Putnam Practice: Va Tech Contest Practice

These are problems from past Va Tech contests. This year’s contest is on Saturday Oct. 22, from 9-11:30 in Compton 241. In addition to these problems, we will discuss (9) and (10) from Problem Set 3 (Pell’s equation).

1. Let \(m, n \) be positive integers and let \([a]\) denote the residue class mod \(mn \) of the integer \(a \) (thus \(\{r\} \mid r \text{ is an integer} \) has exactly \(mn \) elements). Suppose the set \(\{[ar]\} \mid r \text{ is an integer} \) has exactly \(m \) elements. Prove that there is a positive integer \(q \) such that \(q \) is prime to \(mn \) and \([nq] = [a] \).

2. Evaluate
\[
\int_0^{\pi/2} \frac{\cos^4 x + \sin x \cos^3 x + \sin^2 x \cos^2 x + \sin^3 x \cos x}{\sin^4 x + \cos^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} \, dx.
\]

3. Find nonzero complex numbers \(a, b, c, d, e \) such that
\[
a + b + c + d + e = 1 \\
a^2 + b^2 + c^2 + d^2 + e^2 = 15 \\
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} = -1 \\
\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2} = 15 \\
abcde = -1
\]

4. Define \(f(n) \) for \(n \) a positive integer by \(f(1) = 3 \) and \(f(n + 1) = 3^{f(n)} \). What are the last two digits of \(f(2012) \)?

5. Define a sequence \((a_n) \) for \(n \) a positive integer inductively by \(a_1 = 1 \) and
\[
a_n = \prod_{\substack{d | n \\{ d \neq 1 \}}} a_d.
\]

Thus \(a_2 = 2, a_3 = 3, a_4 = 2, \) etc. Find \(a_{999000} \).

6. Let \(A_1, A_2, A_3 \) be \(2 \times 2 \) matrices with entries in \(\mathbb{C} \) (the complex numbers). Let \(\text{tr} \) denote the trace of a matrix (so \(\text{tr} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = a + d \)). Suppose \(\{A_1, A_2, A_3\} \) is closed under matrix multiplication (i.e., given \(i, j \), there exists \(k \) such that \(A_i A_j = A_k \)), and \(\text{tr}(A_1 + A_2 + A_3) \neq 3 \). Prove that there exists \(i \) such that \(A_i A_j = A_j A_i \) for all \(j \) (here \(i, j \) are 1, 2, or 3).

7. Let \(d \) be a positive integer and let \(A \) be a \(d \times d \) matrix with integer entries. Suppose \(I + A + A^2 + \cdots + A^{100} = 0 \) (where \(I \) denotes the \(d \times d \) identity matrix, so \(I \) has 1’s on the main diagonal, and 0 denotes the zero matrix, which has entries all
0). Determine the positive integers \(n \leq 100 \) for which \(A^n + A^{n+1} + \cdots + A^{100} \) has determinant \(\pm 1 \).

(8) For \(n \) a positive integer, define \(f_1(n) = n \) and then for \(i \) a positive integer, define \(f_{i+1}(n) = f_i(n)^{f_i(n)} \). Determine \(f_{100}(75) \) mod 17 (i.e., determine the remainder after dividing \(f_{100}(75) \) by 17, an integer between 0 and 16). Justify your answer.

(9) Prove that \(\cos(\pi/7) \) is a root of the equation \(8x^3 - 4x^2 - 4x + 1 = 0 \), and find the other two roots.

(10) Let \(\triangle ABC \) be a triangle with sides \(a, b, c \) and corresponding angles \(A, B, C \) (so \(a = BC \) and \(A = \angle BAC \) etc.). Suppose that \(4A + 3C = 540^\circ \). Prove that \((a - b)^2(a + b) = bc^2 \).

(11) Let \(A, B \) be two circles in the plane with \(B \) inside \(A \). Assume that \(A \) has radius 3, \(B \) has radius 1, \(P \) is a point on \(A \), \(Q \) is a point on \(B \), and \(A \) and \(B \) touch (i.e., are tangent) so that \(P \) and \(Q \) are the same point. Suppose that \(A \) is kept fixed and \(B \) is rolled once around the inside of \(A \) so that \(Q \) traces out a curve starting and finishing at \(P \). What is the area enclosed by this curve?

(12) Define a sequence by \(a_1 = 1, a_2 = 1/2, \) and \(a_{n+2} = a_{n+1} - \frac{a_n a_{n+1}}{2} \) for \(n \) a positive integer. Find \(\lim_{n \to \infty} na_n \).