a couple of
lemmas, from the work of Cattani, Kaplan and Schmid (cf. [Sc, Thm.
6.16], [CKS, Cor. 3.13], [CK, (2.18)]):
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Lemma 5.13. If ezNF • is an R-nilpotent orbit, then (W (N)•, F •, N)
is a polarized R-MHS.

Lemma 5.14. If (W (N)•, F •, N) is a polarized R-MHS, then ezNF •

is an R-nilpotent orbit; if it is R-split, then ezNF • ∈ D for =(z) > 0.

We are now ready to prove the first main theorem of this section:

Theorem 5.15. For O ⊂ cl(D), the following are equivalent:
(A) O ⊂ ncl(D);
(B) O is of the form B̂(N );
(C) O is polarizable.

Proof. (C) =⇒ (A) : Let F • ∈ O, {gp,q}, N̂ ∈ g−1.−1
R be as in Defini-

tion 5.9(a) andW• = ⊕p+q≤•gp,q. (Note that N̂ must be nilpotent.) By
5.9(a)(i), we have W• = W (N̂)•, whereupon 5.9(a)(i-ii) and (5.5) =⇒
(W•, F •, N̂) is a polarized split R-MHS. By Lemma 5.14, eiyN̂F • ∈ D
for y > 0.

(B) =⇒ (C) : (B) says that there exists a polarized R-mixed Hodge
structure (W (N)•, F̃ •, N), without loss of generality R-split, such that
limy→∞ e

iyN F̃ • =: F • ∈ O. Let {gp,q} be the associated bigrading,
N+ ∈ g̃−1,−1 be as in the discussion preceding (5.1), and N̂ := −N+.
Then gp,q := g̃−q,−p is the bigrading associated to (F •,W (N̂)•) and it
is an easy exercise to check that (W (N̂)•, F •, N̂) is a polarized R-MHS.
It is obviously split, and (C) follows at once.

(A) =⇒ (B) : Let F • ∈ O, {gp,q} be as in the discussion preceding
Definitions 5.7 and 5.9, and put W• := ⊕p+q≤•gp,q, gj := ⊕p+q=jgp,q.
By assumption, N̂ ∈ F−1 ∩ gR is nilpotent with eiyN̂F • ∈ D for
y > 0. The projection of N̂ to g−1,−1

R still satisfies this hypothesis,
since iN̂ ∈ F−1∩F−1 while F−1∩F−1∩ (F 0 +F 0) belongs to gR +F 0.
Hence we may assume N̂ ∈ g−1,−1

R .
By Lemma 5.13, (W (N̂)•, F •, N̂) is a polarized R-MHS. To deduce

that it is split, we will show that W (N̂)• = W•. If this is not the case,
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then for some j ≥ 0 the map

νj : gj → g−j

induced by N̂ j is not an isomorphism, and there exists

α ∈ F p ∩ F j−p ∩ ker N̂ j.

But then α ∈ F j−p ∩ ker N̂ j =⇒

eiyN̂α ∈ eiyN̂(F j−p ∩ ker N̂ j) = e−iyN̂(F j−p ∩ ker N̂ j)
= eiyN̂

{
e−2iyN̂(F j−p ∩ ker N̂ j)

}
⊆ eiyN̂F−p+1,

where the last inclusion is argued as follows: given β ∈ F j−p ∩ ker N̂ j,

e−2iyN̂β = β − 2iyN̂β − 4y2

2 N̂2β + · · ·+ (−2i)j−1

(j − 1)! y
j−1N̂ j−1β + 0

∈ F (j−p)−(j−1) = F−p+1.

So
(0 6=) eiyN̂α ∈ eiyN̂F p ∩ eiyN̂F−p+1 =: F p

y ∩ F
−p+1
y ,

where F •y ∈ D is a Hodge flag (for y > 0). This violates the p-opposed
condition on a Hodge flag.

We conclude that (W (N̂)• = W•, F
•, N̂) is a split polarized R-MHS.

Let Ŷ ∈ g0,0
R be the element inducing the grading {gj}, and N̂+ ∈ g1,1

R

complete N̂ , Ŷ to an sl2-triple. Then setting F̃−a := ⊕p∈Z; q≤ag
p,q,

W̃−b := ⊕p+q≥bgp,q, (Ñ , Ỹ , Ñ+) := (−N̂+,−Ŷ ,−N̂), we have W̃• =
W (Ñ)•, and (W (Ñ)•, F̃ •, Ñ) is a split polarized R-MHS. At this point,
formula (5.2) applies to give limy→∞ e

iyÑ F̃ • = limy→∞ e
− i
y
N̂F • = F •,

completing the proof. �

Proposition 5.16. (i) Any codimension-one boundary stratum is po-
larizable.

(ii) Suppose D is strongly classical, in the sense that πχ0 takes values
in {−1, 0, 1}. (This implies in particular that D is Hermitian symmet-
ric.) Then all boundary strata are polarizable.

(iii) If g−1,−1
O = {0}, then O is not polarizable.
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Proof. (i) By Corollary 4.4, g−1,−1 (for some F • ∈ O) is spanned by a
single real root vector X. Clearly iX spans the normal tangent space
(NO/Ď)F • , and so X or −X satisfies Definition 5.9(b). Now use the
implication (A) =⇒ (C).

(ii) The normal space (NO/Ď)F • identifies naturally with ig−1,−1
R ,

yielding a diffeomorphism between a ball B 3 F • and a ball in ig−1,−1
R .

We must have B ∩ D 6= ∅, and so there exists N ∈ g−1,−1
R \{0} such

that eiNF • ∈ D. The same argument as in the proof of (A) =⇒ (B)
(with yN̂ replaced by N) in Theorem 5.15 shows that W• = W (N)•,
whereupon direct calculation establishes (ii) in Definition 5.9(a). (For
example, given v ∈ ker(N2) ⊂ g1,0, we have eiNv ∈ F 1

0 = g1,−1
0 where

F •0 ∈ D, so that 0 < B(eiNv, eiNv) = −2iB(v,Nv̄).)
(iii) is obvious. �

Our second result completely characterizes when O has a flag occur-
ring as the naive limit of a Q-VHS into a discrete quotient Γ\D.

Theorem 5.17. Let O ⊂ cl(D) be a boundary stratum. Then O con-
tains a B̂(N) (N ∈ gQ) ⇐⇒ O is rational and polarizable.

Proof. Only “⇐=” requires proof. By polarizablility, O contains the
naive limit of an element (F̃ •, W̃• = W (N)•) ∈ B̃(N), N ∈ gR. Bearing
in mind the antidiagonal flip, W̃• is the W̃• in Definition 5.7, and by
rationality we may assume it is defined over Q. The issue is whether we
can orbit by Q(R) to get N into gQ. But W−2gR is exactly N(W0gR),
and for γ ∈ W0gR,

d

dt

(
Ad(etγ)N

)
|t=0 = ad(γ)N = −N(γ).

Hence TN (AdQ(R).N) = W−2gR, and AdQ(R).N contains an open
subset ofW−2gR centered about N . Since Q-points are dense in W̃−2gR,
we are done. �

Remark 5.18. It suffices to assume q isG(R)◦-conjugate to aQ-parabolic
if g1 bracket-generates W̃−1 (cf. Remark 5.8) or if W̃−1 = W̃−2.
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5.3. Dimension formulas, and a classical digression. In the re-
mainder of this section, we turn our attention to the naive limit map

FN
lim : B̃(N) � B̂(N)

and its image, where N ∈ gQ\{0} is nilpotent and B̃(N) 6= ∅.
Let F̃ • ∈ B̃R(N) resp. F • := FN

lim(F̃ •) ∈ B̂(N) be given, with
associated MHS (F̃ •, W̃• := W (N)•) resp. (F •,W• := W (N+)•)21 and
bigradings g̃p,q resp. gp,q = g̃−q,−p with dimension hp,q := dimC g̃

p,q =
dimC g

p,q. In g̃•,• indexing we have the pictures

p

q

p

q

p

q

p

q

0

F

F

F
0

0

0

F

For p+q ≥ 0, the primitive subspaces are P̃ p,q := {ker(Np+q+1) ⊆ g̃p,q}
and

P p,q := Np+q(P̃ p,q) = {ker(N) ⊆ gp,q},

of dimension hp,qprim; for p + q ≤ 0 we set zp,q := h−q,−pprim . Write g̃j :=
⊕p+q=j g̃p,q = g−j, and q = W̃0g = Lie(Q). Of course, cF • > 0 and
B̂(N) ⊂ OF • ⊂ ∂D.

We recall the following basic material on boundary components from
[KP, sec. 7].22 Let Z(N) denote the centralizer of N in G, with unipo-
tent radical UN and Levi subgroup GN

∼= Z(N)/UN ; write

G (N) := UN(C) oGN(R) ≥ UN(R) oGN(R) = Z(N)(R).

On the Lie algebra level, we have z(N) := Lie(Z(N)(C)) = ker(adN) ⊂
W0gC, uN := Lie(UN(C)) = z(N) ∩W−1gC, and gN := Lie(GN(C)) =
g0 ∩ z(N). Letting Z(N)(R) resp. G (N) act on (F̃ •, W̃•) gives isomor-
phisms23

B̃R(N) ∼= Z(N)(R)/{Z(N)(R) ∩QF̃ •},

21As above, N+ is determined by (N,Y ) where Y arises from the Deligne bigrading
associated to (F̃ •, W̃•).
22In this paragraph, all groups are tacitly identity components of the group written.
23[KP, sec. 7] describes B̃R(N), B̃(N), and D(N) as orbits of possibly smaller
groups. This is a refinement of the presentation here, which follows from the coarser
[KP, Lemma 3.3].
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B̃(N) ∼= G (N)/{G (N) ∩QF̃ •}.

Passing to the associated graded (or quotienting by UN) gives projec-
tions from both to the Mumford-Tate domain

D(N) ∼= GN(R)/HN

(where Lie(HN) = g0,0
R ∩ z(N)), which is Hermitian symmetric if gN ⊂

g−1,1 ⊕ g0,0 ⊕ g1,−1. The boundary components BR(N) and B(N) are
obtained by quotienting out by eR〈N〉 resp. eC〈N〉 on the left. Finally,
from the equivariant nature of FN

lim, it is evident that

(5.6) B̂(N) = Z(N)(R).F • ∼= Z(N)(R)/{Z(N)(R) ∩QF •}.

Like QF̃ • ∩Z(N)(R), QF • ∩Z(N)(R) projects to HN in GN(R); and so
B̂(N), too, maps (holomorphically) to D(N). In a diagram, we have

(5.7) B(N)

$$ $$

����

BR(N)
?�

(β)

OO

zzzz

(γ)
// // B̂(N)

(α)
uuuu

� �
(δ)
// OF • ⊂ ∂D,

D(N)

and one might wonder (for example) when (α)-(δ) are isomorphisms.
To state the next result, consider the regions

I: p < 0, q ≥ 0, and p+ q ≤ 0
I′: q > 0 and p+ q ≤ 0
I′′: q > 0 and p+ q < 0
II: p ≤ 0 and q ≤ 0, but (p, q) 6= (0, 0)
II′: p < 0 and q < 0
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in Z2; for example, I′ is
q

p

and IqIIqI = I′qIIqI′ consist of pairs (p, q) 6= (0, 0) with p+q ≤ 0.
Write d := dimC Ď.

Proposition 5.19. (Dimension formulas)
(i) dimRB(N) = 2∑(p,q)∈I z

p,q + 2
(∑

(p,q)∈II′ z
p,q − 1

)
.

(ii) dimRBR(N) = 2∑(p,q)∈I z
p,q +

(∑
(p,q)∈II′ z

p,q − 1
)
.

(iii) dimR B̂(N) = 2∑(p,q)∈I′ z
p,q.

(iv) dimRD(N) = 2∑p<0 z
p,−p.

(v) dimROF • = ∑
p<0 or q>0 h

p,q = 2d− cF • ,
where we recall cF • = ∑

(p,q)∈II′ h
p,q.

Proof. Only (i)-(iii) require justification. These results follow from
computing tangent spaces:

TF̃ •B̃R(N) ∼= z(N)R/{z(N)R ∩ F̃ 0(∩F̃ 0)}

= z(N)R/z(N)0,0
R
∼=

 ⊕
(p,q)6=(0,0)

P p,q


R

;

similarly,

TF̃ •B̃(N) ∼= z(N)/{z(N) ∩ F̃ 0} =
⊕

p∈Z; q>0
P p,q.

To get tangent spaces to B(N) and BR(N), quotient out the span of
N in P 1,1

R resp. P 1,1. Noting that W̃0 ∩ F 0 ⊃ W̃0 ∩ F̃ 0 and z(N) ⊂ W̃0

=⇒ z(N) ∩ F 0 ⊃ z(N) ∩ F̃ 0,

TF •B̂(N) ∼= z(N)R/{z(N) ∩ F 0(∩F 0)}

∼= z(N) ∩
 ⊕
p<0 or q>0

g̃p,q

 =
 ⊕
p<0 or q>0

P p,q


R

.
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�

One immediate consequence is that if F • is Hodge-Tate, then B̂(N)
is a point (namely, F •). We also have:

Corollary 5.20. The maps in (5.7) are isomorphisms under the fol-
lowing conditions:
(α) : zp,q = 0 for (p, q) ∈ I′′;
(β) : cF • = 1;
(γ) : cF • = 1, and zp,0 = 0 for p < 0; or equivalently,
zp,q = 0 for (p, q) ∈ II\{(1, 1)} and z−1,−1 = 1;

(δ) : never.

On an infinitesimal level, the P p,q with p+ q = 0 and p 6= 0 parame-
trize the Hodge structure given by F̃ • on the associated graded ⊕iGrW̃i ;
the P p,q with p+ q > 0 parametrize extension classes. The information
lost by the naive limit map (γ) is precisely that which is parametrized
by the P p,q with p ≥ 0 and q ≥ 0 (except for 〈N〉 ⊂ P 1,1). Carayol’s
nonclassical SU(2, 1) example ([Car, KP]), with mixed-Hodge diagram

ad(N)
N

p

q

is one instance where (γ) is an isomorphism.
At another extreme is the strongly classical case, where D is Her-

mitian symmetric with F−1gC = gC, so that (for Γ ≤ G(Q) neat arith-
metic) X := Γ\D is a connected Shimura variety. It is known when D
is a Siegel space Hg (cf. [Cat, CCK]) that smooth toroidal compact-
ifications (as in [AMRT]) are obtained by adding in quotients of our
B(σ)’s (parametrizing σ-nilpotent orbits), and as we shall see this holds
more generally. The Baily-Borel compactification, on the other hand,
is obtained by using Γ-invariant sections of K⊗MD (for some M � 0) to
embed X in a projective space, and then taking (Zariski or analytic)
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closure. Heuristically, since KD
∼=
∧d(F−1/F 0) measures exactly the

changes in the Hodge flag (in any direction), the limits of sections of any
K⊗MD keep track of limits of flags. This suggests that the subvarieties
being glued in are quotients of B̂(σ)’s.

More precisely, a Baily-Borel boundary component F of D is a holo-
morphic path component in cl(D)\D, i.e. an equivalence class un-
der the relation: F ∼ F′ ⇐⇒ ∃ holomorphic µ : ∆ → Ď with
F,F′ ∈ µ(∆) ⊂ cl(D) [Mi, sec. V.2]. The (singular) Baily-Borel
compactification X∗ is a disjoint union of X and finitely many B-B
boundary strata ΓF\F, where F runs over Γ-equivalence classes of ra-
tional boundary components (see the proof below). Let X̄ denote a
smooth toroidal compactification with X̄\X = ∪Yi a strict normal
crossing divisor; writing YI = ∩i∈IYi, the AMRT boundary strata are
the YI\ ∪J)I YJ . By [AMRT, Prop. III.5.3], there is a natural holo-
morphic map π : X̄ � X∗ with π|X = idX , sending ARMT strata to
B-B strata.

Referring to Remark 5.6 for B(σ), B̂(σ), and F σ
lim, we have

Theorem 5.21. In the strongly classical case:
(a) The map F σ

lim : B(σ) � B̂(σ) sends LMHS (up to e〈σ〉C) to their
associated graded.

(b) The restriction of π : X̄ � X∗ to each AMRT stratum identifies
naturally, for some rational nilpotent cone σ ⊂ gR, with the map

ΓN\B(σ)
Fσ,Γ
lim

// // Γσ\B̂(σ)

induced by F σ
lim, where Γσ = stab(σ) ≤ Γ and Γσ = Γσ/{Γσ∩U(Z(σ))}.

Proof. (a) We must show Flim loses all extension information, or equiv-
alently that (α) is an isomorphism. But this is clear since the nonzero
g̃p,q are in the square [−1, 1]×2.

(b) We will begin by verifying the following
Claim: The rational B-B boundary components are precisely the {B̂(σ)}
with σ rational, or equivalently (in view of Remark 5.6) the B̂(N) with
N ∈ gQ.
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Let F ⊂ cl(D)\D be any B-B boundary component. There exists a
homomorphism ψ : U(1)× SL2(R)→ G(R) such that

f(g〈i〉)(eiθ) := (Ad ◦ ψ)
(
z, g ·

(
cos θ sin θ
− sin θ cos θ

)
· g−1

)
defines a symmetric holomorphic map f : H→ D with

F̂ • := lim
=(τ)→∞

f(τ) ∈ F

[AMRT, Thm. III.3.3]. That is, f is an SL2-orbit with naive limit
F̂ •. Writing N := dψ

(
0,
(

0 1
0 0

))
, q := W (N)0gR is the Lie al-

gebra of the stabilizer of F, a maximal parabolic subgroup Q act-
ing transitively on F [AMRT, Thm. III.3.7]. Since f is an SL2-
orbit, we have f(τ) = eτN F̃ • for some F̃ • ∈ Ď with (F̃ •,W (N)•)
R-split; write gC = ⊕−1≤p,q≤1g̃

p,q for the associated bigrading. As
g̃0,0(= ĝ0,0) � q/z(N)R, (5.6) gives B̂(N) = Z(N)(R).F̂ • = Q.F̂ • = F.

Now F is by definition rational iff Q = Q(R) for some rational
parabolic subgroup Q ≤ G. By [AMRT, p. 141 (3-4)], this is the
case exactly when ψ|SL2 can be taken to be defined over Q, which is
equivalent to N ∈ gQ. This proves the Claim.

Continuing to fix F̃ • and F̂ • as above, set UC = eg̃
−1.−1
C and D(F) :=

UC ·Q.F̃ • ⊂ Ď. Taking G̃` ≤ G(R) to be the subgroup with Lie algebra
g̃` := [g̃−1,−1

R , g̃1,1
R ] ⊂ g̃0,0

R (= ĝ0,0
R ), we consider the open cone C(F) :=

Ad(G̃`)N ⊂ g̃−1,−1
R [AMRT, Thm. III.4.1]. For any N ′ ∈ Ad(g`)N ∈

C(F),W (N ′)• = Ad(g`)W (N)• = W (N)• and eτN
′
F̃ • = g`e

τNg−1
` F̃ • =

g`e
τN F̃ • is a nilpotent orbit with naive limit g`F̂ • = F̂ •. As in Remark

5.6 we therefore have B̃(N ′) = D(F) = B̃(N); conclude that for any
simplicial cone σ ⊂ cl(C(F)) with σ◦ ⊂ C(F), B̃(σ) = B̃(N) = D(F)
and B̂(σ) = B̂(N) = F.

Define a map πF : D(F)→ F by πF(uqF̃ •) = uqF̂ • [AMRT, III(4.2)ff].
Writing q ∈ Q as zg` (z ∈ Z(N)(R), q ∈ G̃`), we have

uqF̂ • = uzg`F̂
• = uzF̂ • = lim

=(τ)→∞
uzeτN F̃ •

= lim
=(τ)→∞

eτNuzF̃ • = lim
=(τ)→∞

eτNuqF̃ •,

so πF is just the naive limit map FN
lim = F σ

lim.
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Let {σF
α} be the Γ-admissible decomposition of cl(C(F)) into rational

polyhedral cones (cf. [AMRT, Defn. III.5.1]) involved in the construc-
tion of X̄. (Since X̄ is smooth, they will be simplicial.) Amongst these,
let σ be one the cones with interior contained in C(F).24 From the proof
of [AMRT, Thm. III.5.2], one finds that the associated AMRT stratum
is given by Γσe〈σ〉C\D(F) = Γσ\B(σ), and its map to ΓF\F = Γσ\B̂(σ)
is induced by πF, completing the proof. �

Remark 5.22. F σ,Γ
lim may be understood as a morphism, defined over

a number field, from a (connected) mixed Shimura variety to a (con-
nected) pure Shimura variety [Pi, sec. 12.6].

5.4. Parabolic induction and parabolic orbits. For applications
of this material to representation theory, which we plan to pursue in
subsequent work, the following Hodge-theoretic approach to an Iwa-
sawa decomposition will be of use. Writing F • = F (H,χ)•, let Θ
be as in Proposition 3.8 so that (by Corollary 3.9) Θ(gp,q) = g−q,−p.
For each (p, q) with p + q 6= 0, the (+1)- and (−1)-eigenspaces of Θ
on (gp,q ⊕ gq,p ⊕ g−q,−p ⊕ g−p,−q)R are clearly both of (real) dimension
2hp,q. On the anti-diagonal line, we can use the fact that (W̃•, F̃ •, N) is
a polarized MHS on (g,−B) to deduce that the sign of Θ onN jP̃ p+j,j−p ⊂
g̃p,−p is (−1)j+p, determining its eigenspaces in g0,0

R and (gp,−p⊕g−p,p)R.
The sum k of all the (+1)-eigenspaces is the Lie algebra of a maximal
compact subgroup K ≤ G(R).

Now assume Q := Q(R) is cuspidal, with Langlands decomposition
Q = MAN as in Proposition 3.12; in particular, MA = G0(R) and
N = U(Q). (Note that Lie(Q) = qR = W̃0gR, Lie(N ) = W̃−1gR, and
M is reductive with compact Cartan, but possibly not connected.)
Then k⊕ qR evidently gives all of gR, and so

G(R)◦ = KQ = KMAN .

Since Q contains the stabilizer QF •(∩QF •)∩G(R)◦ of F • in G(R)◦, we
have a natural fibration

OF •
π
� G(R)◦/Q ∼= K/K ∩M =: KF •

24Here dim(σ) ≤ dimC(F); strict inequality leads to C∗ factors in Γσ\B(σ).
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over a compact base. Its fibers, one of which contains B̂(N), are of real
dimension 2∑(p,q)∈I′ h

p,q (≥ dim B̂(N)).

Remark 5.23. By Proposition 5.19(iii), if hp,q = zp,q for all (p, q) ∈ I′,
then the fibers areG(R)◦-translates of B̂(N). For instance, this holds in
the strongly classical case. More generally, it is related to forthcoming
work of Robles on the CR-structure of the G(R)◦-orbits.

Associated to any complex representation ρ : Q → Aut(V ) is a
vector bundle

Vρ := G(R)◦ × V
Q

� KF • ,

and we may define a representation IndG(R)◦
Q (ρ) of G(R)◦ by letting the

latter act by left translation on the space of C∞ C-valued sections of
Vρ. In order for boundary components to provide a useful framework
for studying these representations, we should have at leastM/Z(M) ⊆
GN(R), or equivalently

zp,−p = hp,−p for p 6= 0
and

g0,0/z(g0) ∼= {ker(N) ⊂ g0,0}.

In this situation, one can begin with a representation µ of GN(R),25

for instance on a coherent cohomology group H i(D(N),O(V ′)) (with
V ′ a holomorphic homogeneous vector bundle over D(N)), together
with a character σ of A, and pull σµ back to Q (via the projection
Q� Q/Z(M)N ).

Two special cases of interest are:

(A) whenOF • has cF • = 1, dim(GrW±2g) = 1, and dim(GrW±kg) =
0 for k > 2; and

(B) when OF • is the closed orbit, (F •,W•) Hodge-Tate, and GN

trivial.

25optionally twisted by a character of the component group ofM
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In case (B),M is finite, and for σ = ∆
1
2
Q (∆Q := modular character26)

together with an appropriate choice of µ, IndG(R)
Q (σµ) is the direct sum

of the TDLDS (totally degenerate limits of discrete series) for G(R)◦.
In another (but related) direction, we expect in some cases (includ-

ing (A) above), the Q(C)-orbit of F̃ • to play a role in generalizing
H. Carayol’s results on Fourier coefficients [Car] for nonclassical auto-
morphic cohomology classes (in some H i(Γ\D,O(V))). More precisely,
(Q(C).F̃ •)∩D will project to a sort of punctured tubular neighborhood
of ΓN\B(N) in Γ\D , whenever

dimC(Q(C).F̃ •) =
∑

(p,q)∈IqII′
hp,q

equals dimC(B(N)) + 1, which is to say when zp,q = hp,q for (p, q) 6=
(0, 0). (Basically, this gives a homogeneous structure to a union of nilpo-
tent orbits.) The pullback of a cohomology class to this neighborhood
then is expected to have a Laurent expansion “about” ΓN\B(N), with
coefficients lying in groups of the form

{
H i(ΓN\B(N),O(L⊗k ⊗W ))

}
k∈Z

.

This will be taken up in a future work.

6. Examples

The simplest nontrivial case is, of course, the upper half-plane, Let
G = PGL2, D = H, Ď = P1, where we think of H as parametrizing
polarized Hodge structures on g = sl2 with h−1,1 = h0,0 = h1,−1 = 1.
The group G(R) has two components, with G(R)◦ ∼= SL2(R)/{±id}
and

[(
0 1
1 0

)]
in the non-identity component, so that W ◦

R is trivial and
WR = WC ∼= Z/2Z. The two nontrivial G(R)◦-conjugacy classes of
Cartan subgroups in G(R)◦ are depicted in a Hasse diagram

= real rank

compact split

10

26The modular (or modulus) character ∆Q : Q → C∗ of a parabolic subgroup Q
with unipotent radical N is given by |det(AdLie(N )(·))|. The reason for including
the factor σ is so that IndG(R)

Q takes unitary representations to unitary representa-
tions.
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where the arrow denotes a Cayley transform. The G(R)◦-orbits in Ď
are of course

(6.1) = real codim.

1

0 1

where the segments denote incidence: that is, the orbit on the right
endpoint is contained in the closure of the left-endpoint orbit.

We call (6.1) an enhanced Hasse diagram, and produce them for a
number of other examples in §6.1. The “enhancements” are as follows:

• a solid vertex corresponds to an orbit in ncl(D) (i.e., polariz-
able);
• a vertex with an “×” denotes an orbit in cl(D)\ncl(D) (i.e.
non-polarizable);
• an open vertex signifies an orbit not in cl(D);
• a solid edge with [resp. without] an arrow is an incidence ob-
tained via a Cayley transform [resp. cross-action]; and
• a dotted edge is an incidence deduced from the subexpression
property (cf. §4.3 and [Ye, Thm. 3.15]).

Orbits will be labeled as in §4.2 (viz., o{w}j ), and we shall indicate as
well the {dim(gp,q)} attached to each orbit: for PGL2 this is simply

q

(open orbits) (closed orbit)
p p

q

where a dot stands for a single complex dimension. We call these mixed
Hodge diagrams.

In §6.2 we will discuss a few simple “negative examples” which mo-
tivated the definitions in §5.2.

6.1. Enhanced Hasse diagrams. This subsection treats the cases
where G is (a Q-form of) SU(2, 1)ad, PSp4, and (R-split) G2, briefly
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illustrating the method for SU(2, 1)ad and merely describing results for
the other two groups.

6.1.1. G = SU(2, 1)ad. G(R) (= G(R)◦) has two conjugacy classes of
Cartan subgroups

0

compact

H H
1

and no Cartan of real rank 2. In the root diagram associated to a
choice of (real) Cartan, we denote by

[resp.       ,    ,    ]

a noncompact imaginary [resp. compact imaginary, real, complex]
root.27 A character χ ∈ X∗(H(C)) is depicted by shading half of the
root diagram, which is meant to heuristically indicate χ−1(R≥0) ⊂
Λ ⊗ R. We begin with (H0, χ0), apply a Cayley transform to get
(H1, χ1), then apply WC to both, and finally, group the results in
W ◦

R(H0)- resp. W ◦
R(H1)-orbits. These latter are labeled by their images

under the orbit map (§4.2), with elements of WC written in terms of
reflections in simple roots.

Now, the results willl depend upon D, for which there are essentially
two choices compatible with the assumptions of §2. For both, we let V
be a 6-dimensional Q-vector space, with a symplectic form Q and a de-
composition VQ(i) = V+⊕ V+ with Q(V+, V+) = 0. We assume that the
Hermitian form H(v, w) := −2iQ(v, w̄) on V+ has signature (2, 1), so
that the projectivization of those v ∈ V+ with H(v, v) < 0 yields a (Pi-
card) 2-ball B ⊂ P(V+). This parametrizes Hodge structures on V with
Hodge numbers (3, 3), and a nontrivial involution (with eigenspaces
V+, V+). Alternatively, one can consider Carayol’s nonclassical domain
D parametrizing point-line pairs (p, L) in P(V+) with L ∩ B 6= ∅ and
p ∈ L\(L∩ cl(B)), or equivalently HS-with-involution on V with num-
bers (1, 2, 2, 1). The corresponding Hodge structures on g have Hodge
numbers (2, 4, 2) for B and (1, 2, 2, 2, 1) for D.
27We represent the Cartan subalgebra in our root diagram by two bullets at the
origin.
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We carry out the procedure for D first: since it is a complete flag
domain, Theorem 4.10 applies.

From H0, we obtain the (three) open orbits:

RW

α1

α
2

o
0

{e}

o
0

{1}

o
0

{2}

(Note that WR(H0) ∼= Z/2Z is generated by reflection in • .)
From H1, we get three more orbits whose codimensions can be read

off from the accompanying mixed Hodge diagrams:

1

{e}
o

codim. 1
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1

{21}
o

codim. 1

1

{2}
o

codim. 3

(Here WR(H1) ∼= Z/2Z is generated by reflection in a real root.)
For the enhanced Hasse diagram, we read off inclusions

cl(o{1}0 ) ⊃ o{e}1 ⊂ cl(D) ⊃ o{21}
1 ⊂ cl(o{2}0 )

from visually “obvious” Cayley transforms,28 obtaining the left half of

=

0 1 3 = real codim.

o

o

o

o

o

o

0

0

0

{2}

{e}

{1}

1

{2}

1

{21}

{e}

1

The right-hand inclusions are, as the diagram indicates, given by cross-
actions.

28What seems clear from the pictures may be justified more carefully using §4.3;
this is left to the reader.
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Turning to the classical domain B, we have (from H0) only 2 open
orbits:29

α
1

α
2

o
{e}

0

{1}
o0

From H1, we get

{e}
o1

codim. 1

o
{1}

0

where the last WR-orbit demonstrates that the orbit map o need not
be one-to-one in the non-complete-flag case. The incidence diagram

29The “photographic negatives” of these pictures do not appear because they cannot
be obtained from the first picture via WC.
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is the same as for PGL2, since o{e}0 = B, o{1}0 = P(V+)\cl(B), and
o{e}1 = ∂B ∼= S3.

6.1.2. G = PSp4. The Hasse diagram for the Cartan subgroups of
G(R)◦ is

H

0 1 2 = real rank

H

H
0

2

H1

3

where H1 [resp. H2] is obtained from H0 by the Cayley transform in a
long [resp. short] root. We shall only consider the two cases30 where D
is the period domain for rank 4 Hodge structures of weight 1 resp. 3
with Hodge numbers (2, 2) resp. (1, 1, 1, 1) (inducing weight zero HS of
type (3, 4, 3) resp. (1, 1, 2, 2, 2, 1, 1) on g). The pictures corresponding
to (H0, χ0) are31

resp.

α
1

α
2

and the enhanced Hasse diagram in the first (Siegel H2) case is, up to
labeling, the same as for the Carayol domain. The second (complete

30There is also a weight 2 case with numbers (1, 2, 1), left to the reader.
31with apologies to the reader for taking α1 to be the short root (meaning that the
Cayley transform in α1 gives H2 and vice versa).
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flag) case D = D(1,1,1,1) has enhanced Hasse diagram

D=

D=

1 4 = real codim.30

o
{2}

1

o
2

{2}

o
1

{e}

o
3

{e}

o
{21}

1

o
2

{e}

o
1

{1}

o
0

{12}

{1}

{2}
o

0

o
{e}

0

0o

in which we obtain the first examples of non-polarizable boundary
strata. Of the mixed Hodge diagrams

closed orbit oopen orbits
3
{e}

oo o
{21}

2

{e}
,1 1

{1}
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oo o
{e}

2

{2}
,1 1

{2}

the first four correspond to boundary components in [KP], whereas
the bottom two have dim(g−1,−1) = 0 making the codimension-three
substrata obviously non-polarizable.

6.1.3. G = split G2. Note that G(R) = G(R)◦. There are three cases,
corresponding to polarized HS’s with Hodge numbers (A) (2, 3, 2), (B)
(1, 2, 1, 2, 1), resp. (C) (1, 1, 1, 1, 1, 1, 1) on the standard (7-dimensional)
representation and (A) (1, 4, 4, 4, 1), (B) (2, 1, 2, 4, 2, 1, 2), resp. (C)
(1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1) on g (see [GGK1, Chap. 4]). The Cartan
diagram is as for PSp4,32 and the (H0, χ0) pictures are

(A) (C)(B)

2

2
2

α

α

α

α

α

α

1
1

1

(Note that W ◦
R(Hj) is generated by reflections in ∆c resp. ∆R for j = 0

resp. 3, and by the reflection in ∆R and (−id) for j = 1 and 2.) The

32same meaning for H1 vs. H2, and the same absurd convention on α1 vs. α2
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complete flag case is (C), with enhanced Hasse diagram

D=

o
1

{1}

o
{e}

2

o
1

{e}

o
{2}

{1}
o

0

o
{e}

0

0

0 1 3 = real codim.65

o

o

o

1

2

3

{12}

{21}

{e}

o
{2}

2

We omit the mixed Hodge diagrams, which are unwieldy, but include
them for (B)

D=

o
1

{e}o
2

{e}

o
{2}

o
{e}

0

0

0 1 3 5

o
3

{e}

= real codim.

and for (A)

D=

o
2

{e}o
1

{e}

o
{2}

o
{e}

0

0

0 1 3 5

o
3

{e}

= real codim.
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One can check that (A) o{e}2 and o{e}3 are both in the image of a B(N)
(see [KP, sec. 8]), while polarizability of (B) o{e}2 and (A) o{e}1 is
of course covered by Proposition 5.16(i). Note that (B) o{e}3 gives an
example of a non-polarizable closed orbit, since the displayed bigrading
cannot satisfy Definition 5.9(a)(i) (take p = 3, j = 6).

6.2. Counterexamples. The 3 vignettes with which we conclude this
paper illustrate, for polarizable boundary strata, the potential failure
of cuspidality, of rationality, and of a stronger notion of polarizability.

6.2.1. g−1,−1 need not contain a real root. To see this, we have to con-
sider strata of codimension strictly larger than 1. Let D be Carayol’s
nonclassical domain (cf. §6.1), and Oc ⊂ Ď the (polarizable) closed
orbit. The Cartan H determined by F • ∈ Oc has real rank 1, which
gives a root diagram

X

complex

conjugation

X

The associated bigrading is

2

N

2

where N̂ ∈ g−1.−1
R is as in Definition 5.9 and arrows denote the action

of adN . Clearly g−1,−1 = C〈X, X̄〉 and N̂ is a multiple of X + X̄.

6.2.2. A noncuspidal boundary component. This time, in addition to
codimension > 1, we have to start with a Mumford-Tate group of
rank at least 3. Taking G = Sp6, we consider the Siegel domain D =
H3 parametrizing Hodge structures ϕ of type (3, 3). The associated
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projection πχ on roots takes the form

2

−1 0 1

h

2e 2e

2e
1

3

sending ae1 + be2 + ce3 7→ 1
2(a+ b− c).

On the other hand, with H R-split, the same picture describes πχỸ
for the (Hodge-Tate) limiting mixed Hodge structures parametrized
by BR(N), where N is the sum of root vectors for the 3 circled roots
(e3 − e1, e3 − e2, −e1 − e2). The subalgebra ker(adỸ ) ∼= GrW̃0 g, whose
root system maps to 0 in the picture, is sl3. Since SL3 has no compact
Cartan, q = W̃0g is not a cuspidal parabolic subgroup. The boundary
component B(N) maps to the closed orbit Oc ⊂ Ď, and so Oc is not
cuspidal.

6.2.3. A non-rational G(R)◦-orbit in ∂D. Take D once more to be
Carayol’s (1, 2, 2, 1)-domain, but this time with G a Q-anisotropic form
of SU(2, 1).More precisely, let V+ be a 3-dimensional vector space over
Q(i), H a Q(i)-Hermitian form of signature (2, 1) on V+ hat does not
represent zero, and Q the alternating form on V := ResQ(i)/Q(V+) given
by minus the imaginary part of H. So

G = ResQ(i)/Q (Aut(V+, H)) = ResQ(i)/Q (GL(V+)) ∩ Sp(V,Q),

and extending Q to VQ(i) = V+ ⊕ V+, we have H(v, v) = −2iQ(v, v̄).
Now, we know that the resulting domain D has polarizable boundary

strata, which then come from R-limit mixed Hodge structures. But if
the stratum is rational in our sense, then W̃• = W (N)• can be defined
overQ (with weights on V centered about 3, not 0). Taking any nonzero
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rational vector w ∈ W2V , we have w = v + v̄ for (0 6=) v ∈ W2V+, and
0 = Q

(
W2WQ(i),W2VQ(i)

)
forces

0 = −2iQ(v, v̄) = H(v, v),

in contradiction to anisotropy.
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