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Abstract. Let H be the Drury-Arveson or Dirichlet space of the
unit ball of Cd. The weak product H � H of H is the collection
of all functions h that can be written as h =

∑∞
n=1 fngn, where∑∞

n=1 ‖fn‖‖gn‖ < ∞. We show that H � H is contained in the
Smirnov class of H, i.e. every function in H �H is a quotient of
two multipliers of H, where the function in the denominator can
be chosen to be cyclic in H. As a consequence we show that the
map N → closH�HN establishes a 1-1 and onto correspondence
between the multiplier invariant subspaces of H and of H�H.

The results hold for many weighted Besov spaces H in the
unit ball of Cd provided the reproducing kernel has the complete
Pick property. One of our main technical lemmas states that
for weighted Besov spaces H that satisfy what we call the mul-
tiplier inclusion condition any bounded column multiplication op-
eratorH → ⊕∞n=1H induces a bounded row multiplication operator
⊕∞n=1H → H. For the Drury-Arveson space H2

d this leads to an
alternate proof of the characterization of interpolating sequences
in terms of weak separation and Carleson measure conditions.

1. Introduction

By a Hilbert (Banach) function space on a set X we mean a Hilbert
(Banach) space B which consists of complex-valued functions onX such
that for each point w ∈ X the point evaluation functional f → f(w) is
bounded on B. Associated with every Banach function space B we have
the collection of multipliers Mult(B) = {ϕ : X → C : ϕB ⊆ B}. This
is another Banach function space when equipped with the norm ‖ · ‖M
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that equals the operator norm of the induced multiplication operator
Mϕ : B → B, f → ϕf , f ∈ B, ϕ ∈ Mult(B). We will call a function f
cyclic in B, if the set {ϕf : ϕ ∈ Mult(B)} is dense in B.

Each Hilbert function space H has a reproducing kernel, i.e. a func-
tion k : X × X → C such that f(w) = 〈f, kw〉 for all w ∈ X. Here
kw(z) = k(z, w). We say a reproducing kernel is normalized, if there is
a z0 ∈ X such that kz0 = 1. A Banach (Hilbert) space of analytic func-
tions will be a Banach (Hilbert) function space which is contained in
Hol(Ω), the collection of holomorphic functions on the open set Ω ⊆ Cd

for some d ∈ N.
In this paper a normalized complete Pick kernel will be a normalized

reproducing kernel of the type kw(z) = 1
1−uw(z)

, where uw(z) is positive

definite, i.e. for all n ∈ N, z1, ..., zn ∈ X, and a1, ..., an ∈ C we have∑
i,j aiajuzj(zi) ≥ 0. An important example of such a complete Pick

kernel is the Szegő kernel kw(z) = (1 − wz)−1. It is the reproducing
kernel for the Hardy space H2 of the unit disc D, and it is fair to
say that the function and operator theories associated with Hilbert
function spaces with complete Pick kernels share many properties with
the corresponding theories of H2. We refer the reader to [1] and [5]
for some examples of this. In particular, it is a useful fact that Hilbert
function spacesH with a normalized complete Pick kernel are contained
in the Smirnov class N+(H) associated with H, [5], where

N+(H) =
{
f =

ϕ

ψ
: ϕ, ψ ∈ Mult(H), ψ cyclic in H

}
.

At this point we mention two further important examples of spaces
with complete Pick kernels where the previous remark applies. The
Dirichlet space of the unit disc, D = {f ∈ Hol(D) :

∫
D |f

′|2dxdy <∞},
it has reproducing kernel kw(z) = 1

wz
log 1

1−wz (see e.g. [1], Corollary
7.41, for the verification that kw(z) is a CNP kernel), and the Drury-
Arveson space H2

d of analytic functions in the unit ball of Cd. It is

defined by the reproducing kernel kw(z) = 1
1−〈z,w〉 , 〈z, w〉 =

∑d
i=1 ziwi.

See [15] and [25] for indepth information about these spaces.
Let H be a Hilbert function space on a set X . The weak product

of H is defined by

H�H =
{ ∞∑

i=1

figi : fi, gi ∈ H,
∞∑
i=1

‖fi‖‖gi‖ <∞
}
,

where the norm on H�H is given by

‖h‖H�H = inf
{ ∞∑

i=1

‖fi‖‖gi‖ : h =
∞∑
i=1

figi

}
.
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One verifies that H �H is a Banach function space, [21] for the case
of spaces of analytic functions, but the general case can be proved the
same way (also see Section 2). It is known that H2(∂Bd)�H2(∂Bd) =
H1(∂Bd) and L2

a(Bd)� L2
a(Bd) = L1

a(Bd), and there are similar results
for weighted Bergman spaces, [12]. We think of H � H an analogue
of H1 for the function theory of the Hilbert function space H. It is
known that for many examples of spaces H one observes an analogue
of the H1-BMO-duality and a connection to Carleson measures and
the theory of Hankel operators on H. In this paper we will add to this
circle of ideas for Hilbert function spaces with normalized complete Pick
kernels. We refer the reader to [12], [7], and [21] for further motivation
and details about weak products.

Note that even for the cases where H equals the Dirichlet or the
Drury-Arveson space it is unclear whether there is a simple description
of the functions in H�H.

Theorem 1.1. Let H be a separable Hilbert function space on the non-
empty set X such that the reproducing kernel for H is a normalized
complete Pick kernel. Then

H�H ⊆ N+(H�H),

where

N+(H�H) =
{ϕ
ψ

: ϕ ∈ Mult(H�H), ψ ∈ Mult(H), ψ cyclic in H
}

Beurling’s theorem implies that the nonzero multiplier invariant sub-
spaces of H2 and H1 are given by ϕH2 and ϕH1 for some inner function
ϕ. It turns out that for the spaces H under consideration a similarly
close relationship exists between the multiplier invariant subspaces of
H and H � H. In [17] and [22] it was shown that if H = D or
H = H2

d , then for every multiplier invariant subspace M of H we
have M = H ∩ closH�HM. In this paper we will refine this type
of connection and we will see that it holds for a much wider class of
complete Pick spaces.

One easily checks that for any Hilbert function space the contrac-
tive inclusion Mult(H) ⊆ Mult(H � H) holds. For certain first order
weighted Besov spaces (including the Dirichlet space of the unit disc
and the Drury-Arveson space H2

d for d ≤ 3) it was shown in [23] that
Mult(H) = Mult(H�H), but we do not know whether such an equality
holds in a more general setting.

Theorem 1.2. Let H be a separable Hilbert function space on the non-
empty set X such that the reproducing kernel for H is a normalized
complete Pick kernel.



4 A. ALEMAN, M. HARTZ, J. MCCARTHY, AND S. RICHTER

Then M ∩ Mult(H�H) is dense in M for every Mult(H�H)-
invariant subspace M of H�H.

In particular, this implies that every non-zero multiplier invariant
subspace of H�H contains a non-zero multiplier. It follows that if
Mult(H � H) contains no zero-divisors (for instance if Mult(H � H)
consists of analytic functions on a domain in Cd), then the lattice of
multiplier invariant subspaces of H�H is cellularly indecomposable,
i.e. whenever M,N are such invariant subspaces with M 6= (0),N 6=
(0), then M∩N 6= (0). For H = D (the Dirichlet space of the unit
disc) this together with Proposition 3.6 of [20] provides a new proof
of the theorem of Luo’s that says that all nonzero multiplier invariant
subspacesM of D�D have index 1, i.e. they satisfy dimM	zM = 1,
[16]. Our Theorem also shows that the same results hold in other
weighted Dirichlet spaces of the unit disc.

Under a technical hypothesis that is satisfied for many weighted
Besov spaces in the unit ball of Cd we obtain a strengthened version of
the previous theorems. Every sequence Φ = {ϕ1, ϕ2, ...} ⊆ Mult(H)
of multipliers of a Hilbert function space H can be used to define
a column operator ΦC : h → (ϕ1h, ϕ2h, ...)

T and a row operator
ΦR : (h1, h2, ...)

T →
∑

i≥1 ϕihi. Here we have used (h1, ...)
T to denote

a transpose of a row vector. We write MC(H) for the set of bounded
column multiplication operators H →

⊕∞
n=1H and MR(H) for the set

of bounded row multiplication operators
⊕∞

n=1H → H.

Theorem 1.3. Let H be a separable Hilbert function space on the non-
empty set X such that the reproducing kernel for H is a normalized
complete Pick kernel.

If MC(H) ⊆MR(H) continuously, then

H�H ⊆ N+(H).

Furthermore, every Mult(H)-invariant subspace of H�H is Mult(H�
H)-invariant, and the map

η : N → closH�HN

establishes a 1-1 and onto correspondence between the multiplier in-
variant subspaces of H and of H�H. We have

(i) M = closH�H(M ∩ Mult(H)) for every multiplier invariant
subspace M of H�H, and

(ii) N = H∩ closH�HN for every multiplier invariant subspace N
of H.
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Trent showed that for the Dirichlet space D of the unit disc D ⊆ C
one has the continuous inclusionMC(D) ⊆MR(D), but thatMR(D) *
MC(D). In fact, he showed that for the Dirichlet space the norm of
the inclusion is at most

√
18, see Lemma 1 of [26]. We will establish

a generalization of Trent’s Theorem to many weighted Besov spaces in
the unit ball Bd of Cd.

A non-negative integrable function ω on Bd is called an admissible
weight, if the weighted Bergman space L2

a(ω) = L2(ωdV ) ∩ Hol(Bd) is
closed in L2(ωdV ), and if point evaluations f → f(z) are bounded on
L2
a(ω) for each z ∈ Bd. Here V is used to denote Lebesgue measure

on Cd restricted to Bd, normalized so that V (Bd) = 1. Radial weights
are non-negative integrable functions such that for each 0 ≤ r < 1
the value ω(rz) is independent of z ∈ ∂Bd, and one easily checks that
a radial weight is admissible, if and only if

∫
|z|>t ωdV > 0 for each

t ∈ [0, 1). If ω is radial, then we have

‖f‖2
L2
a(ω) =

∫
Bd
|f |2ωdV =

∑
n≥0

‖fn‖2
L2
a(ω),

where f =
∑

n≥0 fn is the decomposition of the analytic function f into
a sum of homogeneous polynomials fn of degree n.

Let R =
∑d

i=1 zi
∂
∂zi

denote the radial derivative operator, then Rf =∑
n≥1 nfn. More generally, for each nonzero t ∈ R we may consider the

”fractional” transformation Rt :
∑

n≥0 fn →
∑

n≥1 n
tfn.

For a positive integer N and an admissible weight ω we define

BN
ω = {f ∈ Hol(Bd) : RNf ∈ L2

a(ω)},

‖f‖2
BNω

= ‖ω‖L1(V )|f(0)|2 +

∫
Bd
|RNf |2ωdV.

We also write B0
ω = L2

a(ω). A space H of analytic functions that occurs
as one of the spaces BN

ω for an admissible weight ω and a non-negative
integer N will be called a weighted Besov space.

If ω is an admissible radial weight, then the spaces BN
ω are part of a

one-parameter family of spaces defined for s ∈ R by

‖f‖2
Bsω

= ‖f0‖2
L2
a(ω) +

∑
n≥1

n2s‖fn‖2
L2
a(ω) <∞,(1.1)

where as above f =
∑

n≥0 fn ∈ Hol(Bd).
If ω(z) = 1, s ∈ R, and f ∈ Hol(Bd), then f ∈ Bs

ω if and only if Rsf ∈
L2
a, the unweighted Bergman space. Thus, in this case the collection

Bs
ω consists of standard weighted Bergman or Besov spaces. We have

B
d/2
1 = H2

d , the Drury-Arveson space, B
1/2
1 = H2(∂Bd), the Hardy
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space of the Ball, and for s < 1/2 we obtain the weighted Bergman
spaces Bs

1 = L2
a((1 − |z|2)−2sdV ), where all equalities are understood

to mean equality of spaces with equivalence of norms. These spaces
have been extensively studied in the literature. We refer the reader to
[27], where the Lp-analogues of these spaces were considered as well.
If d = 1 and s = 1, then B1

1 = D, the classical Dirichlet space of the
unit disc. More generally, if d = 1 and s > 1/2, then these spaces are
usually referred to as Dirichlet-type spaces, see [9].

If ωα(z) = (1− |z|2)α for some α > −1, then ωα is called a standard
weight, and we obtain the same spaces as for ω = 1, but with a shift in

indices: Bs
ωα = B

s−α
2

1 . This can be verified by using polar coordinates

in (1.1) and the asymptotics
∫ 1

0
tn(1 − t)αdt = Γ(n+1)Γ(α+1)

Γ(n+α+2)
≈ n−α−1,

which follows e.g. from Stirling’s formula. In particular, it follows that
Bs

1 is a weighted Besov space for any s ∈ R.

Definition 1.4. Let ω be an admissible weight on Bd and let N ∈ N.
We say that BN

ω satisfies the multiplier inclusion condition, if

MC(BN
ω ) ⊆MC(BN−1

ω ) ⊆ · · · ⊆MC(B0
ω)

with continuous inclusions.

Theorem 1.5. Let N ∈ N and let ω be an admissible weight such that
BN
ω satisfies the multiplier inclusion condition.
Then MC(BN

ω ) ⊆MR(BN
ω ) and there is a c > 0 such that

‖ΦR‖BNω ≤ c‖ΦC‖BNω
for all Φ ∈MC(BN

ω ).

It is known and easy to verify that MC(L2
a(ω)) = MR(L2

a(ω)) =
H∞(`2), where

H∞(`2) =
{

(ϕ1, ϕ2, ...) : ϕj ∈ H∞ and sup
z∈Bd

∑
j

|ϕj(z)|2 <∞
}
.

Similarly, it is a standard fact that for each n ∈ N one has MC(Bn
ω) ⊆

H∞(`2). Thus for N = 1 every weighted Besov space satisfies the
multiplier inclusion condition, and hence MC(B1

ω) ⊆ MR(B1
ω) holds

for all admissible weights.
In Section 4 we will provide a short and elementary proof that shows

that every Hilbert space of analytic functions in Bd whose reproducing
kernel is of the type kw(z) = (1−〈z, w〉)α, α < 0, satisfies the multiplier
inclusion condition. This includes the Drury-Arveson space.

A second approach to the multiplier inclusion condition is via com-
plex interpolation. Indeed, if the spaces {Bn

ω} and {Bn
ω ⊗ `2}, n =
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0, 1, ..., N , are part of interpolation scales {Bs
ω} and {Bs

ω ⊗ `2}, 0 ≤
s ≤ N, s ∈ R, obtained by the complex method, then the functorial
property of the interpolation implies that the hypothesis of Theorem
1.5 reduces to MC(BN

ω ) ⊆ MC(B0
ω) = H∞(`2). See [8] for information

about the complex method.
Thus, our theorem implies that if the spaces {BN

ω }N∈N0 and {BN
ω ⊗

`2}N∈N0 are part of interpolation scales obtained by the complex method,
then every bounded column multiplication operator on BN

ω induces a
bounded row operator.

For standard weights and more generally for weights that satisfy a
Bekollé-Bonami condition it was shown in [11] and [10] that {Bs

ω}s∈R is
an interpolation scale, and that the spaces satisfy the scalar version of
the multiplier inclusion condition (for standard weights also see [27]).
The full column operator multiplier inclusion condition follows similarly
in those cases. In [4] we similarly show that in fact for every admissible
radial measure and every s ∈ R the space Bs

ω satisfies multiplier inclu-
sion condition and the conclusion of Theorem 1.5 holds. In that paper
we also show that if a radial measure ω satisfies that for some α > −1
the ratio ω(z)/(1− |z|2)α is nondecreasing for t0 < |z| < 1, then Bs

ω is
a complete Pick space, whenever s ≥ (α + d)/2. By a complete Pick
space we mean a Hilbert function space H such that there is a norm on
H that is equivalent to the original one, and such that the reproducing
kernel for one of the norms is a normalized complete Pick kernel.

As another application of Theorem 1.5 we mention that it provides
a new proof of the main result of [3] in the case where the complete
Pick space is a radially weighted Besov space. Indeed, in [3] the proof
of the characterization of the interpolating sequences for all spaces
with complete Pick kernel is based on the Marcus-Spielman-Srivastava
theorem [18], but in Remark 3.7 and Theorem 3.8 of [3] it is explained
how an application of Theorem 1.5 provides an alternate proof. We
particularly point out that this approach provides a very direct proof
for the case of the Drury-Arveson space on a finite dimensional ball.
For this only the results of Section 4 are needed.

This paper is organized as follows. In Section 2 we prove that the
weak product always carries a weak* topology such that point eval-
uations are weak*-continuous, and we review the connection between
(H�H)∗ and Hankel operators. Corollary 3.4 contains Theorem 1.1
and the Smirnov class inclusions of Theorem 1.3, while in Theorem
3.3 we have provided a technical version which gives more information.
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In Section 3.2 we have proved Theorem 1.2 and the parts of Theo-
rem 1.3 that give information about the invariant subspaces. Corol-
lary 3.8 states that if a complete Pick space H satisfies the condition
MC(H) ⊆ MR(H), then all multiplier invariant subspaces of H are
equal to a countable intersection of null spaces of bounded Hankel op-
erators. This extends results of [17] and [22]. Section 4 is independent
of the results of Sections 2 and 3, it contains our results on weighted
Besov spaces. Theorem 1.5 will be a special case of Theorem 4.2,
where operators between possibly different spaces are considered. In
[26] Trent has provided an example that shows that MR(D) *MC(D).
Since Trent’s example does not immediately generalize from the Dirich-
let space to the Drury-Arveson space, we have provided an example of
a bounded row multiplication operator on H2

d , d > 1, that does not
induce a bounded column operator, see Section 4.2.

2. Background on the weak product of a Hilbert
function space

In [21] some general results about the weak product H�H and its
dual were shown for the case when H is a Hilbert space of analytic
functions. In particular, it was shown that H�H is always a Banach
function space and that its dual can be identified with a space of Hankel
operators, provided the space H satisfied a certain extra hypothesis.
This makes it reasonable to conjecture that H�H has an isometric
predual which can be identified with a space of compact Hankel oper-
ators. We will now show that indeed for any Hilbert function space H
the weak product has an isometric predual and if Mult(H) is densely
contained in H, then the dual and predual of H�H can each be iden-
tified with Hankel operators defined by symbol sets that are contained
in H.

2.1. The predual of H�H.

Theorem 2.1. Let H be a Hilbert function space on a set X. Then the
weak product H�H is a Banach function space on X. It is isometrically
isomorphic to the dual of a Banach space in such a way that point
evaluations on H�H are weak* continuous with respect to the duality.

Proof. Let H⊗πH denote the Banach space projective tensor product
of H with itself, that is, the completion of the algebraic tensor product
with respect to the norm

||h|| = inf
{ n∑
n=1

||fn|| ||gn|| : h =
n∑
n=1

fn ⊗ gn
}
.
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Every element u of H⊗π H can in fact be written in the form

u =
∞∑
n=1

fn ⊗ gn with
∞∑
n=1

||fn|| ||gn|| <∞,

see e.g. [24]. In the following we will use the Hilbert space of complex
conjugates

H = {f : f ∈ H},
which has inner product given by 〈f, g〉 = 〈g, f〉 and can be isomet-
rically identified with the dual H∗ via the correspondence f → Lf ,
Lf (g) = 〈g, f〉H for g ∈ H.

By definition of the weak product, the map

ρ : H⊗π H → H�H, ρ
( ∞∑
n=1

fn ⊗ gn
)

(z) =
∞∑
n=1

fn(z)gn(z)

is a quotient map. For z ∈ X, let Ez = kz ⊗ kz ∈ (H ⊗π H)∗ denote
the functional of evaluation at z. Then

ker ρ =
⋂
z∈X

kerEz,

thus ρ induces an isometric isomorphism (H⊗π H)/ ker ρ ∼= H�H.
Let C1(H,H) denote the space of all trace class operators from H to

H. Then H⊗πH can be isometrically identified with C1(H,H) via the
map

Φ : H⊗π H → C1(H,H), Φ(f ⊗ g)(h) = 〈g, h〉f.
On the other hand, C1(H,H) is the dual space of the space of compact
operators from H to H via trace duality. Thus, H⊗πH becomes a dual
space in this way, and every functional of the form f ⊗ g on H ⊗π H
for f, g ∈ H is weak-∗ continuous. In particular, it follows that ker ρ
is weak-∗ closed and thus H � H can be identified with the dual of
⊥ ker ρ. Since kz ⊗ kz belongs to ⊥ ker ρ for each z, point evaluations
on H�H are weak-∗ continuous with respect to this duality. �

It follows from the Hahn-Banach theorem that the linear span of
the point evaluations is dense in the predual of H�H. Using the uni-
form boundedness principle, we therefore obtain the following standard
corollary.

Corollary 2.2. Let H be a Hilbert function space on a set X, and
let hn ∈ H � H be a sequence of functions. Then the following are
equivalent for a function h on X:

(a) h ∈ H � H and hn → h in the weak* topology given by the
previous theorem,
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(b) ‖hn‖H�H ≤ C and hn(z)→ h(z) for all z ∈ X.

We further remark that if H is separable, then so are H�H and its
predual. It follows that in this case the closed unit ball of H�H is
compact metrizable in the weak* topology.

2.2. The Connection to Hankel operators. Since the dual space
of C1(H,H) is the space B(H,H) via trace duality and since H⊗πH ∼=
C1(H,H), every T ∈ B(H,H) defines a linear functional on H⊗πH by

(2.1) f ⊗ g → 〈g, Tf〉.
Let

ρ : H⊗π H → H�H
be the quotient map from the proof of Theorem 2.1. Then

(H�H)∗ ∼= (ker ρ)⊥ ⊆ (H⊗π H)∗ ∼= B(H,H).

We will now see that if the multipliers are dense in H, then the oper-
ators in (ker ρ)⊥ can be considered to be little Hankel operators, each
of which is identified with a symbol from the space H.

Lemma 2.3. If T ∈ (ker ρ)⊥, then
(a) T ∗f = Tf for every f ∈ H, and
(b) TMϕ = M∗

ϕT for every ϕ ∈ Mult(H).
Furthermore, if Mult(H) is densely contained in H, then for T ∈

(ker ρ)⊥ we have T = 0 if and only if T1 = 0.

Proof. Let T ∈ (ker ρ)⊥. Then for f, g ∈ H and ϕ ∈ Mult(H) we have
f ⊗ ϕg − g ⊗ ϕf ∈ ker ρ, hence 〈ϕg, Tf〉 = 〈ϕf, Tg〉 = 〈Tg, ϕf〉H =
〈g, T ∗ϕf〉. Thus T ∗ϕf = M∗

ϕTf , and (a) follows by taking ϕ = 1.

Next we substitute (a) into T ∗Mϕf = T ∗ϕf = M∗
ϕTf , then (b)

follows by taking adjoints.
The remaining part of the Lemma follows from (b). �

Thus, if Mult(H) is densely contained in H, then an operator in T ∈
(ker ρ)⊥ is uniquely associated with the function T1, and T intertwines
multiplication operators and adjoints of multiplication operators, hence
T deserves to be called a Hankel operator.

Definition 2.4. Let H be a Hilbert function space such that Mult(H)
is densely contained in H. Then define

Han(H) = {T1 ∈ H : T ∈ (ker ρ)⊥}.

For b ∈ Han(H) we write Hb ∈ B(H,H) for the unique operator in
(ker ρ)⊥ that satisfies Hb1 = b, and we set ‖b‖Han(H) = ‖Hb‖.
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Furthermore, we define

Han0(H) = {b ∈ Han(H) : Hb is compact }.

With these definitions we have that Han0(H) is isometrically isomor-
phic to ⊥(ker ρ), and the following Theorem holds.

Theorem 2.5. Let H be a Hilbert function space such that Mult(H) is
densely contained in H. Then the following conjugate linear isometric
isomorphisms hold:

(a) Han0(H)∗ ∼= H�H and
(b) (H�H)∗ ∼= Han(H).
If b ∈ Han(H), then the associated linear functional Lb satisfies

Lb(ϕf) = 〈ϕf, b〉 = 〈f,Hbϕ〉 = 〈ϕ,Hbf〉

for every f ∈ H and ϕ ∈ Mult(H).

Proof. We have explained the isometric isomorphisms above. Let f ∈
H and ϕ ∈ Mult(H). According to (2.1) and the definition of Hb we
have Lb(ϕf) = 〈f,Hbϕ〉 = 〈ϕ,Hbf〉. But then Lemma 2.3 implies

Lb(ϕf) = 〈f,H∗bϕ〉 = 〈f,M∗
ϕH
∗
b 1〉 = 〈ϕf,Hb1〉 = 〈ϕf, b〉.

�

Theorem 2.5 does not address the question of how one can easily
identify which functions are in Han(H). The set

X (H) = {b ∈ H : ∃C ≥ 0|〈ϕf, b〉| ≤ C||ϕ||H ||f ||H∀f ∈ H, ϕ ∈ Mult(H)}

seems more suited for that question, and Theorem 2.5 implies that
Han(H) ⊆ X (H).

We note that Theorems 1.2 and 1.3 of [21] imply that Han(Bs
ω) =

X (Bs
ω) = (Bs

ω ⊗ Bs
ω)∗ for all admissible radial weights ω and all s ∈

R. Using the main result of [2], we will now show that the equality
Han(H) = X (H) also holds whenever H is a complete Pick space with
MC(H) ⊆MR(H).

Theorem 2.6. Let H be a separable Hilbert function space on the non-
empty set X, and suppose that the reproducing kernel for H is a com-
plete Pick kernel, which is normalized at a point z0 ∈ X.

If MC(H) ⊆MR(H), then Han(H) = X (H).

Proof. As mentioned above, by Theorem 2.5 it suffices to show that
X (H) ⊆ Han(H). Let b ∈ X (H). In order to show that b ∈ Han(H),
we note that the definition of X (H) and the universal property of
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the projective tensor product show that there exists a bounded linear
functional L on H⊗π H such that

L(f ⊗ ϕ) = 〈fϕ, b〉
for all f ∈ H and ϕ ∈ Mult(H). We claim that L ∈ (ker ρ)⊥. Assuming
this claim for a moment, we can regard L as a functional on H � H,
hence by Theorem 2.5, there exists c ∈ Han(H) such that

〈ϕf, c〉 = L(ϕf) = 〈ϕf, b〉
for all f ∈ H, ϕ ∈ Mult(H), so that b = c ∈ Han(H).

To prove the claim, let h ∈ ker ρ with ||h||H⊗πH < 1. We wish to
show that L(h) = 0. To this end, observe that there exist fn, gn ∈ H
with ||fn|| = ||gn|| for all n,

h =
∞∑
n=1

fn ⊗ gn

and
∑∞

n=1 ||fn||2 = 1. By [2, Theorem 1.1], there exist ψ, ϕn ∈ Mult(H)
such that ψ(z0) = 0,

||ψh||2 +
∑
n

||ϕnh||2 ≤ ||h||2 (h ∈ H)

and fn = ϕn
1−ψ for all n ∈ N. For r ∈ (0, 1), let

f (r)
n =

ϕn
1− rψ

.

Then [f
(r)
n ]∞n=1 ∈ Mult(H,H(`2)) for each r < 1 by [2, Lemma 3.6 (i)].

Moreover, by the remark at the end of Section 3 of [2], [f
(r)
n ] converges

to [fn] in the norm of H(`2) as r → 1. Thus,∥∥∥∑
n

f (r)
n ⊗ gn −

∑
n

fn ⊗ gn
∥∥∥2

H⊗πH

≤
(∑

n

||f (r)
n − fn||2

)(∑
n

||gn||2
)

r→1−−→ 0,

so by continuity of L, it suffices to show that

L
(∑

n

f (r)
n ⊗ gn

)
= 0

for all r ∈ (0, 1).

To see this, fix r ∈ (0, 1). The series
∑

n f
(r)
n ⊗gn converges absolutely

in the norm of H⊗π H, so that

L
(∑

n

f (r)
n ⊗ gn

)
=
∑
n

L(f (r)
n ⊗ gn) =

∑
n

〈f (r)
n gn, b〉.
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Since [f
(r)
n ] ∈ Mult(H,H(`2)), the assumption MC(H) ⊆ MR(H) im-

plies that the series
∑

n f
(r)
n gn converges in H, so that

L
(∑

n

f (r)
n ⊗ gn

)
=
〈∑

n

f (r)
n gn, b

〉
= 0,

where the last equality follows from the observation that since h ∈ ker ρ,
we also have

∞∑
n=1

f (r)
n (z)gn(z) =

1− ψ(z)

1− rψ(z)

∞∑
n=1

fn(z)gn(z) = 0

for all z ∈ X. �

3. Weak products of complete Pick spaces

3.1. Functions as ratios of multipliers.

Theorem 3.1. Let H be a separable Hilbert function space on a set X
with reproducing kernel kz 6= 0 for all z ∈ X, and let {ΦC

n }n≥1, {ΨC
n }n≥1 ⊆

MC(H) be sequences of column operators such that∑
n≥1

‖ΦC
n f‖2

H⊗`2 ≤ ‖f‖
2
H and

∑
n≥1

‖ΨC
n f‖2

H⊗`2 ≤ ‖f‖
2
H

for all f ∈ H.
Then for each n ∈ N we have ΨR

nΦC
n ∈ Mult(H�H) and∑

n≥1

‖ΨR
nΦC

nh‖H�H ≤ ‖h‖H�H

for all h ∈ H �H.
Furthermore, ifH satisfies the continuous inclusion MC(H) ⊆MR(H),

then for each n ∈ N we have ΨR
nΦC

n ∈ Mult(H) and there is a c > 0
such that for all f ∈ H we have∑

n≥1

‖ΨR
nΦC

n f‖2
H ≤ c‖f‖2

H and

‖
N∑
n=1

ΨR
nΦC

n f‖2
H ≤ c‖f‖2

H for each N ∈ N.

Proof. For each n ∈ N let Φn = {ϕni}i≥1,Ψn = {ψni}i≥1 define bounded
column operators that satisfy the hypothesis of the Theorem. Then for
any f, g ∈ H we have∑

i≥1

‖ϕniψnifg‖H�H ≤
∑
i≥1

‖ϕnif‖‖ψnig‖ ≤ ‖ΦC
n f‖‖ΨC

n g‖.
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It is well-known and easy to show that ‖Φn(z)‖`2 ≤ ‖ΦC
n ‖MC(H) and

‖Ψn(z)‖`2 ≤ ‖ΨC
n ‖MC(H) for each z ∈ X. Thus ΨR

n (z)ΦC
n (z) =

∑
i≥1 ψni(z)ϕni(z)

converges absolutely, (ΨR
n (z)ΦC

n (z))f(z)g(z) =
∑

i≥1(ϕnif)(z)(ψnig)(z),
and hence∑

n≥1

‖(ΨR
nΦC

n )fg‖H�H ≤
∑
n,i≥1

‖ϕniψnifg‖H�H

≤
∑
n≥1

‖ΦC
n f‖H⊗`2‖ΨC

n g‖H⊗`2

≤ ‖f‖H‖g‖H.

Let h ∈ H�H and let {fj}, {gj} ∈
⊕∞

j=1H with h =
∑∞

j=1 fjgj. Then

∑
n≥1

‖(ΨR
nΦC

n )h‖H�H ≤
∞∑

n,j=1

‖(ΨR
nΦC

n )fjgj‖H�H

≤
∞∑
j=1

‖fj‖H‖gj‖H.

Taking the infimum over all possible representations h =
∑∞

j=1 fjgj, we

obtain
∑

n≥1 ‖(ΨR
nΦC

n )h‖H�H ≤ ‖h‖H�H.
If every bounded column operator on H induces a bounded row op-

erator and the inclusion has norm
√
c, then since for each n we have

‖ΨC
n ‖ ≤ 1 it follows easily that ΨR

nΦC
n ∈ Mult(H) with ‖ΨR

nΦC
n f‖2 ≤

c‖ΦC
n f‖2

H⊗`2 . Thus, an application of the hypothesis finishes the proof
of the Theorem. �

It was shown in [5], see also [2], that if H is a Hilbert function space
on X with a complete Pick kernel, normalized at a point z0 ∈ X,
then every f ∈ H can be written as f = ϕ

1−ψ , where ϕ, ψ ∈ Mult(H),

||ψ||Mult(H) ≤ 1 and ψ(z0) = 1. In this case, |ψ(z)| < 1 for all z ∈ X,
hence ϕ

1−ψ is defined on X, see Lemma 2.2 of [5]. [2] also contains a

vector version of this result. The following lemma is an analogue of
this result for the weak product H�H.

Lemma 3.2. Let H be a separable Hilbert function space on the non-
empty set X, and suppose that the reproducing kernel for H is a com-
plete Pick kernel, which is normalized at a point z0 ∈ X.

If {hn}n≥1 ⊆ H � H,
∑

n≥1 ‖hn‖H�H < 1, then there are ψ ∈
Mult(H) and {ΦC

n }n≥1 ⊆MC(H) such that
(a) ‖ψ‖Mult(H) ≤ 1 and ψ(z0) = 0,
(b)

∑
n≥1 ‖ΦC

nu‖2
H⊗`2 ≤ ‖u‖

2
H for all u ∈ H,
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(c) for each n ∈ N hn = ϕn
(1−ψ)2

with ϕn = ΦR
nΦC

n ∈ Mult(H�H) and∑
n≥1

‖ϕnh‖H�H ≤ ‖h‖H�H for all h ∈ H �H.

(d) If additionally it is true that MC(H) ⊆ MR(H), then there is a
c > 0 such that ∑

n≥1

‖ϕnf‖2
H ≤ c‖f‖2

H

for each f ∈ H. Furthermore, for each an N ∈ N we have

‖
N∑
n=1

ϕn‖Mult(H) ≤ c.

Proof. Note that if f, g ∈ H with ‖f‖ = ‖g‖, then fg =
(
f+g

2

)2−
(
f−g

2

)2

with ‖f‖‖g‖ = ‖f+g
2
‖2 + ‖f−g

2
‖2 by the parallelogram law. Thus, for

any h ∈ H �H and any ε > 0 there are fj ∈ H with
∑

j≥1 ‖fj‖2
H ≤

‖h‖H�H + ε and h =
∑

j≥1 f
2
j . Hence for each n we choose a sequence

{fnj}j≥1 ⊆ H such that hn =
∑

j≥1 f
2
nj and

∑
n,j≥1 ‖fnj‖2

H ≤ 1.

Then by Theorem 1.1 of [2], there there are contractive multipliers
ψ, {ϕnj}n,j≥1 such that ψ(z0) = 0, ‖ψg‖2 +

∑
n,j≥1 ‖ϕnjg‖2 ≤ ‖g‖2

for all g ∈ H, and fnj =
ϕnj
1−ψ for all n, j ≥ 1. Then hn = ϕn

(1−ψ)2

with ϕn =
∑

j≥1 ϕ
2
nj = ΦR

nΦC
n , where Φn = {ϕnj}j≥1. Thus the lemma

follows from Theorem 3.1 with Ψn = Φn. �

The following Theorem is a slight refinement of the previous Lemma
in the case of a single function.

Theorem 3.3. Let H be a separable Hilbert function space on the non-
empty set X, and suppose that the reproducing kernel for H is a com-
plete Pick kernel, which is normalized at a point z0 ∈ X.

If h ∈ H � H, then there are ϕ ∈ Mult(H � H), ‖ϕ‖Mult(H�H) ≤
‖h‖H�H and ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0 such that h =

ϕ
(1−ψ)2

.

Proof. We assume ‖h‖H�H = 1. For each m ∈ N we apply the sin-
gle function version of Lemma 3.2 with (1 − 1

m+1
)h and thus obtain

functions ϕm, ψm with ‖ψm‖Mult(H) ≤ 1, ψm(z0) = 0, ‖ϕm‖Mult(H�H) ≤
1 + 1/m, and h = ϕm

1−ψm . It follows from the hypothesis that H and

H�H are separable, thus we can assume that there are subsequences
such that ϕmj → ϕ in the weak* topology of H � H and ψmj → ψ
weakly in H.

Weak* and weak convergence imply pointwise convergence, and hence
the norm bound and Corollary 2.2 imply ϕmjg → ϕg weak* in H�H
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for each g ∈ H �H. Since this is valid for all g ∈ H �H we conclude
‖ϕ‖Mult(H�H) ≤ 1. Similarly ‖ψ‖Mult(H) ≤ 1. Since ψ(z0) = 0 Lemma
2.2 of [5] implies that |ψ(z)| < 1 for all z ∈ X. Thus ϕ/(1 − ψ)2 is
well-defined and in that case it clearly must equal h. �

Corollary 3.4. Let H be a separable Hilbert function space on the
non-empty set X, and suppose that the reproducing kernel for H is a
normalized complete Pick kernel. Then

H�H ⊆ N+(H�H).

If additionally MC(H) ⊆MR(H), then

H�H ⊆ N+(H).

Proof. Suppose the reproducing kernel is normalized at the point z0 ∈
X. Let h ∈ H�H. By Lemma 3.2 we have h = ϕ

(1−ψ)2
for ψ ∈ Mult(H),

ΦC ∈ MC(H) with ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0, and ϕ = ΦRΦC ∈
Mult(H�H) by Theorem 3.1.

It now follows immediately from Lemma 2.3 of [5] that 1−ψ is cyclic
in H. Furthermore, it is easy to see that products of cyclic multipliers
are cyclic, hence the corollary follows. �

3.2. Multiplier Invariant subspaces. Recall that if M is a closed
subspace of a Banach function space B, then we say M is multiplier
invariant, if ϕM⊆M for all multipliers ϕ ∈ Mult(B). If f ∈ B, then
we write [f ]B for the smallest multiplier invariant subspace of B that
contains f , i.e.

[f ]B = closB{ϕf : ϕ ∈ Mult(B)}.
Thus, since Mult(H) ⊆ Mult(H�H) we have

closH�H{ϕf : ϕ ∈ Mult(H)} ⊆ [f ]H�H.

We will start this section by showing that for complete Pick spaces H
with MC(H) ⊆MR(H) these two sets are always the same.

Lemma 3.5. Let H be a separable Hilbert function space on a set X.
If h1, h2 ∈ H �H and ψn ∈ Mult(H) with

(i) ψnh2 ∈ closH�H{uh1 : u ∈ Mult(H)} for each n,
(ii) ψn(z)→ 1 for each z ∈ X and

(iii) ‖ψn‖Mult(H) ≤ C for each n,

then h2 ∈ closH�H{uh1 : u ∈ Mult(H)} ⊆ [h1]H�H.

Proof. Let M be the convex hull of {ψn : n ∈ N} inside of Mult(H).
It follows from assumptions (ii) and (iii) that 1 belongs to the WOT-
closure of M . By convexity of M , there is a sequence (ϕn) in M
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that converges to 1 in the strong operator topology of H. It is then
straightforward to check that the sequence (ϕnh2) converges to h2 in
the norm of H�H, so assumption (i) implies that h2 ∈ closH�H{uh1 :
u ∈ Mult(H)}. �

Lemma 3.6. Let H be a separable Hilbert function space on a set X,
and let z0 ∈ X.

(a) If f, g ∈ H, ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0 such that
f = g

1−ψ , then [f ]H = [g]H.

(b) If h, g ∈ H � H, ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0 such
that h = g

(1−ψ)2
, then h ∈ closH�H{ug : u ∈ Mult(H)} and [h]H�H =

[g]H�H.

Proof. (a) Let f, g ∈ H, ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0 such
that f = g

1−ψ . Then g = (1− ψ)f ∈ [f ]H. Thus [g]H ⊆ [f ]H.

Let 0 < r < 1, then 1/(1− rψ) ∈ Mult(H) and g
1−rψ ∈ [g]H. A short

calculation shows that ‖ g
1−rψ − f‖ = ‖ (1−r)ψ

1−rψ f‖ ≤ ‖f‖. Thus, it follows

that g
1−rψ converges weakly to f as r → 1−. Hence f ∈ [g]H. This

proves (a).
(b) Let h, g ∈ H �H, ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1, ψ(z0) = 0 such

that h = g
(1−ψ)2

. As in (a) the inclusion g = (1 − ψ)2h ∈ [h]H�H is

trivial. For 0 < r < 1 we have ‖ 1−ψ
1−rψ‖Mult(H) = ‖1− (1−r)ψ

1−rψ ‖Mult(H) ≤ 2,

hence (b) now follows from Lemma 3.5 with ψn =
(

1−ψ
1−rnψ

)2

for rn → 1−

since ψnh = g
(1−rnψ)2

and 1
(1−rnψ)2

∈ Mult(H) for each n. �

Theorem 3.7. Let H be a separable Hilbert function space on the non-
empty set X, and suppose that the reproducing kernel for H is a com-
plete Pick kernel, which is normalized at a point z0 ∈ X.

(a) Then M∩Mult(H�H) is dense in M for every multiplier in-
variant subspace M of H�H. If Mult(H�H) has no zero-divisors,
the lattice of multiplier invariant subspaces of H�H is cellularly in-
decomposable, i.e. whenever M,N are such invariant subspaces with
M 6= (0),N 6= (0), then M∩N 6= (0).

(b) If additionally MC(H) ⊆MR(H), then every Mult(H)-invariant
subspace of H�H is Mult(H�H)-invariant and the map

η : N → closH�HN
establishes a 1-1 and onto correspondence between the multiplier in-
variant subspaces of H and of H�H. We have

(i) M = closH�H(M ∩ Mult(H)) for every multiplier invariant
subspace M of H�H, and
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(ii) N = H∩ closH�HN for every multiplier invariant subspace N
of H.

It is clear from (i) and (ii) that η−1(M) = H ∩M. Furthermore, it
is easy to see that η preserves spans and intersections. We note that
it follows from Corollary 2.7 of [14] and Corollary 5.3 of [13] that for a
normalized complete Pick kernel the weak*closed ideals of Mult(H) are
in 1-1 and onto correspondence with the multiplier invariant subspaces
of H. An alternate proof of this fact is in [6], and the current proof of
(ii) is inspired by that approach.

Proof. (a) LetM be a multiplier invariant subspace of H�H, and let
h ∈M. Then by Lemma 3.2 h = ϕ/(1−ψ)2 for some ϕ ∈ Mult(H�H)
and ψ ∈ Mult(H) with ψ(z0) = 0. Then by Lemma 3.6 we have
h ∈ [ϕ]H�H = [h]H�H ⊆ M and hence there is a sequence un ∈
Mult(H�H) such that unϕ → h. Clearly unϕ ∈ M ∩Mult(H�H).
This proves the first part of (a) and the second part of (a) easily follows
from this.

(b) Now suppose that MC(H) ⊆ MR(H). In order to show that
every Mult(H)-invariant subspace of H�H is Mult(H�H)-invariant
it suffices to take h ∈ H � H and u ∈ Mult(H � H) and show that
uh ∈ closH�H{vh : v ∈ Mult(H)}.

Since the reproducing kernel of H is normalized, H contains the con-
stant functions, so we must have u ∈ H�H and hence by the hypothesis
and Lemma 3.2 u = ϕ

(1−ψ)2
for some ϕ, ψ ∈ Mult(H), ‖ψ‖Mult(H) ≤ 1

and ψ(z0) = 0. Then uh = ϕh
(1−ψ)2

and Lemma 3.6 (b) implies that

uh ∈ closH�H{vϕh : v ∈ Mult(H)} ⊆ closH�H{vh : v ∈ Mult(H)}.
This establishes the first part of (b). Furthermore, we note that if M
is a multiplier invariant subspace of H�H, then H∩M is a multiplier
invariant subspace of H and

closH�H(M∩Mult(H)) ⊆ closH�H(M∩H) ⊆M.

Thus, statement (i) will show that η is onto and statement (ii) will
show it is 1-1.

(i) The fact that M∩Mult(H) is dense in M for every multiplier
invariant subspaceM of H�H follows as in (a), except that now any
h ∈ H �H is of the form h = ϕ

(1−ψ)2
with ϕ ∈ Mult(H). This proves

(i).
(ii) Let N be a multiplier invariant subspace of H, we have to show

thatH∩closH�HN ⊆ N . To this end let fn ∈ N and f ∈ H with fn →
f in H�H. We have to show that f ∈ N . By possibly considering a
subsequence we may assume that

∑
n≥1 ‖fn+1 − fn‖H�H < 1. Now we
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apply Lemma 3.2 with hn = fn+1 − fn. Thus there are ψ ∈ Mult(H)
and {ΦC

n }n≥1 ⊆MC(H) such that
(a) ‖ψ‖Mult(H) ≤ 1 and ψ(z0) = 0,
(b)

∑
n≥1 ‖ΦC

nu‖2
H⊗`2 ≤ ‖u‖

2
H for all u ∈ H,

(c) for each n ∈ N hn = ϕn
(1−ψ)2

with ϕn ∈ Mult(H) and

‖
N∑
n=1

ϕn‖Mult(H) ≤ c

for each N ∈ N.
Set g1 = (1 − ψ)(f − f1) and g2 = (1 − ψ)g1. Then g1, g2 ∈ H and

by Lemma 3.6 (a) it suffices to prove that g2 ∈ N . But g2 =
∑

n≥1 ϕn

with
∑N

n=1 ϕn =
∑N

n=1(1 − ψ)2(fn+1 − fn) ∈ N for each N . Since

1 ∈ H condition (c) from above implies that the partial sums
∑N

n=1 ϕn
converge weakly in H to g2. Thus g2 ∈ N . �

The following Corollary was known for the Dirichlet D of the unit
disc and Drury-Arveson space H2

d of the finite dimensional ball Bd, see
[17], [22].

Corollary 3.8. Let H be a separable Hilbert function space on the
non-empty set X, and suppose that the reproducing kernel for H is a
complete Pick kernel, which is normalized at a point z0 ∈ X.

If MC(H) ⊆MR(H), then for every multiplier invariant subspaceM
of H, there is a sequence {bn} of symbols of bounded Hankel operators
such that

M =
⋂
n

kerHbn .

Proof. Since we are assuming that H has a normalized complete Pick
kernel it follows that Mult(H) is dense in H. Thus, by Theorem 2.5
the dual of H�H can be identified with Han(H), the set of symbols of
bounded Hankel operators H → H. The duality is given by the inner
product of H, and we have

〈ϕf, b〉 = 〈ϕ,Hbf〉 for all f ∈ H, ϕ ∈ Mult(H), b ∈ Han(H).

Let N = closH�HM ⊆ H�H and consider the annihilator N⊥ of
N in Han(H). Since Han(H) ⊆ H and because of the particular form
of the duality, it is easy to see that N⊥ ⊆M⊥. Furthermore, if f ∈ H
with f ⊥ N⊥, then f ∈ N ∩ H = M by Theorem 3.7. Hence N⊥ is
dense in M⊥ in the topology of H, and hence there is a countable set
{bn} ⊆ N⊥ such that {bn} is dense in M⊥.
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We claim that M =
⋂
n kerHbn . If f ∈ M, then for each ϕ ∈

Mult(H) we have 〈ϕ,Hbnf〉 = 〈ϕf, bn〉 = 0 for each n since bn ∈ N⊥ ⊆
M⊥. Thus Hbnf = 0 for each n, and hence M⊆

⋂
n kerHbn .

Note that H∗b 1 = b for every b ∈ Han(H). Thus, by the choice of the
bn’s

M⊥ =
∨
n

{bn} ⊆
∨
n

ran H∗bn =

(⋂
n

kerHbn

)⊥
.

This concludes the proof of the Corollary. �

4. Column operators between weighted Besov spaces

4.1. Multiplier estimates for weighted Besov spaces. Let ω be
an arbitrary admissible weight, and let N ∈ N. The admissibility of
ω implies that L2

a(ω) = B0
ω is a Hilbert space of analytic functions

on Bd. By use of the identity f(z) = f(0) +
∫ 1

0
Rf(tz)dt

t
one shows

that there is an absolute constant C > 0 such that |f(z)| ≤ |f(0)| +
C supλ∈C,|λ|≤1 |Rf(λz)| for any f ∈ Hol(Bd). With this estimate one

easily establishes that each BN
ω is also a Hilbert function space on Bd,

whenever ω is admissible.
Then in order to check whether an analytic function ϕ ∈ Mult(BN

ω )
we must check that there is C > 0 with

∫
Bd
|RN(ϕf)|2ωdV ≤ C‖f‖2

BNω

for all f ∈ BN
ω . By the Leibnitz rule for the nth derivative of a product

and the triangle inequality we have∫
Bd
|RN(ϕf)|2ωdV ≤ c

N∑
k=0

∫
Bd
|(Rkϕ)RN−kf |2ωdV.(4.1)

For standard weights ω and for so-called Bekollé-Bonami weights it
has been shown in [19] and [10] that the right hand side of this is
bounded by c‖f‖2

BNω
, if and only if the terms of the sum corresponding

to k = 0 and k = N are bounded by c‖f‖2
BNω

, and that these two condi-

tions together characterize Mult(BN
ω ). Note that these conditions can

be equivalently expressed as ϕ ∈ H∞ and |RNϕ|2ωdV is a BN
ω -Carleson

measure. We will show in [4] that the same is true for all admissible
radial weights. In fact, it is a rather short argument that shows that a
bound on the left hand side of (4.1) implies a bound on the right hand
side of (4.1), and this argument is valid for all weighted Besov spaces
BN
ω that satisfy a scalar version of the multiplier inclusion condition

(see Definition 1.4). It turns out that the vector-valued versions of
these results are true as well, and that will be an important ingredient
in the proof of Theorem 4.2. We start by setting up the notation that
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we will use. A part of this involves extending the definitions given in
the Introduction to multipliers between different spaces.

If E is a separable Hilbert space and if H is a reproducing kernel
Hilbert space on Bd, then we will identify H⊗ E with a space H(E) of
E-valued functions on Bd, where the identification is given by f(z)x ∼=
f(z) ⊗ x for f ∈ H and x ∈ E . We will use the notations H ⊗ E and
H(E) interchangeably.

Let H and K be Hilbert spaces of analytic functions. We will write

Mult(H,K) = {ϕ : ϕH ⊆ K}.
Then any sequence Φ = {ϕ1, ϕ2, ...} ⊆ Mult(H,K) of multipliers can
be used to define a column operator ΦC : h → (ϕ1h, ϕ2h, ...)

T and
a row operator ΦR : (h1, h2, ...)

T →
∑

i≥1 ϕihi. Here we have used

(h1, ...)
T to denote a transpose of a row vector. We write MC(H,K)

for the set of bounded column multiplication operators H →
⊕∞

n=1K
and MR(H,K) for the set of bounded row multiplication operators⊕∞

n=1H → K. Thus ΦC ∈ MC(H,K) if and only if there is a c > 0
such that

∞∑
j=1

‖ϕjh‖2
K ≤ c‖h‖2

H for all h ∈ H,

and ΦR ∈MR(H,K) if and only if there is a c > 0 such that

‖
∞∑
j=1

ϕjhj‖2
K ≤ c

∞∑
j=1

‖hj‖2
H for all hj ∈ H.

We will write ‖ΦC‖(H,K) and ‖ΦR‖(H,K) for the norms of these opera-
tors. Note that by considering the components of Φ ∈ Mult(H,K(`2))
with respect to the standard orthonormal basis of `2, we obtain an
identification between MC(H,K) and Mult(H,K(`2)). In the remain-
der of this paper we will frequently pass back and forth between these
different viewpoints. We just need to remember that when we are given
Φ ∈ Mult(H,K(`2)) and we want to consider a row operator induced
by Φ that we have to fix a particular orthonormal basis.

We will now set up the framework for the spaces for which our results
hold. Recall from the Introduction that a Hilbert space H of functions
on Bd will be called a weighted Besov space, if there is an admissible
weight ω on Bd and a nonnegative integer N such that H = BN

ω with
equivalence of norms. Note that it is possible for a weighted Besov
space to have H = BN

ω = BK
ω̃ for N 6= K and ω 6= ω̃. In fact, in [4]

we will show that for each admissible radial weight ω there is a one
parameter family {ωs}s≥0 of admissible weights such that BN

ω = BN−s
ωs

for all s ≥ 0.
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Since the weight function ω is integrable it follows that H∞(Bd) ⊆
B0
ω, and hence any weighted Besov space contains the polynomials.

This implies in particular that kz(z) 6= 0 for all z ∈ Bd, whenever k is
the reproducing kernel of any weighted Besov space.

Let H and K be weighted Besov spaces. We say that the pair
(H,K) satisfies the multiplier inclusion condition, if there are admissi-
ble weights ω and ω̃ and N ∈ N such that H = BN

ω , K = BN
ω̃ and

Mult(BN
ω , B

N
ω̃ (`2)) ⊆ Mult(BN−1

ω , BN−1
ω̃ (`2)) ⊆ · · · ⊆ Mult(B0

ω, B
0
ω̃(`2)),

and if the inclusions are continuous, i.e. whenever 1 ≤ n ≤ N, then
there is a c > 0 such that for all Φ ∈ Mult(Bn

ω, B
n
ω̃(`2)) we have

‖Φ‖Mult(Bn−1
ω ,Bn−1

ω̃ (`2)) ≤ c‖Φ‖Mult(Bnω ,B
n
ω̃(`2))(4.2)

We will say that the pair (BN
ω , B

N
ω̃ ) satisfies the scalar multiplier

inclusion condition, if

Mult(BN
ω , B

N
ω̃ ) ⊆ Mult(BN−1

ω , BN−1
ω̃ ) ⊆ · · · ⊆ Mult(B0

ω, B
0
ω̃)

with continuous inclusions.
We mentioned in the Introduction that a well-known approach to ver-

ify that a weighted Besov space satisfies the multiplier inclusion condi-
tion uses the functorial property of the complex interpolation method.
At this point we will also indicate a somewhat more elementary method
that can be used to verify that a pair (H,K) satisfies the multiplier in-
clusion condition (4.2). This method works sometimes, when simple
formulas for the reproducing kernels of the spaces are known. We will
prove that (Bs

1, B
t
1) satisfies the multiplier inclusion condition, when-

ever t ≤ s < (d + 1)/2. This includes the interesting case where
t = s = d/2 and the spaces both equal the Drury-Arveson space H2

d .
We mentioned before that for s < (d + 1)/2 the space Bs

1 has re-
producing kernel ksw(z) = 1

(1−〈z,w〉)d+1−2s (up to equivalence of norms).

Furthermore, for s < 1/2 one has Bs
1 = L2

a((1 − |z|2)−2s) (see e.g.
[22], Section 2). Choose a positive integer N > s − 1/2 and set
ω(z) = (1 − |z|2)2(N−s) and ω̃(z) = (1 − |z|2)2(N−t). Then ω, ω̃ are
admissible weights and since s − N < 1/2 we have Bs−N

1 = L2
a(ω).

This implies Bs
1 = BN

ω . Similarly, Bt
1 = BN

ω̃ , and it suffices to show
that continuous inclusions of the type

Mult(Bs
1, B

t
1(`2)) ⊆ Mult(Bs−1

1 , Bt−1
1 (`2))

hold for all t ≤ s < (d+ 1)/2. We establish the scalar version

Mult(Bs
1, B

t
1) ⊆ Mult(Bs−1

1 , Bt−1
1 ).
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Let ϕ ∈ Mult(Bs
1, B

t
1) of multiplier norm≤ 1. Then ktw(z)−ϕ(z)ϕ(w)ksw(z)

is positive definite. Note that (1−〈z, w〉)−2 is positive definite and (1−
〈z, w〉)−2ksw(z) = ks−1

w (z) and (1 − 〈z, w〉)−2ktw(z) = kt−1
w (z). Thus by

the Schur product theorem we can conclude that kt−1
w (z)−ϕ(z)ϕ(w)ks−1

w (z)
is positive definite. That is equivalent to saying that ϕ is a contractive
multiplier from Bs−1

1 into Bt−1
1 .

Thus the scalar multiplier inclusion condition (4.2) holds, and the
column vector version can be shown similarly.

The following lemma says that the multiplier inclusion condition
(4.2) implies that given a bound on the left hand side of inequality
(4.1) one also has a bound on the right hand side of that inequality.

Lemma 4.1. Let ω and ω̃ be admissible weights, let N ∈ N, and
suppose that (BN

ω , B
N
ω̃ ) satisfies the multiplier inclusion condition (4.2).

Then there is a c > 0 such that whenever Φ = {ϕi}i∈N ∈MC(BN
ω , B

N
ω̃ )

satisfies ‖ΦC‖(BNω ,B
N
ω̃ ) ≤ 1, then for all integers j, k ≥ 0 with j+k ≤ N

and each h ∈ BNω we have

∞∑
i=1

‖(Rjϕi)R
kh‖2

B
N−(j+k)
ω̃

≤ c‖h‖2
BNω
.

Of particular interest is the case k = 0. In compact form it implies
that under the hypothesis of the Lemma there is c > 0 such that for
each j with 0 ≤ j ≤ N

‖RjΦ‖Mult(BNω ,B
N−j
ω̃ (`2)) ≤ c‖Φ‖Mult(BNω ,B

N
ω̃ (`2)).

Proof. Suppose ‖Φ‖Mult(BNω ,B
N
ω̃ (`2)) = ‖ΦC‖(BNω ,B

N
ω̃ ) ≤ 1. The multiplier

inclusion condition (4.2) implies that there is c > 0 such that for each
0 ≤ k ≤ n we have ‖Φ‖Mult(BN−kω ,BN−kω̃ (`2)) ≤ c and hence for each

h ∈ BN
ω we have

∞∑
i=1

‖ϕiRkh‖2
BN−kω̃

≤ c‖Rkh‖2
BN−kω

. c‖h‖2
BNω
.

Thus the Lemma holds for j = 0 and any 0 ≤ k ≤ N , and we claim
that the case of j > 0 can be reduced to the case of j = 0.

If j > 0 and j + k ≤ N , then

(Rjϕi)R
kh = R((Rj−1ϕi)R

kh)− (Rj−1ϕi)R
k+1h
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and hence
∞∑
i=1

‖(Rjϕi)R
kh‖2

B
N−(j+k)
ω̃

≤ 2
∞∑
i=1

‖R((Rj−1ϕi)R
kh)‖2

B
N−(j+k)
ω̃

+ ‖(Rj−1ϕi)R
k+1h‖2

B
N−(j+k)
ω̃

.
∞∑
i=1

‖(Rj−1ϕi)R
kh‖2

B
N−(j−1+k)
ω̃

+ ‖(Rj−1ϕi)R
k+1h‖2

B
N−((j−1)+k+1)
ω̃

.

This means that the proof of the Lemma for j > 0 has been reduced
to the case of j − 1. Hence finitely many iterations of this argument
conclude the proof. �

Theorem 4.2. Let H and K be weighted Besov spaces such that (H,K)
satisfies the multiplier inclusion condition (4.2).

Then there is a c > 0 such that

‖ΦR‖(H,K) ≤ c‖ΦC‖(H,K)

for all Φ = {ϕ1, ϕ2, ...} ∈MC(H,K).

Proof. By hypothesis we may choose N ∈ N and admissible weights
ω, ω̃ so that H = BN

ω , K = BN
ω̃ , and so that Lemma 4.1 applies.

Let Φ = {ϕi} be a sequence of analytic functions on Bd with

‖ΦCh‖2
K(`2) =

∞∑
i=1

‖ϕih‖2
K ≤ ‖h‖2

H for all h ∈ H.

We have to show the existence of c > 0 such that

‖
∞∑
j=1

ϕjhj‖2
K ≤ c

∞∑
j=1

‖hj‖2
H for all {hj} ∈

∞⊕
j=1

H.

We have
‖f‖2

K ≈ |f(0)|2 + ‖RNf‖2
L2
a(ω̃).

Let k1
z be the reproducing kernel for H and k2

z be the reproducing
kernel for K. Then∑

i=1

|ϕi(z)|2 =
∑
i=1

|〈ϕik1
z , k

2
z〉K|2

‖k1
z‖4
H

≤ ‖k
2
z‖2
K

‖k1
z‖2
H
.

This implies that for any {hj} ∈
⊕∞

j=1H

∞∑
j=1

|ϕj(z)hj(z)| ≤ ‖k
2
z‖K

‖k1
z‖H

(
∞∑
j=1

|hj(z)|2
)1/2

≤ ‖k2
z‖K

(
∞∑
j=1

‖hj‖2
H

)1/2

.
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Taking z = 0 we note that it suffices to show that

‖RN(
∞∑
j=1

ϕjhj)‖2
L2
a(ω̃) ≤ C

∞∑
j=1

‖hj‖2
H.

By the above the series
∑∞

j=1 ϕjhj converges uniformly on compact
subsets of Bd, thus by analyticity and the Leibnitz rule we have

|RN

(
∞∑
j=1

ϕjhj

)
|2 = |

N∑
k=0

(
N
k

) ∞∑
j=1

(Rkϕj)(R
N−khj)|2

≤ c

N∑
k=0

(
∞∑
j=1

|Rkϕj||RN−khj|

)2

= c
N∑
k=0

∞∑
j=1,i=1

|Rkϕj||RN−khj||Rkϕi||RN−khi|

≤ c
N∑
k=0

∞∑
j=1,i=1

|RkϕjR
N−khi|2.

Now we integrate both sides of the inequality over Bd against the mea-
sure ω̃dV and obtain

‖RN

(
∞∑
j=1

ϕjhj

)
‖2
L2
a(ω̃) ≤ c

N∑
k=0

∞∑
i=1

(
∞∑
j=1

‖RkϕjR
N−khi‖2

L2
a(ω̃)

)

.
N∑
k=0

∞∑
i=1

‖hi‖2
BNω
.

∞∑
i=1

‖hi‖2
H

by Lemma 4.1. �

4.2. A bounded row, but unbounded column operator. In this
Section we will show that if d ≥ 2 then there are sequences of multi-
pliers Φ = {ϕ1, ϕ2, ...} of the Drury-Arveson space H2

d such that ΦR is
bounded

⊕∞
j=1H

2
d → H2

d , but ΦC is unbounded H2
d →

⊕∞
j=1H

2
d . The

proof is patterned after an example of Trent for the Dirichlet space,
[26]. The case at hand requires more work due to the fact that for the
Drury-Arveson kernel k the expression 1 − 1/kw(z) is a sum of only

finitely many terms of the form ϕi(z)ϕi(w).
For n ∈ N let Sn = {µ = (µ1, ..., µn) : µj ∈ {1, 2, ..., d}} be the set

of n−tuples of elements in {1, ..., d}. Set S =
⋃∞
n=1 Sn and for µ ∈ S

write l(µ) = n if µ ∈ Sn, the length of µ.
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Since S is countable it will suffice to exhibit a family of functions
{ϕµ}µ∈S on Bd such that

‖
∑
µ∈S

ϕµhµ‖2 ≤ C
∑
µ∈S

‖hµ‖2 whenever hµ ∈ Hγ and
∑
µ∈S

‖ϕµ‖2 =∞.

For µ ∈ Sn and z ∈ Cd set zµ = zµ1zµ2 · · · zµn .
Define ϕµ(z) = 1

l(µ)
zµ. Note that for each µ ∈ Sn there is a multi

index α = (α1, ..., αd) ∈ Nd
0 with |α| = n and such that ϕµ(z) = 1

n
zα.

Conversely, if α ∈ Nd
0 is a multi index with |α| = n, then there are

|α|!
α!

distinct µ ∈ Sn with ϕµ(z) = 1
n
zα. Recall that in H2

d we have

‖zα‖2 = α!
|α|! .

Thus ∑
µ∈S

‖ϕµ‖2 =
∞∑
n=1

1

n2

∑
µ∈Sn

‖zµ1zµ2 · · · zµn‖2

=
∞∑
n=1

1

n2

∑
|α|=n

|α|!
α!
‖zα‖2

=
∞∑
n=1

1

n2

∑
|α|=n

1

≥
∞∑
n=1

1

n
=∞

since for each n ∈ N there are n multi-indices α of the type α =
(k, n− k, 0, ..., 0). Here we use d ≥ 2.

On the other hand consider

‖
∞∑
µ∈S

ϕµhµ‖2 = ‖
∞∑
n=1

1

n

∑
µ∈Sn

zµhµ‖2 ≤

(
∞∑
n=1

1

n2

)(
∞∑
n=1

‖
∑
µ∈Sn

zµhµ‖2

)

We now show by induction that for each n ≥ 1 we have

‖
∑
µ∈Sn

zµhµ‖2 ≤
∑
µ∈Sn

‖hµ‖2

and that will finish the proof.
The case n = 1 follows sinceMz is a d-contraction, i.e. ‖

∑d
k=1 zkfk‖2 ≤∑d

k=1 ‖fk‖2. This shows that ‖
∑

µ∈S1
zµhµ‖2 ≤

∑
µ∈S1
‖hµ‖2. Now

suppose that the claim holds for some n ≥ 1. We will show that it
holds for n+ 1. Note that Sn+1 = S1 × Sn, hence as above
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‖
∑

µ∈Sn+1

zµhµ‖2 = ‖
d∑

k=1

zk
∑
µ′∈Sn

zµ′h(k,µ′)‖2

≤
d∑

k=1

‖
∑
µ′∈Sn

zµ′h(k,µ′)‖2

≤
d∑

k=1

∑
µ′∈Sn

‖h(k,µ′)‖2 =
∑

µ∈Sn+1

‖hµ‖2

by the induction hypothesis.
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