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Abstract

A calcular algebra is a subalgebra of H*°(€2) with norm given by
loll = sup||¢(T)|| as T ranges over a given class of commutative d-
tuples of operators with Taylor spectrum in 2. We discuss what alge-
bras arise this way, and how they can be represented.

1 Introduction

Let © be a bounded open set in C?. We say that a class C is subordinate to
Q if:

(i) Each element T of C is a commuting d-tuple of bounded operators on
a Hilbert space, with its Taylor spectrum® o(T) in €.

1 FOI' SOo1mme non-zero Hllbel’t Space H, the set Of SC&I&I‘S
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where we think of ) as a d-tuple of scalar multiples of the identity acting
on H. (Note that we use superscripts to denote the coordinates.)
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Given a class C subordinate to 2, we define H*°(C) to be those holomor-
phic functions on €2 for which

[plle = sup{lo(T)[| : T" € C}

is finite. It can be shown (see Prop. 2.1 below) that this algebra is always
complete, so it is a Banach algebra, which by Property (ii) is always contained
contractively in the algebra H>(2) of bounded holomorphic functions on
Q. (We are using H* in two apparently different ways, but identifying
with the set of scalars makes the two usages agree). Any Banach algebra of
holomorphic functions arising in this way we shall call a calcular algebra over
Q.

We shall call the closed unit ball of H*(C) the Schur class of C, and
denote it by .7(C).

Z(C) = {o e Hl(Q) : [[o(T)[| <1, VT €C}.

Let .7(Q) denote the closed unit ball of H>(£2).

If H is a Hilbert space (we shall always assume that Hilbert spaces are not
zero-dimensional to avoid trivialities), let CB(#H)¢ denote the set of commut-
ing d-tuples of elements of B(#), the bounded linear operators on ‘H. Given
a set S of bounded holomorphic functions on €2, and a Hilbert space H, one
can form the set

H(S) = {T e CB(H)?: o(T) C Qand ||¢(T)|| <1V ¢ € S}.

If H is a Hilbert space, C C CB(H)? and S C .#(), then tautologically
one has

H(7(C))

S (H(5))

C (1.1)
S, (1.2)

IOV

Typically these inclusions will be strict. For example, let d = 1, and let
) be the open unit disk . Let H be any Hilbert space, and let C be
the set {\ : A € D}. Then .(C) will equal .(D), and, by von Neumann’s
inequality [14], H(.# (D)) will consist of all contractions on ‘H whose spectrum
is in D. Likewise if S just contains the function z, then H(S) will be the
contractions on H whose spectrum is in D, and the Schur class of this set
will be all of .7 (D).



Our first result is that the operations H and .7 stabilize after 3 steps,
provided H is infinite dimensional.

Notation: If T is a commuting d-tuple of bounded operators on a Hilbert
space H, we call H the carrier of T, and write H = car(T).

Theorem 1.3. Let Q be a bounded open set in C¢, and let C be any class
subordinate to Q. Let S be a non-empty subset of .#(2). For any Hilbert
space H, we have

H(S(H(S))) = H(S). (1.4)

If the dimension of H is either infinite, or greater than or equal to sup{dim(car(7")) :
T € C}, then
SMH(Z(C)) = Z(C) (1.5)

PRrooFr: By (1.2), we have
H(Z(H(S))) € H(S). (1.6)

Suppose now that 7" € H(S), and ¢ is any function in #(#H(S)). Then
lo(T)|| <1, s0 T is in H(SL(H(S))), proving (1.4).
By (1.2) again, with S = .7(C), we get

Z(C) € L (H(Z(C))). (1.7)

Now, assume the dimension of H is as in the hypothesis. Let ¢ € . (H(.#(C))),
and let T' € C, with car(7') = K. We need to show ||¢(T)| < 1. If the dimen-
sion of H is equal to the dimension of K, then 7" is unitarily equivalent to a
d-tuple R on H, and R € H((C)) since ||[¢(R)| = ||v(T)|| < 1 for every 1)
in .Z(C). Therefore ||¢(T)| = ||¢(R)]] < 1, and we are done.

If the dimension of H is larger than the dimension of I, write H = H1PHs
where dim(#;) = dim(K), and let R; on #H; be unitarily equivalent to 7.
Choose A = (AL, ..., 29 in Q, and let

R = (R% @ )‘1]7-127 sy Ril @ )‘d['i'lz)a

Then for any v € O(2), the set of holmorphic functions on 2, we have
V(R) = Y(R1) & P(A)y,, so if ¥ € S(C), we have [[¢(R)|| < 1, and
therefore R € H(.(C)). Now we get ||o(T)| < ||¢(R)|| < 1, and again we
are done.

Finally we consider the case where H is infinite dimensional, but the
carriers of the elements of C may have larger dimension. We can assume
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without loss of generality that H is separable. We need to find R € H((C))

with ||¢(R)]| = ||¢(T)||. To do this, it is sufficient to show that there is a
separable subspace KC; of K that is reducing for f(T') for every f € O(2) and
such that [|¢(T)|k, || = [|¢(T)||; for then we can choose R; on H unitarily

equivalent to Py, T|x,, where Px, is projection onto Ky; the fact that Iy is
reducing means that ¢(Px,T|x,) = P, d(T)|x,-

Observe that {f(T) : f € O(2)} has a countable dense subset D in the
norm topology of CB(K)?, since O(Q) is separable. Let u; be a sequence
of unit vectors in K such that [|[¢(T)u;|| — ||¢(T)|]. Let Ky be the closed
linear span of finite products of elements of D U D* applied to finite linear
combinations of the vectors u;. By D* we mean

D = {(TH*,...,(TH") : (T%,...,T%) e D}.

Then K is a separable subspace of K on which ¢(7') achieves its norm and
that is reducing for every f(7). O

For a given class C, it is of interest to know the smallest dimension of H
that gives equality in (1.5).

Example 1.8 Let Q =D, and let C be all contractions with spectrum in
D. Then we can take H to be one dimensional. Similarly, if Q = D?, and C is
all pairs of commuting contractions with spectrum in D?, Ando’s inequality
[4] yields that we can take #H to be one dimensional again.

However, if d > 3, we let Q = D¢ and C be the class of all d-tuples
of commuting contractions with spectrum contained in D?, then .7(C) is
the Schur-Agler class, a proper subset of (D) [6,13]. If H = C", then
H(~(C)) will be all d-tuples of commuting contractive n-by-n matrices with
spectrum in D?. In [9], it is shown that if n = 3, then

S (C(7(C)) = 7 (D).

It is unknown what the minimal dimension of H must be in this case to get
equality in (1.5), or even whether it must be infinite.

Example 1.9 Let K be a Hilbert function space on €2 with reproducing
kernel k. The multiplier algebra Mult(KC) is always a calcular algebra. Indeed,
for each finite set F' = {\y,..., Ay} C Q, let T be the commuting d-tuple
(TE, ..., T2) acting on the n-dimensional subspace of K spanned by the kernel



functions {ky, : 1 < j < n} defined by

Define
C = {T} : F a finite subset of 2}.

It is straightforward to show that H*(C) = Mult(K). Many other examples
of calcular algebras are given in [2, Chapter 9.

2 When is a Banach algebra a calcular alge-
bra?

Proposition 2.1. Let C be subordinate to Q2. Then H*(C) is a Banach
algebra.

PrROOF: We need to prove completeness. Consider a Cauchy sequence
{¢n} in H*(C). Since C is subordinate to €, {¢,} is a Cauchy sequence
in H*°(Q)). Therefore, as H*({2) is complete, there exists ¢ € H*(£2) such
that

sup |pn(A) — @A) — 0 as n — co. (2.2)
AEQ
We claim that
¢ e H*(C) (2.3)
and
On — ¢ in H®(C). (2.4)

To prove statement (2.3), note that for each 7" € C, we have 2 is a
neighborhood of ¢(T"). Consequently, continuity of the functional calculus
implies that

on(T) — ¢(T) VTeC. (2.5)

Also, as {¢,} is a Cauchy sequence in H*(C), there exists a constant M such
that
[fnlle <M V0.

Therefore, if T € C,

le(T)lle = lim {|¢p(T)[| < limsup [[gnflc < M.
n—00 n—00
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Hence,
[8lle = sup[lo(T)lle < M,
TeC

which proves the membership (2.3).
To prove the limiting relation (2.4), let € > 0. Choose N such that

m,n >N = ||¢p — dmllc <e.
By definition of the norm, this means
m,n >N = ||p.(T) —on(T)|]| <e VT eC.
Letting m — oo and using statement (2.5) we deduce that
n>N = ||o.(T)—(T)||<e VTeC.

Hence, since ||¢, — é|lc = supree [|6n(T) — o(T)],
n>N = || —ollc <e.

O

Let A be a unital Banach algebra contractively contained in H*(f2).
When can it be realized as a calcular algebra? Let S be its unit ball. By
Theorem 1.3, A is a calcular algebra if and only if .(H(S)) = S, where H
is an infinite dimensional Hilbert space.

This imposes a constraint on A. In particular, there must be an isometric
homomorphsim from A into B(K) for some Hilbert space IC. There is another
constraint which stems from the requirement that all the operators in the
class have spectrum in the open set (2.

Proposition 2.6. If A is a calcular algebra, then:

(i) There is an isometric homomorphism into B(K) for some Hilbert space
K.

(i) If ¢, is a bounded sequence in A that converges uniformly on compact
subsets of Q to a function v, then ¢ € A, and ||| < liminf ||¢,].

PRrROOF: (i) Suppose A is H*(C) for some class C subordinate to an
open set (). Let H be any infinite dimensional Hilbert space, and let C; =
H(Z(C)). By Theorem 1.3, we have

A = H®QG). (2.7)

6



Let K be the direct sum of cardinality(C;) copies of H, with the sum indexed
by C;. Define a map 7 : A — B(K) by

m(¢) = Grec,d(T).

Then 7 is a homomorphism, and by (2.7) it is isometric.

(ii) Let ¢, be a bounded sequence in H*>(C) converging to ¢ locally
uniformly on . Without loss of generality, we may assume that each ¢, is
in .(C). For each T in C, since o(T") C €, it follows from the continuity of
the functional calculus that ¢(T") is the limit in norm of ¢,(7T), so v is in
Z(C). Replacing ¢,, by a subsequence whose norms converge to liminf ||¢,||
gives the last inequality. a

Remark: If one defines S = @pcc, (1), then one can interpret ¢(S) as
7(¢). However, the spectrum of S will be Q, so S is not contained in any
class subordinate to 2. The Taylor functional calculus is defined only for
functions holomorphic on a neighborhood of the Taylor spectrum of the d-
tuple.

A necessary condition for a Banach algebra to be isometrically isomorphic
to an algebra of operators on a Hilbert space is that it satisfies von Neumann’s
inequality: ||p(z)|| < |[|p||g~m) for any z in the unit ball of the Banach
algebra, and any polynomial p. It is not known whether this condition is
sufficient.

Calcular algebras come with a sequence of matrix norms. If [¢;;] is an
n-by-n matrix of elements of H*°(C), one can define

ll@ssllln = sup{[llou(DI = T € CF,

where the norm on the right-hand side is the operator norm on car(7") ® C™.
By a similar argument to Proposition 2.6, one can show that calcular algebras
have completely isometric homomorphic embeddings into some B(K).

Algebras that can be completely isometrically realized in this way are
characterized by the Blecher-Ruan-Sinclair theorem [5], [11, Cor. 16.7]. This
says that the algebra A must satisfy the Ruan axioms:

Vn € N,Va € M,,(A),VX,Y € M,(C), [[XaY|, < [ X]|lall.]Y]]
Vm,n € N,Va € M,,,(A),b € M,(A), |la®bllm+n = maxl|alm,]b]n,

and hence be isometrically realizable as an operator space; and the matrix
multiplication at each level n must be contractive, i.e. if a = [a;;] and b = [b;]
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are in M, (A), then

n

I abislln < sl i)l

k=1

It is straightforward to check that a calcular algebra satisfies the hypotheses
of the Blecher-Ruan-Sinclair theorem.

We do not know in general what intrinsic necessary and sufficient con-
ditions on a sub-algebra of H>°({2) make it a calcular algebra; we can say
something with strong convexity assumptions. Let P = Clzy, ..., z4] denote
the polynomials. If f is a function and r > 0, define f, by f.(z) = f(rz).

Theorem 2.8. Let A be a unital Banach algebra that is contractively con-
tained in H*(SY), for some bounded open convex set Q in C? that contains 0.
Suppose that P is contained in A and that for every function ¢ € A, there is
a sequence in P that is bounded in norm by ||¢| and converges to ¢ locally
uniformly on §2. Suppose moreover that for every polynomial p € P, we have
Ipoll < Ipll for 0 <7 < 1.

Then A is a calcular algebra over Q if and only if the necessary conditions
of Proposition 2.6 hold.

PROOF: Suppose both conditions hold, and 7 embeds A isometrically in
B(K). For each of the coordinate functions 27,1 < j < d, define T7 = 7 (z7).
Let T € CB(K)? be the tuple (T7,...,T?). Then for any polynomial p € P
we have 7(p) = p(T'). Moreover, if p has no zeroes on €2, then

SO

As p ranges over affine functions whose zero sets are hyperplanes not inter-
secting €2, we see that o(T") must be contained in .

We want the elements of C to have spectrum in Q. Let C = {rT : 0 <
r <1}



For any polynomial p and any sequence r, 1 1 we have

Ipla = Il
Ip(D)
Tim [|p(r, 7))

IN

2l
sup ||p,(T)]|

0<r<1
sup |7 (p,)]|
0<r<1

< lplla-

So A and H*(C') assign the same norm to polynomials.

Let ¢ be in A of norm 1. By hypothesis, there is a sequence of polynomials
¢n that converges locally uniformly to ¢, with ||g,||.4 < 1. Therefore for each
0<r<l,

6T = lim g7 < 1

Therefore 1) is in the unit ball of H*(C'), and hence A is contractively con-
tained in H*(C).

Conversely, let ¢ € .#(C). Since Q is convex, ¢, will converge to ¢ locally
uniformly on Q2 asr 1 1. Fixr < 1. There is a sequence ¢, of polynomials that
converges uniformly to ¢, on a neighborhood of 2. Therefore lim,,_,o ¢,(T) =
¢.(T) is a contraction, and so by Property (ii) we have

”¢THA. f; 1.

By a diagonalization argument, we can modify this construction to find poly-
nomials ¢, in the unit ball of A that converge locally uniformly to ¢, and
hence

[ola < 1.

So H>(C') is contractively contained in .4, and hence the two algebras are
isometrically isomorphic. a

Example 2.9 The disk algebra A(D) cannot be a calcular algebra, since
it fails (ii). However, there are subalgebras of the disk algebra that are the
multiplier algebra of some Hilbert function spaces on the disk, e.g. the space



with reproducing kernel

[e.e]

k(w,z) = Z(n+1)2z"w”.

n=0

Multiplier algebras for spaces of holomorphic functions are always calcular,
as shown in Example 1.9.

Problem 2.10 Find necessary and sufficient conditions for a subalgebra
of H*(Q2) to be a calcular algebra.

One answer to this problem is given in [10, Thm. 2.4]—the algebra must
be a multiplier algebra for some Hilbert function space, and be closed under
pointwise limits of bounded nets.

3 Realization formulas

In [7] and [8], Dritschel, Marcantognini, and McCullough proved a very gen-
eral realization formula, building on work of Ambrozie and Timotin in [3],
which can be adapted to our current setting.

Let S be a set of functions from a set X to the unit disk ID. In this section,
we shall make the standing assumption that S restricted to any finite set F'
generates, as an algebra, all the complex-valued functions on F.

We define K to be the set of kernels on X that satisfy

Ks = {k| (1 —¢(2)d(w)k(z,w) > 0 V¢ eS}
We define A*(Kg) to be
A®(Ks)={¢: X = C|3IM > 0s.t. (M*—¢(2)p(w))k(z,w) > 0Vk € Kg},

and define [|¢|| to be the smallest M that works.

Endow S with the topology of pointwise convergence. Let Cp(S) de-
note the continuous bounded functions on S, which we think of as a C*-
algebra. Let E : X — Cy(S) be the evaluation map F(z)(v) = 1(z), and
let F(w)* mean the complex conjugate of this, the adjoint in the C*-algebra,
E(w)*(¢) = ¢(w).

If ¢ is a function from X to C, we say it has a network realization formula
if there exists a Hilbert space M, a unital *-representation p : Cy(S) —
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B(M), and a unitary U : C & M — C & M that in block matrix form is
A B
7= (e »)

U(z) = A+ Bp(E(2))(I — Dp(E(2)))"C. (3.1)

If B is a C*-algebra, a positive kernel on a set X with values in B*, the
dual of B, is a function I' : X x X — B* such that for every finite set F' C X,
and every f : F' — B we have

> T(zw)(f(w)* f(2)) > 0.

z,weF

so that

Here is the Dritschel, Marcantognini, and McCullough theorem.

Theorem 3.2. Let S be a set of functions from X to D, and let ¢ : X — D.
The following are equivalent:

(i) ¢ € A®(Ks) and ]l a=(ice) < 1.

(ii) For each finite set ' C X there exists a positive kernel T : F X F —
Cy(S)* so that, for all z,w € F,

1=0(2)p(w) = T'(z,w)(l = E(z) E(w)"). (3-3)

(iii) ¢ has a network realization formula.

Now let us assume that the functions in S are all holomorphic functions
on the open set Q in C?. By definition, we always have S is contained in the
unit ball of A*(Ky), so when H is infinite dimensional we have H*>°(H(S))
is contractively contained in A*(Kg) by Theorem 1.3. We shall show in
Theorem 3.7 and Proposition 3.5 that the converse holds if S is finite, or if
a certain generic assumption holds.

We shall say that T is a generic matriz d-tuple on € if, for some n € N, we
have that 7" is a d-tuple of commuting n-by-n matrices that have a common
set of n linearly independent eigenvectors with distinct joint eigenvalues,
which means there are n linearly independent eigenvectors v; in C" so that

Tv; = Nwj, 1<r<d 1<j<n, (3.4)
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and the n points \; = ()\}, ceey )\?) are distinct points in (2. The advantages
of working with generic d-tuples were pointed out in [1].

We shall define an algebra Hgg, (S) to be the holomorphic functions on 2
for which the norm

¢l e, s) == sup{l[¢(T)[| : T is a generic matrix d—tuple on €,
and ||(T)|| <1Vy € S}

Proposition 3.5. Let S be a set of holomorphic functions from 0 to D.
Then H (S) = A®(Kg) isometrically.

gen

PROOF: Let ¢ be in the closed unit ball of A*(Ky). Let T" be a generic
matrix tuple on 2, with eigenvectors as in (3.4), and assume that ||¢(7)| < 1
for all ¢ in S. Let F' = {\,..., A\, }. Define a kernel k(z,w) on Q by setting
it to zero unless both z and w are in F', and on F' define

]C()\Z, /\]) = <UZ', Uj>.

Then k € Kg, so
(1 = o(Ai)o(A))){vi, vj) = 0. (3.6)
Then (3.6) says that ||¢(T)|| < 1, so ¢ is in the closed unit ball of HZ (S).

gen

Conversely, if ¢ is in the closed unit ball of Hgg (S), then for every finite
set F' C Q, by Theorem 3.2 applied to F', we have that (3.3) holds on F.
Hence by the Theorem again, we have ¢ is in the closed unit ball of A*(Kj).

|

Theorem 3.7. Let S be a set of holomorphic functions from Q to D. Let
H be an infinite dimensional Hilbert space. If S is finite, then H*(H(S)) =
A>(Kg).

PrOOF: By Theorem 1.3, we have H*(H(.S)) is contractively contained
in A*(Kg). For the converse, let ¢ be in the closed unit ball of A>(Kj),
with a network realization formula as above. Let S = {¢1,...,¢,}.

Let A; be the elements of C,(S) defined by A;(1);) = d;;. Since each A; is
a projection, we get that p(A;) = P; gives n mutually orthogonal projections
that sum to the identity on M. Then p(E(2)) = > 7_, ¥;(2)F;.

Expanding (3.1) as a Neumann series in Dp(E(z)), the partial sums ¢,
will converge locally uniformly on . Therefore if 7" is in H(S), since its
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spectrum is a compact subset of Q, we get that ¢(7T") = lim,, ¢,,(T'). We have
p(E(T)) =377 ¥;(T) ® P;, and (3.1) extends to

H(T) = Iy ® A+ (Iy® B)p(E(D))(I - (Iy ® D)p(E(T))) ' Iy ® C. (3.8)

A calculation with (3.8) shows that Iy — ¢(T)*¢(T) > 0, so we conclude
¢ € S (H(9)). D

Problem 3.9 Let H be an infinite dimensional Hilbert space. Do
H*>®(H(S)) and A*(Kg) coincide for all non-empty sets S of holomorphic
functions from €2 to D7
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