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An Elementary Proof of Suslin Reciprocity

Matt Kerr

.Abstrkct. westateandproveanimportantspecialcaseofsuslinreciprocitythathasfoundsignificant
use in the study of algebraic rycles. An introductory account is provided of the regulator and norm

maps on Milnor K2-groups (for function fields) empioyed in the proof'

Let X be a compact Riemann Surface. We define abelian grouPs

a(x). nza(x)
K2(r-f,'r'J l :: --7i i-:-71i-.

J t/

with eiements written as products of "symbols", fl"{.f",g"}. Here "[u" means that

(i) {/,gi = {g,f)-' and(ii) i/",S} : {f ,g'}: {f 's}' 
("multiplicativebiiinear-

ity;- thit is tttei'Z"). we also have (iii) t/' I - fj : 1; these (sometimes together

with (i) and (ii)) are called th e Steinberg relations and the notation above means that

we quotient out by the ideal they generate. Similarly set

14A r*

&(c):=

Nowlet f ,g,h € C(X)* with h : i on l(fll u lk)l' andwrite uo(h) forthe orderof

vanishingofhatP€X.

Theorcm I (Suslin Reciprocrty)

ll {/tll,rlll}v^h) : r € &(a)'
P€ I 

(r')l

that is, the expression can be rewritten as a product of Steinberg relations (i), (ii), and

(iii).

Thetheoremoriginallyisdueto [sl] inamuchmoregeneralform; [BT] isthestan-

dard reference for the proof. We felt it would be beneficial to have a more elementary

(less general and technical) proofin the literature and hope this article can be useful

and illuminating for algebraic geometers. It was written in 1999 as an initial mini-

project for my advisor Phillip Griffrths, and, especially in Section II, owes much to

his and Mark Green's ideas [GG2].
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One way of stating a more general result is as follows. There are Milnor K-groups
K#(A(X)) and ff (C) generalizing the abover and "residue" homomorphisms

Kf(a(x)) -- ilrf,tcl
reI

which one may compose with "uking the product over all points"

L[rl1'tcl .* rfr(c)'

For n : l, this composition is C(X)* - IJ,<xZ * Z, which compures (by sum-
ming over all points) the degree of the divisor of a function, which is zero. Tiiviaiity
of the composition for n : 2 is known as Weil reciprocity (see [GH, K] for two
different proofs); while Suslin's theorem asserts the same for n ) 3.

What we prove presently then, is a simplified version of his result for n = 3 . It has
shown itself (in this form) to be highly useful in the theory of algebraic cycles, being
the nontrivial step in the proofs of the isomorphisms2

CHn(Spec(F), n) ry Ky(F)

and

(2) GricHn((tPn,tf'-txF)) = 6(1)6141p1,

wherelf'-r:unionofthe(r?+l)coordinatehyperplanesinlPn. (Inthemoregeneral
form, Suslin reciprocity is also the basis for Somekawa's interesting generalization
of Milnor K-groups to products of abelian and semlabelian varieties [So].) The
isomorphisms (1) and (2) have led naturally to "toy models" for thiaking about Abel-
Jacobi and regulator maps on Bloch's higher Chow groups CIIP(X, n) and higher A/
maps on 6t'61p(X(F))o U >. 2), respectively. (tlere Gr refers to aversion of the
Bloch-Beilinson filtration discussed in [L].)

We want to explain these statements briefly. Details can be found in [K] and forth-
coming articles.

For a projective variety S defined over ft 2 Q, one may define by means of the
(n - l)-current Rr associated to a symbol f = {ft,..., f,} € Ky(k(S)), the Milnor
regulator

rMore generally, let F be any field contairiag Q, For r ) 2, one defines Ky(F) =
AZF. /(.. AI At - /,1.. ),whichistosaywithgeneratorsthe"symbols" {fr,...,1,}(f, ep-l

and relations easy generaliations of (i), (ii), (iii) (from the case n = 2). For n = O, I one sts K# (F) :: Z
and Klu(F) := F*. We haveonitted the superscript M in our discusions ofKjl in view ofthe well-known
isomorphism (y(f) 

= &(F) (which does uothold for n > 2).
rHere CH'( . , r) are Bloch s higher Chow groups IBl], while in (2) CH'(F", T'-') is a closely related

relative (not higher) Chow group. Both (l) md (2) are in some sense due to {S2, Bll; a nice proof of ( I )
can be found in [T] md of (2) in [cG1, K] (which between the two ofthem have the firll details).
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(3) Ky(k(s)) - H!e(ns,v,(n)):: lim Hb(s \v,Z(n)).
vcs

(where the direct limit is over all codimension- I subvarieties). lormulas for the maps

Al : CHe (X, n) - Il,;-" (X,Z(")) were arrived at in [K] by first considering the case

X : ns, P : n. The AJ map is obtained by composing (3) with the isomorphisms
(l) lwith F : k(S)] andCHn(4s(k), n) ! CH'(Spec(k(S))' n) to get a maP

CH" (ns(k). n) 
- 

Hb Ots,Z(n));

once we understood how to "extend" this to CH'(S, n)' the version for all p and n

followed.
On the other hand, for any F/Q where F is finitely generated, there is a variety S/Q

such that Q(S) ry F. Composing the regulator (3) lwith ;6 : Q] with isomorphism
(2) yields maps

GricHn((lP', lfn-t)(r)) 
- 

@(';) Hbhs,'z(i))

given by.expiicit i - I-currents. Those currents have an analogue in the situation

where (lP',lf'-r) is replaced by a product ofcurves C; defined over Q; the result is

an explicit recipe for maps

GriCH"((Ct x .. . x C")(F)) + HD(4s, A(t))

which turn out to be something like a quotient of the desired higher A/ maps' (See

tK, $5,31 for the definition of the term on the right, which is somewhat involved.)

In the following two sections we develop the ideas of regulator and norm ("trans-

fer" in [BT]) on (Milnor) K-theory which are empioyed in the proof of Suslin reci-

procity (which is given at the end).

1 Regulator

Define a map3

Rx ; &(C(X)) + limHr(X - Z,A') =: H'(tlx,C*)
zcx

by sending

{.f,g} * {r e Hr(x - l(/)l u l(s)l,z) * "* 
I'tozfdtozt-ro88(po)dlost},

where po is the base point from which we continue log /, which is to say it will func-

tion (once) as the branch cut for log/ aiong 1. (Since this is not a regulator on

1-forms but merely on 1-cycles, the choice of branch of logg does not matter)' This

map is extended "x-linearly" to products of terms fl"{.f*,g"} by using the multi-
plication induced on lirr.rHt(41, C-) (by multiplication in C*) as its abelian group

structure. We now show that it is well-defined. Some facts in this direction:
,ti.-r.tr,h."g.*t.p"*""f 

^::2f,2, 
+ X-Z2X-Zt 

- 
HttX-2.C.^) gHr(X-

Z' ,tC*), so the direct limit is of course highly nontrivial- Its prettiest strategic side-effect: in checking

Rx{f,c} = Rx{//,g/}, we may haye the paths a?oid a finite Point set, sa)' l(/)l u | 
(8)l u l(.f')l u l(g')1.

(1)
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1.1
"frt. 

.'l ts Independent of the Choice of ps e
of logg(p6).

Indeed, ifpe and p1 are two points on'y,

t ... f
/ {(log /)o dlogs - logs(po) dtoe f} - IJtn Jr,
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l.yl, Bnnch of log / and "Branch"

iflog /)r dlos I - togg(p1) dlog /]

1.4 n(f' f ,g) = R(/',9) x R(/, g)

This is obvious.
So R is well-defined and it makes sense to write Rx{/,g}' or more generally

Rx ll"{-f",8*}. Now if this yields I (i.e., is trivial) on 1-cycles

r e ker{ !g rl,(x - z,z) - Ht(x,u}
- zcx

(ioops around points), then we say l[o{f*,go} € &(X)' Such elements constitute

^ 
tuigroup of &(A(X)), and we have the series of inclusions &(A(X)) I &(X) 2

ker(Ry) f &(C). What if Rx is trivial on all 1-cycles?

Conjecture I ker(Rx) =&(A).

We prove this for X : trr. The interplay of (local) anaiysis and global algebra (on

the iunction freld) will show why this is so hard in general (for X of higher genus).

We manage to get around this later (for the purposes of the "norm" aigorithm) by

working with ..Kz of meromorphic functions on branches of x" (since there we are

only concerned with the information that the algorithm "commutes" with the local

evaluation and regulator maps on K2). But here we needateal global comPutation.

First of all, sin-ce Ht(Pt) : 0, &(lPt) : ker(Rp'). So we will prove K2()Ft) :
Kz(C).

local Analysis (for All Riemann Surfaces X)

Let P e X be some point and wite f,g € C(X)- locally as f : (z - 0"e0 i'
g : k - P)v^d g. Wi compute R{ f , *Qil where 'yp is a very small path about B

and pick p6 € X so that, in this local parametrizttron, po- B : l. (Note in particular

that this implies C(Pg) : g(pe).) The integral is

1 | r ,' - )

,= | I log((z - Aya\t) f) diog((z - 6yo{s)91 - logS(Po) dlog(tz - B)*"' f) }
-tt, Jna \

r t(
= * J""{r,p(g)iog/dloeQ'0 - uB$)rozs@nldtog(z- 0)

+ vBff)log(z - 0 iloel + vp(f)up(s)los(z - 0) dlosk - A)

* (ipessential terms)) .

1.2

1.5

f fPt . f-
=- J,o rf Jro 

*orr+[Iogs(p1)-logs(po)]/ dlog/:o

The fust step uses the fact that (log /)s and (iog /)1 differ only from po to pr, where

the difference is - | dlog /, and the second follows from the bracketed quantity

being equd to .ff' dtot g.

R(r - /,/):1
On f \ {po} define a singie-valued branch of the dilogarithm

tn2(/) := - [t u,slt - z)dlogz.

Now in2 has no monodromy about 0 , lr,, *n* if / (on r) goes counterclockwise

u = -* J., dlog(l - f) times around 1, then ln2(fl changes by 2zlizlogl(po) :
.lloe/(po) dloe(t - /).' 

For instance, if f is a path C C\{0, 1 } based at /(p6) going around { I } once coun-

terclockwise, then /. log(1 -z) diog z : J" d{log(1 -z) I ogzl - lrlog z dlog(r - z).

The second term is zero (mod (2ni)22) by the residue theorem; since log(I - z)logz
changes by -zni log f (ps), this is the value of the first term' (See [Ha] for a more

complete discussion of monodromy of po$ogarithms.)
We nowhave

I f I r 1l \
Itogf(pidlog(]- ft: I d{rn(f)} = / d{- i log(t -z)droszl

Ja J1 Jt I Jo

- lrogtr - fliloef ,

and so 0 = f (los( i - f) di.os f - log /(pe) dlog( 1 - /)) as desired.

R(.f,g) = R(g,.f)-'

As 1 starts and ends at po,logffi and bg ffi, which are zero at po, each change

by a multiple of 2zri. Hence
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and so

L f.
;/ 

logs dlog f - los /(Po) dlog g = - J ̂ tog 
f dtog g - logg(Po) dlog /

Thking ezh("""h side) giv€s the result.

1.3

I a{rc*-!-roe=L} =o (mod (zri)zz),
J1 t "8(Po) -I\Po)t
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Now use the residue theorem. Also, on the third term above use integration by Parts

to set the iast term below, and in the last term above use po - 0 = | plus integrating

d{io{fz - 0)i to get the third term below:

: vg@)IosiWl - up(f)lost?i + vBj)up(s)ri

.'+ [ {oi.rt - 6)logg] - Ioggdlog(z - 6)}
zlft J%

: vpldlog f W1 - uBff)lo1E}d + vB(fluB@) ri
+ vp(f\tozl?i - vBff)loss(0)

: uli)roef (B\ - uBU)loeE@) + vo(flvp(g)ri'

rf 1.)l
50, taKlng e k" ",

^ ' f(z\uotgt
R{.f, s}Od = !r!10{-r)*tn*"'j frrn =' rs{f ,8},

and we call TB{f ,SI the "tame symbol of / and g (evaluated at 0)'i Now Weil reci-

procity says that

fl tr{.f,ti = t,
0ex

i.e., some kind of "global reciprocity" law always holds. our computation implies,

on the other hand, ihat if a pointwise "local recipro city" Tp{f , g} = t holds at 0 for

two functions, then the coriesponding K-theory element must have trivial reguiator

around B. We restate this more generally in the following:

Proposition I fl"{/",g"} € Kz(X) ifandonlyif

rim(_1;D",,t.r")^G.)(IT k?l::,'::,\:: rBfl{1",g"i = r (vd € x).
z-a \u &a\zl'o't"' t 1-

This holds for all X' What follows does not.

CIobal Arithmetic in &(C(Pt))

We establish yet another:

Proposition 2 TBllo{f,, g"} : I (vB e trt) if and only if

fl{.r",s"i € K,(a) (e r,tcln'll) '
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Combined with the previous result' this will prove Kz(lPr ) : & (A)'

The implication "€" is of course trivial since constants have no poles or zeroes

(and so the yo( . ) are all 0). we shall begin the other direction with a single term

{f ,s} : { {I,, - 
a;\^',ff(z - u t)"'\ .

where ai and b i are all distinct, and the following:

Lemma 1 {z - a,z - b} = {z - a,a - b){b - a,z - b}'

Proof PutA : z - a'B : z - b,C : a- b. WehaveB : A+C,i'e',t : * * 3,
which by the Steinberg relations implies that

' 
: 

{ *, !} : to,.tto,B}-r{B,c}-r{B,B},

and so

tA. B\ : {A, c}{c, B}tB, B}.

Now{B,B} : {B,B}-1 : lt# = {#,8} : {i - 1,8} : {; - 1,}}-1 :
{-r, }}-'{1 - *,i}-' : {-1,B}. so

{A,B} = {A, c}{c,B}{-I,B} : {A, c}{ -C,B},

which is the desired equalirv. I

Case 1 Assume one term, / and g monic with l(rl n lk)l : u or {oo}. (We are

assuming Tp{f ,S}: t forall 0 e lPr.)

{f ,s} : lf{, - o,., - b j)^'"' : II tt, - Qi, di - b i}, {b i - a;, z - b i})-'n'
tr)

: fl{, - ai,n@; - b j)"i }^' f fl {, - b i,il(b j - o,)*' } 
n'

: fli' - o,,g(oi)^'\ f flk - u1 f b)"'I

: llt' - ,,,+ I fl{, - b,' t} = t,
ij

where the second-tolast steP comes from local reciprocity, since a; and b; are dis-

tinct. Two quick proofs that {A, t} : l: either use {A, 1} : {A, 10} : {A, 1}0 : I

or {A, t} : {1# = 1. Trivially I € K2(C) so we are done.
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Case 2 Remove the assumption on divisors. Assume, with all a;, b, c1 distinct, that

f =TIk - cplerfl? - a)*' and c:TlA - cilryn? - bi)'i
tit

satisff local reciprocity at each p' Then i/' g)

/
= f[ ( t' - ck,z -.r]u*" fl{' - ck,z - ct}qkrt.^ \

t\ llk

, f[{r - ck,z - bilsknif!{" - o,,r- cr}''+) * fli, - ai,z - b1}^tni

, 
'i' '/ i,j

= fli, - ck,-rlqkn * f[ i, - ck,ck - ct]sktt x fl t* - ck,z - ct]qktr

k k,2*k t,k+t

" f[ (i, - ckt ck - b i]{b t - c1,, z' b 1})q'"j
k,j

* fl ({r - ai,ai - tr}{.t - ai,z - c1,})^i'k

k,i

' L-I 
(U - ai,ai - bi\{bi - a;,2 - b1})-'"j

[now switch k and I in the third factor above]

:11{ , - ,r,1-s*-\*td'r - 
:)-.'JLl::- 

u) '),"1
1- I ' (f[,(* 'oi)''frn.tk*- c)e')'r )

" II{, - o,, (flt,, - bi)ufl.i - *)'-)''}

" (11{, - bj, (TIei - o)-,lI@i- *)u-) "})'
: fl{,- 4,lif{{z - o,,t} / ffV - u,,1} : I € &(a).

rij

Case 3 Separate l(fl| "nd lk)l again but remove the requirement that / and g be

monic. That is, I et f = ( f and g = r1g, where i = ff,(z - a)^' and g : TI ik - b 1) i .
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I nen

{f ,s} : i€, n}flte,,- b;}"' fl{' - ai,n}^' x fli" - ai,z - b1}^ini
jtt\t

: {e ' n} fJic'' ," - b;} xff{z - ai,n'')
.Ji

' (||t, - a,,f,i\^'] f fl{, - ui, fo,t''.i)
iJ

: rc,ntp!-!291;gtti'y1tl: {€,,r} e &(a).
tt1{z - b1,(€l(b,))"'t: 1l}

Combining the Cases. (Remove all assumptions on / and g.) So we have essen-

nally f : { llr (" - ai) f[o(z - c*)qr and g : q l|'Q - b 1) ll 2k - cs)'r' Defi ning for
every B e X

- S, ,7 f
EB t: ,, _fr1,,w,and Io i= 

G _at"ln
from the previous computations it is clear that

( r .\ | II { z- a.1-r14t1t,usE!(0)"u!) }) x {s,n}.U,Ej: l^ rr t_ .E(g""t, 
1)n\;.,tJ.

B€lU)lul(s)l\@

For a product ll,{f,,g,} we have therefore in &(C(PI ))

|[ {, - r,flr-ryotr.',a;E;ffi}' {€-,q"}
d€,(t")lulu.)l\€ 

t 1- Jo6\1s1"'""' '

: f[{€*,n"} e &(a),

since the big product over a is just f iTl"{f",U} (= t by assumption). This com-
pletes the proof that K2(lPt 1 : Kr(C).

2 Norm

From the Riemann-Roch theorem follows the existence of a "primitive pair" of mero-
morphic functionsh, x: X - lFI. What we mean by "primitive" is the following:

(i) Geometrically, they give an embedding X * lPr x JPr (ror )F2: there you get

at least normal crossings in general; IFI x lPl has a bit "more" structure, being the
compactification of C* x C- by four lPrs rather than three). We write (z,w) for
coordinates on iPl x fl, and think ofx 5 lPl as giving a branched covering ofthe
z-sphere. When convenient we write z in lieu of h to denote the function on X (an

exception would be "h-' (z)").
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(ii) Alcebraically, they senerate the function field: sending w H x gives an isomor-

ptrism ct-z) twl I fi fr, *lf a c(x), *h... iD (2, w) : wn + w' - | 94Q) +' " + fr n (z) is

ihe mlnimal polynomial of x, andg'i!) € C(z) are rational functions' The "graph"

of (i) is the solution set x6 : {Q,w)l@(z,w) : 0}' (Every Riemann.surface is

algebraic!) Since C(z) ! C(rt ), this expresses C(X) as an extension of C(lFl)'

Galois Kz-Norm for Splitting Field Extensions. Preliminary Remarks on Strategy

in the Function-Field Case

we will describe an algorithm similar to the Galois norm which maps K2(c(X)) +
&(C(trt)). Simplifiing for a moment to subfields of C, suppose we have a splitting

field octension LlK, L : K(r) (x e C), with O(x)[: 0] the mimirnal poiyno-

mial of x over K, with roots {r = xt\,x2, '..,xn. Sending w e x gives an iso-

morphism Klwll,3@)) 3 !, and so we may write F,G € L as /(x),9(r)' where

deg(/(il)),deg(g(rry)) < n. (F : /(x) and 6 : g(x) are lumbers, f (w) andg(w)

are polynomials.) Define

Nrrri4 c} ,= li{/(,'r),s('r)}'
i:t

Notice that while the extension LlKhas degree n, $f*lltf t*ll) lK : K(o)lK
arnd, (Kfwl I @@D) lX = K(r) lK are lowerdegree extensions nor contained in C

and with degiees not necessarily dividing n. (Here o and r are complex numbers

satisrying /(;) : 0 and 8(r) : o, i.e., g(w) and f (w) are their minirnal polynomials'

with conjugates oi and 4') So, if we could somehow exchange the role of O with

that of / and/or g, we could pass from terms € &(A) to terms € K: (lower degree

extensions) (or so I ciaim). we will work this out completely in the function field

case below
passing back to function fields, the roots xi get replaced with the bnnches xi of

x over the z-sphere, which are no longer e I = C(X). (That is the only real dif-

ference, likewise for o and r.) So the computations which follow are not really in

&(A(&); they merely constitute an algorithm. However, they are "correct" locally

and pointwise almost everywhere, enough to preserve (commute with) the regulator

and Kz(C)-evaluation at z, in a sense to be described later.

The Norm Algorithm

This is based on an idea in [GG2]. Let

f(z,w) = 
[,r 

- oi@)),g(z,w) : 
l,' - r*(z))

be general (monic, for simpiicity) elements e C(z)lxll(pk,r)), and of course

n

Q(z,w): fl(w-xi(z)).
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(The "functions" o1,rk,xi ali have branch cuts and so are not meromorphic over

the z-sphere.) It is important in what follows that (.,m 1n' Omitting the z-variable
(writing, for instance, /(x;) for f (2, xikD),we write "fr6 {/, g}" := flr{/(x; ), g(x;)}
(where fro{/,g} is really a formal placeholder, since what follows is not, strictly
speaking, a quantity)

Now formally "use" the Lemma 1.

: fl{xr - o j,o j- rr}{n - o1,x; - \}
i,j,k

: 
T{ f,lo, - "s,ll{o1 - n)}

= fl1{-r)'o{" ),g(o)) x fl{/(?r), (-t)'o(4)}.
jk

Now we reduce, e.g,, in the first factor, (-l)'O(w) and 8@) modulo /(v)_to get,

respectively,,b(w) andg(w), both of degrees ( l. Since f (oi) :0, tb(o;) : iD(o;) +

d@ i) f @ t) : (- l)'Q(o;). Similarly f (a;) : g (o 1).

= llt.6ro;), r(o,)] " fl{l('*t, .i,(zr)}
jk

: fri{,n,s} , rvrtl.Ot

These should be thought of as norms on Kz(C(X;)) and &(C(Xr)) reiative to the

extensions A(Xi)/A(pl) and C(Xr)/C(Pl) (rather than C(X : Xo)/C(lFj)), where

e.g., Xf : {(z,w) | f k,w) : 0} r:::- ;Pt * Pt.a
Continuing this process, we reach degree 0 ( in w, corresponding to a degree I

(trivial) field extension of C(iPl ) ) so that everything is rational functions of z. Thus

we land in K2(C(FI )), and define by abuse of notation "N1{f 
' 
g}":: No{,f , 8} ::the

element so obtained. So in retrospect, this can formaliy be seen as a recursive defin!
tion of an element in Kz(C(lF')).

txi 
""dXr -. rttr"t*d"" tn the rcveringX - Fj. Rather all three are intermediate ir some

rcvering Y - tr}. Here is the full "dictionary" of meromorPhic functions on these Riemann surfaces:

X:Xo * Q=h,f ,g.*=x), Xt *@:h1,8 =g.O =,i,w: a),

.f,s- i7= hs,f = i.A=6..=rt. Y * Q=hy.w.o.r.xJi

d, r, x, together with z, give maps ftom I to (the embedded images in lPr x lPr of) X1, Xs, X, respectivell'

The oi,rx,xi are just the branches of w on X1, Xs, X over Fj, resPectivell On y one may write the

branchesofomo;;/z)(resp.rxr;y(z),rasi;;1(!)),wherechmgingiort(resp.iorj,jorl<)hasno
effect.

= IIiIIi,' - o;),lf ('i - "))ij r

" {I{ il,"- - 
o;), fl(', -'r)}

[(.<n) fr\<n)
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Behavior with Respect to Evaluation and Regulator Maps

For any Riemann surface Y one may verift that pointwise evaluation @r{/,8}(p) :=

{/(p),g(p)} induces a well-defined map (cf the Appendix)'

@r: &(C(Y)) ' {nY - Kz(A)}'

somewhat more exoticaliy, we would iike to be able to hit N6 and N6 (the beginning

and end of the norm algorithm) both with O to obtain

(*) fl i/tl'l,s{l')}: [o"'(Nr,{ f ,sl\](z)
Pi€h-t(z)

where the pi are counted with multiPlicity if z is a branch point' Unfortunately this

is Uue only almo st everywhue: while the norm algorithm commutes with evaluation

(in the sense that the same manipulations would be correct in Kz(C) over a fixed zo)'

the introduction ofo; - 4 in the norm algorithm (via the Lemma l) produces zeroes

(and poles) where there were none.

On the other hand, if we knew a posteriorithatNl {/, g} were of the form Kz(C) e
Kz(trr), then we would know that these zeroes (and poles) had been removed either

(i j in the remainder of the norm algorithm, or (ii) in the use of the Steinberg relations

in 822[Pt(P,) \ {0, m}] to reach 8'z[p[ \ {0' m}]. in either case (*) holds for aII

z e Pl foi'wirich the right hand term makes sense, i.e., for which h-t(z) n (l(/)l u

lk)l) : Z. To see this, one can simply rePeat the algorithm of the well-definedness

ar-gument (extended to inciude fractional Powers of e ) locally on f 1'

so towards this obiective we show that the norm algorithm commutes with some-

thing which (a) yields iocal information and (b) does not flinch at the sight ofzeroes:

the r-egulator (wirose paths may avoid going through any spec16ed number of points,

becauie of the direct limit). We claim the foliowing "projection formula":

(**) IRe'(Nrif,g))l('r1 = (na{/,g}) (h-Iz),

where lr-I1 is a path in X with (possibly non-closed) branches ?i over the z-sPhere'

There is absolutely no problem with the meaning of the left-hand side, because

Nli/, g) is an element of K2(C(IPI )).

Next, because we are going to break the path h-11 into pieces, we need an equiv-

aient form of the regulator that does not involve continuing log / along a path. so

henceforth "log" will always mean the branch5 with argument € (-2, zr'1, whether it
is being applied to / or even f,. To compensate for this in the expression for the reg-

ulator, we must also replace - f iogg(po) diog f by 2xilr.rn1, * logg(4)' where

T/ : /-r (R- ) is shorthand for the branch cuts of log / on X' and the sign is positive

for a jump (along r) from 0 to 2r'i and negative for the opposite'
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Now, writing 1, : f (z,x;(z)) and g; - g(z,xiQD for branches of / and g and

working on the right-hand side of (**), we have:

(Rx{f,s})(r,-'r): *p[ (# L-,,tortotors) 
* f 

,i"srtc)]

: fl*of (:= [ bg ttdtosg;)* | rogg,ta)]

r .'r"v ' r1t qelnTf,

Again, F is just a formal placeholder rather than an actual regulator, although we

do have a well-defined quantity here. Our claim is that the norm algorithm' applied

to the expressio" ll,iI, g, ) in parentheses (to obtain Nl {/, g}), preserves the vaiue,

of this quantity whiie gradualiy turning ir into an expression which is a regulator of
something (on lPr). We outline how to see this. If one backtracks through the proof

of our algebraic Lemma, one finds that the formal Steinberg relations (iii), forgotten

in the stage of the norm algorithm which we have written out, are

|I({= r-:=;} x{-(x; -rx)'x;-"t)

we want to ,;:*- tFe,(.)l(r) applied to this gives l. Referring to the discussion

of I in footnote 4, this is (a power of)

ln ({*-o .l - 
*-o} x {-(x- '),"-'})l(i'i'rt,L'\lx-r x-rJ '/J

which ciearly is 1. One deals with the (far more numerous) formal relations (i) and

(ii) in the same way.

The upshot is that this alternate form of the regulator is compatible with the

f ormal operations of the norm aigorithm' So the right-hand side of (xx) becomes

Rp(N1{,i,,g} * A!{1,61; : ;n",io ,g}){n,ti * [R",{1,6}] (i';I?)

by essentially the same comPutation as above in teverse. in this way we gradually

"descend to lF" and the left-hand side of (**).

The ProofofSuslin
This is now slick suppose h : 1 on l(fl| u l(g)1. Then (Ry{/,g})(h-i'v) = 1 for

all l on )Fr avoiding I (simplyslide'y to {0} on IFI\{ t}). ny (x*), Nr{.f,8} e ker Rp,,

which by our work in $ 1 is fr lA). So Nn {,f, g} consists of constants' and

6e,(N7,{.f,g})(0) _ ,
oP(^r;lElX.") -'

=, n* (lI{t, g,}) trl = .A'p' (Ni{/,s}) (1).

5"brocn-' here hc nothing to do with brudtes of X owr Fl (unlile, sy, "brmches of / and g")
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Moreover, since N1{/,g} € &(a) and only lr-'(t[: z]) intersects l(fl1 and lk)l' it
follows from the discussion following (*) that we may use (*) at z : 0' oo. That is,

, = 9",!T,J{,g.ll(01 = Fry+**: II {/rpr,g(p)}h(,). r'- @p,(N1{/,g}Xm) Ilqen-,@1{f1),8Q)} p€t(h)t

Appendix: Evaluation MaP

We want to prove that 6v is "well-defined", i.e', for each fixed element of &(A(f ))'
taking two iifferent representati'es and evaiuating them at p (for all but finitely-

-""ip) should not give two different elements of &(C). For a finite number of

poi*s'itmay happenihat evaiuation (for one or the other, or both, ofthe represen-

iatives) does noiprodo"e an eiement ofK2(C) (because there is a zero or pole in the

way). To say thai this is the only way equality can fail is a stronger statement than

"Oy is well-defined", and we shall prove the stronger statement'

So one needs to prove the following fact:

fl{,r,,r,}'' : fl{' l.i,' a i}''i in Kz(c(Y))

and A;, Bi,'Ai,'Bi all + 0,e at P

implies

f[{e,tl), l,tl)1'' = fl{'a; (l ),' B i{p)1' ^' in &(c)'

The nonUivial thing to show here is that it does not matter ifthe Steinberg relation by

which the Kz$.(Y)) equiyalence is accomplished, contains terms with zeroes or poles

^t 
P.
Rewrite the hlpothesis in Z[F11. \ t0' -]l as a term-for-term equality

(#) L*,^,of, -I'mi'A1@'Bi :L(o* 8€*4* -o- 8€. -Q.@n*)

+ !{'r. I'€. + '{, I'cr*) + 
T'r- 

* (I - 'n.).

Iix a function e with a first order zero at p; if Y = lPr then it could be (z - p). For

o € C(y) we will write d = end where d(P) I 0, m' Some terminology: if a = 0

then a is "reduced"; ifboth a and B are reduced then a I 0 is; and ifall (tfpe (i)'

(ii) or (iii)) terms in a steinberg are reduced then that steinberg is. Furthermore, for

iny a @ 0 = eod g eb 
-0 

there ii a fixed aigorithm to produce a (very iengthy) sum of

Steinbergs E(o I0) such that (term-for-term)

(##) r.c.0:E(o8g) +a@F)*raGr)"u*.

If. a @ 0 is already reduced then 6(a A B) : 0.

Now develop the right-hand side of (#) as foliows.
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(i) Set aside the steinbergs thatare reducedto beginwith, and applythe fixed aigo-

rithm (##) to av ery term of. each remaining steinberg (the reduced terms among

these wili be unaffected).
(ii) The resulting (nonzero) 3's are in one-to-one correspondence with all unre-

duced terms from the original right-hand side of (*). since these terms had to

cancel to give the (entirely reduced) terms of the left-hand side, by the same

cancellation scheme the E-terms ali cancel (oddly enough some of these will be

reduced).
(iii) Since the only remaining terms containing € are now of type e A (' '' )' and

(obviously) none ofthese is reduced, they also neatly cancel out'

The upshot is that we have rewritten the right-hand side of (*) (after some pafu cre-

ation/annihilation):

!to- e(-rl- - ct. 8i- - u. 84. ; + f {'o- e'i- +'(* 8',i. ) + D' n. a {}-'il'

The first two sums are of reduced Steinbergs and therefore evaluate to Steinbergs at p.

On the other hand, 't* e (i -lq-) may notbe a Steinberg. For example' if a > 0

anda:eo&then
aei:6 = aB (1- €4a)

is not a Steinberg, while if instead o : e-o& then

a@i:6= a@(eo - d)

is not eitherl Howevet evaluating them at p (since e(p) : 0) yields respectively

a(p)et and d(P)a-d(P)

which are Steinberg relations in Z[]Fl \ {0, o"}]. Therefore we have expressed

I mtAtQ) I B;(P) - f' m 1' AiQ) a' B 1Q)

as a sum of Steinbergs, the corresponding element ofK2(c) is zero, and we are done.
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