Calcular algebras

Jim Agler * John E. McCarthy † N. J. Young ‡ July 5, 2019

To the memory of Richard Timoney

Abstract

A calcular algebra is a subalgebra of $H^{\infty}(\Omega)$ with norm given by $\|\phi\| = \sup \|\phi(T)\|$ as T ranges over a given class of commutative d-tuples of operators with Taylor spectrum in Ω . We discuss what algebras arise this way, and how they can be represented.

1 Introduction

Let Ω be a bounded open set in \mathbb{C}^d . We say that a class \mathcal{C} is *subordinate to* Ω if:

- (i) Each element T of \mathcal{C} is a commuting d-tuple of bounded operators on a Hilbert space, with its Taylor spectrum¹ $\sigma(T)$ in Ω .
- (ii) For some non-zero Hilbert space \mathcal{H} , the set of scalars

$$\{(\lambda^1,\ldots,\lambda^d):\lambda\in\Omega\}\subseteq\mathcal{C},$$

where we think of λ as a d-tuple of scalar multiples of the identity acting on \mathcal{H} . (Note that we use superscripts to denote the coordinates.)

^{*}Partially supported by National Science Foundation Grant DMS 1665260

[†]Partially supported by National Science Foundation Grant DMS 1565243

[‡]Partially supported by UK Engineering and Physical Sciences Research Council grants EP/K50340X/1 and EP/N03242X/1, and London Mathematical Society grants 41219 and 41730, **MSC** [2010]: 47L30

¹For a definition of Taylor spectrum of a commuting tuple, see [12].

Given a class \mathcal{C} subordinate to Ω , we define $H^{\infty}(\mathcal{C})$ to be those holomorphic functions on Ω for which

$$\|\phi\|_{\mathcal{C}} = \sup\{\|\phi(T)\| : T \in \mathcal{C}\}\$$

is finite. It can be shown (see Prop. 2.1 below) that this algebra is always complete, so it is a Banach algebra, which by Property (ii) is always contained contractively in the algebra $H^{\infty}(\Omega)$ of bounded holomorphic functions on Ω . (We are using H^{∞} in two apparently different ways, but identifying Ω with the set of scalars makes the two usages agree). Any Banach algebra of holomorphic functions arising in this way we shall call a calcular algebra over

We shall call the closed unit ball of $H^{\infty}(\mathcal{C})$ the Schur class of \mathcal{C} , and denote it by $\mathscr{S}(\mathcal{C})$.

$$\mathscr{S}(\mathcal{C}) = \{ \phi \in \operatorname{Hol}(\Omega) : \|\phi(T)\| \le 1, \ \forall \ T \in \mathcal{C} \}.$$

Let $\mathscr{S}(\Omega)$ denote the closed unit ball of $H^{\infty}(\Omega)$.

If \mathcal{H} is a Hilbert space (we shall always assume that Hilbert spaces are not zero-dimensional to avoid trivialities), let $CB(\mathcal{H})^d$ denote the set of commuting d-tuples of elements of $B(\mathcal{H})$, the bounded linear operators on \mathcal{H} . Given a set S of bounded holomorphic functions on Ω , and a Hilbert space \mathcal{H} , one can form the set

$$\mathcal{H}(S) = \{ T \in CB(\mathcal{H})^d : \ \sigma(T) \subseteq \Omega \text{ and } \|\phi(T)\| \le 1 \ \forall \ \phi \in S \}.$$

If \mathcal{H} is a Hilbert space, $\mathcal{C} \subseteq CB(\mathcal{H})^d$ and $S \subseteq \mathcal{S}(\Omega)$, then tautologically one has

$$\mathcal{H}(\mathscr{S}(\mathcal{C})) \supseteq \mathcal{C}$$
 (1.1)
 $\mathscr{S}(\mathcal{H}(S)) \supseteq S.$ (1.2)

$$\mathscr{S}(\mathcal{H}(S)) \quad \supseteq \quad S. \tag{1.2}$$

Typically these inclusions will be strict. For example, let d=1, and let Ω be the open unit disk \mathbb{D} . Let \mathcal{H} be any Hilbert space, and let \mathcal{C} be the set $\{\lambda I : \lambda \in \mathbb{D}\}$. Then $\mathscr{S}(\mathcal{C})$ will equal $\mathscr{S}(\mathbb{D})$, and, by von Neumann's inequality [14], $\mathcal{H}(\mathcal{S}(\mathbb{D}))$ will consist of all contractions on \mathcal{H} whose spectrum is in \mathbb{D} . Likewise if S just contains the function z, then $\mathcal{H}(S)$ will be the contractions on \mathcal{H} whose spectrum is in \mathbb{D} , and the Schur class of this set will be all of $\mathscr{S}(\mathbb{D})$.

Our first result is that the operations \mathcal{H} and \mathscr{S} stabilize after 3 steps, provided \mathcal{H} is infinite dimensional.

Notation: If T is a commuting d-tuple of bounded operators on a Hilbert space \mathcal{H} , we call \mathcal{H} the carrier of T, and write $\mathcal{H} = \operatorname{car}(T)$.

Theorem 1.3. Let Ω be a bounded open set in \mathbb{C}^d , and let \mathcal{C} be any class subordinate to Ω . Let S be a non-empty subset of $\mathscr{S}(\Omega)$. For any Hilbert space \mathcal{H} , we have

$$\mathcal{H}(\mathscr{S}(\mathcal{H}(S))) = \mathcal{H}(S). \tag{1.4}$$

If the dimension of \mathcal{H} is either infinite, or greater than or equal to $\sup\{\dim(\operatorname{car}(T)): T \in \mathcal{C}\}$, then

$$\mathscr{S}(\mathcal{H}(\mathscr{S}(\mathcal{C}))) = \mathscr{S}(\mathcal{C}) \tag{1.5}$$

PROOF: By (1.2), we have

$$\mathcal{H}(\mathscr{S}(\mathcal{H}(S))) \subseteq \mathcal{H}(S). \tag{1.6}$$

Suppose now that $T \in \mathcal{H}(S)$, and ϕ is any function in $\mathscr{S}(\mathcal{H}(S))$. Then $\|\phi(T)\| \leq 1$, so T is in $\mathcal{H}(\mathscr{S}(\mathcal{H}(S)))$, proving (1.4).

By (1.2) again, with $S = \mathcal{S}(\mathcal{C})$, we get

$$\mathscr{S}(\mathcal{C}) \subseteq \mathscr{S}(\mathcal{H}(\mathscr{S}(\mathcal{C}))). \tag{1.7}$$

Now, assume the dimension of \mathcal{H} is as in the hypothesis. Let $\phi \in \mathscr{S}(\mathcal{H}(\mathscr{S}(\mathcal{C})))$, and let $T \in \mathcal{C}$, with $\operatorname{car}(T) = \mathcal{K}$. We need to show $\|\phi(T)\| \leq 1$. If the dimension of \mathcal{H} is equal to the dimension of \mathcal{K} , then T is unitarily equivalent to a d-tuple R on \mathcal{H} , and $R \in \mathcal{H}(\mathscr{S}(\mathcal{C}))$ since $\|\psi(R)\| = \|\psi(T)\| \leq 1$ for every ψ in $\mathscr{S}(\mathcal{C})$. Therefore $\|\phi(T)\| = \|\phi(R)\| \leq 1$, and we are done.

If the dimension of \mathcal{H} is larger than the dimension of \mathcal{K} , write $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where $\dim(\mathcal{H}_1) = \dim(\mathcal{K})$, and let R_1 on \mathcal{H}_1 be unitarily equivalent to T. Choose $\lambda = (\lambda^1, \ldots, \lambda^d)$ in Ω , and let

$$R = (R_1^1 \oplus \lambda^1 I_{\mathcal{H}_2}, \dots, R_1^d \oplus \lambda^d I_{\mathcal{H}_2}),$$

Then for any $\psi \in O(\Omega)$, the set of holmorphic functions on Ω , we have $\psi(R) = \psi(R_1) \oplus \psi(\lambda)I_{\mathcal{H}_2}$, so if $\psi \in \mathscr{S}(\mathbb{C})$, we have $\|\psi(R)\| \leq 1$, and therefore $R \in \mathcal{H}(\mathscr{S}(\mathcal{C}))$. Now we get $\|\phi(T)\| \leq \|\phi(R)\| \leq 1$, and again we are done.

Finally we consider the case where \mathcal{H} is infinite dimensional, but the carriers of the elements of \mathcal{C} may have larger dimension. We can assume

without loss of generality that \mathcal{H} is separable. We need to find $R \in \mathcal{H}(\mathscr{S}(\mathcal{C}))$ with $\|\phi(R)\| = \|\phi(T)\|$. To do this, it is sufficient to show that there is a separable subspace \mathcal{K}_1 of \mathcal{K} that is reducing for f(T) for every $f \in O(\Omega)$ and such that $\|\phi(T)|_{\mathcal{K}_1}\| = \|\phi(T)\|$; for then we can choose R_1 on \mathcal{H} unitarily equivalent to $P_{\mathcal{K}_1}T|_{\mathcal{K}_1}$, where $P_{\mathcal{K}_1}$ is projection onto \mathcal{K}_1 ; the fact that \mathcal{K}_1 is reducing means that $\phi(P_{\mathcal{K}_1}T|_{\mathcal{K}_1}) = P_{\mathcal{K}_1}\phi(T)|_{\mathcal{K}_1}$.

Observe that $\{f(T): f \in O(\Omega)\}$ has a countable dense subset \mathcal{D} in the norm topology of $CB(\mathcal{K})^d$, since $O(\Omega)$ is separable. Let u_j be a sequence of unit vectors in \mathcal{K} such that $\|\phi(T)u_j\| \to \|\phi(T)\|$. Let \mathcal{K}_1 be the closed linear span of finite products of elements of $\mathcal{D} \cup \mathcal{D}^*$ applied to finite linear combinations of the vectors u_j . By \mathcal{D}^* we mean

$$\mathcal{D}^* = \{((T^1)^*, \dots, (T^d)^*) : (T^1, \dots, T^d) \in \mathcal{D}\}.$$

Then \mathcal{K}_1 is a separable subspace of \mathcal{K} on which $\phi(T)$ achieves its norm and that is reducing for every f(T).

For a given class C, it is of interest to know the smallest dimension of \mathcal{H} that gives equality in (1.5).

Example 1.8 Let $\Omega = \mathbb{D}$, and let \mathcal{C} be all contractions with spectrum in \mathbb{D} . Then we can take \mathcal{H} to be one dimensional. Similarly, if $\Omega = \mathbb{D}^2$, and \mathcal{C} is all pairs of commuting contractions with spectrum in \mathbb{D}^2 , Andô's inequality [4] yields that we can take \mathcal{H} to be one dimensional again.

However, if $d \geq 3$, we let $\Omega = \mathbb{D}^d$, and \mathcal{C} be the class of all d-tuples of commuting contractions with spectrum contained in \mathbb{D}^d , then $\mathscr{S}(\mathcal{C})$ is the Schur-Agler class, a proper subset of $\mathscr{S}(\mathbb{D}^d)$ [6, 13]. If $\mathcal{H} = \mathbb{C}^n$, then $\mathcal{H}(\mathscr{S}(\mathcal{C}))$ will be all d-tuples of commuting contractive n-by-n matrices with spectrum in \mathbb{D}^d . In [9], it is shown that if n = 3, then

$$\mathscr{S}(\mathbb{C}^3(\mathscr{S}(\mathcal{C}))) = \mathscr{S}(\mathbb{D}^d).$$

It is unknown what the minimal dimension of \mathcal{H} must be in this case to get equality in (1.5), or even whether it must be infinite.

Example 1.9 Let \mathcal{K} be a Hilbert function space on Ω with reproducing kernel k. The multiplier algebra $\operatorname{Mult}(\mathcal{K})$ is always a calcular algebra. Indeed, for each finite set $F = \{\lambda_1, \ldots, \lambda_n\} \subset \Omega$, let T_F be the commuting d-tuple (T_F^1, \ldots, T_F^d) acting on the n-dimensional subspace of \mathcal{K} spanned by the kernel

functions $\{k_{\lambda_j}: 1 \leq j \leq n\}$ defined by

$$T^r_F k_{\lambda_j} \ = \ \overline{\lambda^r_j} k_{\lambda_j} \qquad 1 \le r \le d, 1 \le j \le n.$$

Define

$$\mathcal{C} = \{T_F^* : F \text{ a finite subset of } \Omega\}.$$

It is straightforward to show that $H^{\infty}(\mathcal{C}) = \text{Mult}(\mathcal{K})$. Many other examples of calcular algebras are given in [2, Chapter 9].

When is a Banach algebra a calcular algebra?

Proposition 2.1. Let C be subordinate to Ω . Then $H^{\infty}(C)$ is a Banach algebra.

PROOF: We need to prove completeness. Consider a Cauchy sequence $\{\phi_n\}$ in $H^{\infty}(\mathcal{C})$. Since \mathcal{C} is subordinate to Ω , $\{\phi_n\}$ is a Cauchy sequence in $H^{\infty}(\Omega)$. Therefore, as $H^{\infty}(\Omega)$ is complete, there exists $\phi \in H^{\infty}(\Omega)$ such that

$$\sup_{\lambda \in \Omega} |\phi_n(\lambda) - \phi(\lambda)| \to 0 \text{ as } n \to \infty.$$
 (2.2)

We claim that

$$\phi \in H^{\infty}(\mathcal{C}) \tag{2.3}$$

and

$$\phi_n \to \phi \text{ in } H^{\infty}(\mathcal{C}).$$
 (2.4)

To prove statement (2.3), note that for each $T \in \mathcal{C}$, we have Ω is a neighborhood of $\sigma(T)$. Consequently, continuity of the functional calculus implies that

$$\phi_n(T) \to \phi(T) \qquad \forall \ T \in \mathcal{C}.$$
 (2.5)

Also, as $\{\phi_n\}$ is a Cauchy sequence in $H^{\infty}(\mathcal{C})$, there exists a constant M such that

$$\|\phi_n\|_{\mathcal{C}} \leq M \qquad \forall \ n.$$

Therefore, if $T \in \mathcal{C}$,

$$\|\phi(T)\|_{\mathcal{C}} = \lim_{n \to \infty} \|\phi_n(T)\| \le \limsup_{n \to \infty} \|\phi_n\|_{\mathcal{C}} \le M.$$

Hence,

$$\|\phi\|_{\mathcal{C}} = \sup_{T \in \mathcal{C}} \|\phi(T)\|_{\mathcal{C}} \le M,$$

which proves the membership (2.3).

To prove the limiting relation (2.4), let $\varepsilon > 0$. Choose N such that

$$m, n \ge N \implies \|\phi_n - \phi_m\|_{\mathcal{C}} < \varepsilon.$$

By definition of the norm, this means

$$m, n \ge N \implies \|\phi_n(T) - \phi_m(T)\| < \varepsilon \qquad \forall \ T \in \mathcal{C}.$$

Letting $m \to \infty$ and using statement (2.5) we deduce that

$$n \ge N \implies \|\phi_n(T) - \phi(T)\| < \varepsilon \qquad \forall \ T \in \mathcal{C}.$$

Hence, since $\|\phi_n - \phi\|_{\mathcal{C}} = \sup_{T \in \mathcal{C}} \|\phi_n(T) - \phi(T)\|$,

$$n \ge N \implies \|\phi_n - \phi\|_{\mathcal{C}} \le \varepsilon.$$

Let \mathcal{A} be a unital Banach algebra contractively contained in $H^{\infty}(\Omega)$. When can it be realized as a calcular algebra? Let S be its unit ball. By Theorem 1.3, \mathcal{A} is a calcular algebra if and only if $\mathscr{S}(\mathcal{H}(S)) = S$, where \mathcal{H} is an infinite dimensional Hilbert space.

This imposes a constraint on \mathcal{A} . In particular, there must be an isometric homomorphsim from \mathcal{A} into $B(\mathcal{K})$ for some Hilbert space \mathcal{K} . There is another constraint which stems from the requirement that all the operators in the class have spectrum in the open set Ω .

Proposition 2.6. If A is a calcular algebra, then:

- (i) There is an isometric homomorphism into $B(\mathcal{K})$ for some Hilbert space \mathcal{K} .
- (ii) If ϕ_n is a bounded sequence in \mathcal{A} that converges uniformly on compact subsets of Ω to a function ψ , then $\psi \in \mathcal{A}$, and $\|\psi\| \leq \liminf \|\phi_n\|$.

PROOF: (i) Suppose \mathcal{A} is $H^{\infty}(\mathcal{C})$ for some class \mathcal{C} subordinate to an open set Ω . Let \mathcal{H} be any infinite dimensional Hilbert space, and let $\mathcal{C}_1 = \mathcal{H}(\mathscr{S}(\mathcal{C}))$. By Theorem 1.3, we have

$$\mathcal{A} = H^{\infty}(\mathcal{C}_1). \tag{2.7}$$

Let \mathcal{K} be the direct sum of cardinality (\mathcal{C}_1) copies of \mathcal{H} , with the sum indexed by \mathcal{C}_1 . Define a map $\pi : \mathcal{A} \to B(\mathcal{K})$ by

$$\pi(\phi) = \bigoplus_{T \in \mathcal{C}_1} \phi(T).$$

Then π is a homomorphism, and by (2.7) it is isometric.

(ii) Let ϕ_n be a bounded sequence in $H^{\infty}(\mathcal{C})$ converging to ψ locally uniformly on Ω . Without loss of generality, we may assume that each ϕ_n is in $\mathscr{S}(\mathcal{C})$. For each T in \mathcal{C} , since $\sigma(T) \subseteq \Omega$, it follows from the continuity of the functional calculus that $\psi(T)$ is the limit in norm of $\phi_n(T)$, so ψ is in $\mathscr{S}(\mathcal{C})$. Replacing ϕ_n by a subsequence whose norms converge to $\liminf \|\phi_n\|$ gives the last inequality.

Remark: If one defines $S = \bigoplus_{T \in \mathcal{C}_1}(T)$, then one can interpret $\phi(S)$ as $\pi(\phi)$. However, the spectrum of S will be $\overline{\Omega}$, so S is not contained in any class subordinate to Ω . The Taylor functional calculus is defined only for functions holomorphic on a neighborhood of the Taylor spectrum of the d-tuple.

A necessary condition for a Banach algebra to be isometrically isomorphic to an algebra of operators on a Hilbert space is that it satisfies von Neumann's inequality: $||p(x)|| \leq ||p||_{H^{\infty}(\mathbb{D})}$ for any x in the unit ball of the Banach algebra, and any polynomial p. It is not known whether this condition is sufficient.

Calcular algebras come with a sequence of matrix norms. If $[\phi_{ij}]$ is an n-by-n matrix of elements of $H^{\infty}(\mathcal{C})$, one can define

$$||[\phi_{ij}]||_n = \sup\{||[\phi_{ij}(T)]|| : T \in \mathcal{C}\},\$$

where the norm on the right-hand side is the operator norm on $car(T) \otimes \mathbb{C}^n$. By a similar argument to Proposition 2.6, one can show that calcular algebras have completely isometric homomorphic embeddings into some $B(\mathcal{K})$.

Algebras that can be completely isometrically realized in this way are characterized by the Blecher-Ruan-Sinclair theorem [5], [11, Cor. 16.7]. This says that the algebra \mathcal{A} must satisfy the Ruan axioms:

$$\forall n \in \mathbb{N}, \forall a \in M_n(\mathcal{A}), \forall X, Y \in M_n(\mathbb{C}), \quad ||XaY||_n \leq ||X|| ||a||_n ||Y||$$

$$\forall m, n \in \mathbb{N}, \forall a \in M_m(\mathcal{A}), b \in M_n(\mathcal{A}), \quad ||a \oplus b||_{m+n} = \max ||a||_m, ||b||_n,$$

and hence be isometrically realizable as an operator space; and the matrix multiplication at each level n must be contractive, i.e. if $a = [a_{ij}]$ and $b = [b_{ij}]$

are in $M_n(\mathcal{A})$, then

$$\| [\sum_{k=1}^{n} a_{ik} b_{kj}] \|_{n} \leq \| [a_{ij}] \|_{n} \| [b_{ij}] \|_{n}.$$

It is straightforward to check that a calcular algebra satisfies the hypotheses of the Blecher-Ruan-Sinclair theorem.

We do not know in general what intrinsic necessary and sufficient conditions on a sub-algebra of $H^{\infty}(\Omega)$ make it a calcular algebra; we can say something with strong convexity assumptions. Let $\mathcal{P} = \mathbb{C}[z_1, \ldots, z_d]$ denote the polynomials. If f is a function and r > 0, define f_r by $f_r(z) = f(rz)$.

Theorem 2.8. Let \mathcal{A} be a unital Banach algebra that is contractively contained in $H^{\infty}(\Omega)$, for some bounded open convex set Ω in \mathbb{C}^d that contains 0. Suppose that \mathcal{P} is contained in \mathcal{A} and that for every function $\phi \in \mathcal{A}$, there is a sequence in \mathcal{P} that is bounded in norm by $\|\phi\|$ and converges to ϕ locally uniformly on Ω . Suppose moreover that for every polynomial $p \in \mathcal{P}$, we have $\|p_r\| \leq \|p\|$ for 0 < r < 1.

Then A is a calcular algebra over Ω if and only if the necessary conditions of Proposition 2.6 hold.

PROOF: Suppose both conditions hold, and π embeds \mathcal{A} isometrically in $B(\mathcal{K})$. For each of the coordinate functions $z^j, 1 \leq j \leq d$, define $T^j = \pi(z^j)$. Let $T \in CB(\mathcal{K})^d$ be the tuple (T^1, \ldots, T^d) . Then for any polynomial $p \in \mathcal{P}$ we have $\pi(p) = p(T)$. Moreover, if p has no zeroes on $\overline{\Omega}$, then

$$\pi(p \frac{1}{p}) = 1_{\mathcal{K}} = p(T)\pi(\frac{1}{p}),$$

SO

$$\pi(\frac{1}{p}) = p(T)^{-1}.$$

As p ranges over affine functions whose zero sets are hyperplanes not intersecting $\overline{\Omega}$, we see that $\sigma(T)$ must be contained in $\overline{\Omega}$.

We want the elements of C to have spectrum in Ω . Let $C = \{rT : 0 \le r < 1\}$.

For any polynomial p and any sequence $r_n \uparrow 1$ we have

$$||p||_{\mathcal{A}} = ||\pi(p)||$$

$$= ||p(T)||$$

$$= \lim_{n \to \infty} ||p(r_n T)||$$

$$\leq ||p||_{\mathcal{C}}$$

$$= \sup_{0 < r < 1} ||p_r(T)||$$

$$= \sup_{0 < r < 1} ||\pi(p_r)||$$

$$\leq ||p||_{\mathcal{A}}.$$

So \mathcal{A} and $H^{\infty}(C)$ assign the same norm to polynomials.

Let ψ be in \mathcal{A} of norm 1. By hypothesis, there is a sequence of polynomials q_n that converges locally uniformly to ψ , with $||q_n||_{\mathcal{A}} \leq 1$. Therefore for each $0 \leq r < 1$,

$$\|\psi(rT)\| = \lim_{n \to \infty} \|q_n(rT)\| \le 1.$$

Therefore ψ is in the unit ball of $H^{\infty}(C)$, and hence \mathcal{A} is contractively contained in $H^{\infty}(C)$.

Conversely, let $\phi \in \mathcal{S}(C)$. Since Ω is convex, ϕ_r will converge to ϕ locally uniformly on Ω as $r \uparrow 1$. Fix r < 1. There is a sequence q_n of polynomials that converges uniformly to ϕ_r on a neighborhood of $\overline{\Omega}$. Therefore $\lim_{n\to\infty} q_n(T) = \phi_r(T)$ is a contraction, and so by Property (ii) we have

$$\|\phi_r\|_{\mathcal{A}} \leq 1.$$

By a diagonalization argument, we can modify this construction to find polynomials q_n in the unit ball of \mathcal{A} that converge locally uniformly to ϕ , and hence

$$\|\phi\|_{\mathcal{A}} \le 1.$$

So $H^{\infty}(C)$ is contractively contained in \mathcal{A} , and hence the two algebras are isometrically isomorphic.

Example 2.9 The disk algebra $A(\mathbb{D})$ cannot be a calcular algebra, since it fails (ii). However, there are subalgebras of the disk algebra that are the multiplier algebra of some Hilbert function spaces on the disk, *e.g.* the space

with reproducing kernel

$$k(w,z) = \sum_{n=0}^{\infty} (n+1)^2 z^n \bar{w}^n.$$

Multiplier algebras for spaces of holomorphic functions are always calcular, as shown in Example 1.9.

Problem 2.10 Find necessary and sufficient conditions for a subalgebra of $H^{\infty}(\Omega)$ to be a calcular algebra.

One answer to this problem is given in [10, Thm. 2.4]—the algebra must be a multiplier algebra for some Hilbert function space, and be closed under pointwise limits of bounded nets.

3 Realization formulas

In [7] and [8], Dritschel, Marcantognini, and McCullough proved a very general realization formula, building on work of Ambrozie and Timotin in [3], which can be adapted to our current setting.

Let S be a set of functions from a set X to the unit disk \mathbb{D} . In this section, we shall make the standing assumption that S restricted to any finite set F generates, as an algebra, all the complex-valued functions on F.

We define K_S to be the set of kernels on X that satisfy

$$K_S = \{k \mid (1 - \psi(z)\bar{\psi}(w))k(z, w) \ge 0 \quad \forall \ \psi \in S\}.$$

We define $A^{\infty}(K_S)$ to be

$$A^{\infty}(K_S) = \{ \phi : X \to \mathbb{C} \mid \exists M \ge 0 \text{ s.t. } (M^2 - \phi(z)\bar{\phi}(w))k(z, w) \ge 0 \forall k \in K_S \},$$

and define $\|\phi\|$ to be the smallest M that works.

Endow S with the topology of pointwise convergence. Let $C_b(S)$ denote the continuous bounded functions on S, which we think of as a C*-algebra. Let $E: X \to C_b(S)$ be the evaluation map $E(z)(\psi) = \psi(z)$, and let $E(w)^*$ mean the complex conjugate of this, the adjoint in the C*-algebra, $E(w)^*(\psi) = \overline{\psi(w)}$.

If ψ is a function from X to \mathbb{C} , we say it has a network realization formula if there exists a Hilbert space \mathcal{M} , a unital *-representation $\rho: C_b(S) \to$

 $B(\mathcal{M})$, and a unitary $U: \mathbb{C} \oplus \mathcal{M} \to \mathbb{C} \oplus \mathcal{M}$ that in block matrix form is

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

so that

$$\psi(z) = A + B\rho(E(z))(I - D\rho(E(z)))^{-1}C. \tag{3.1}$$

If \mathcal{B} is a C*-algebra, a positive kernel on a set X with values in \mathcal{B}^* , the dual of \mathcal{B} , is a function $\Gamma: X \times X \to \mathcal{B}^*$ such that for every finite set $F \subset X$, and every $f: F \to \mathcal{B}$ we have

$$\sum_{z,w\in F} \Gamma(z,w)(f(w)^*f(z)) \ge 0.$$

Here is the Dritschel, Marcantognini, and McCullough theorem.

Theorem 3.2. Let S be a set of functions from X to \mathbb{D} , and let $\phi: X \to \overline{\mathbb{D}}$. The following are equivalent:

- (i) $\phi \in A^{\infty}(K_S) \text{ and } \|\phi\|_{A^{\infty}(K_S)} \leq 1.$
- (ii) For each finite set $F \subseteq X$ there exists a positive kernel $\Gamma : F \times F \to C_b(S)^*$ so that, for all $z, w \in F$,

$$1 - \phi(z)\overline{\phi(w)} = \Gamma(z, w)(1 - E(z)E(w)^*). \tag{3.3}$$

(iii) ϕ has a network realization formula.

Now let us assume that the functions in S are all holomorphic functions on the open set Ω in \mathbb{C}^d . By definition, we always have S is contained in the unit ball of $A^{\infty}(K_S)$, so when \mathcal{H} is infinite dimensional we have $H^{\infty}(\mathcal{H}(S))$ is contractively contained in $A^{\infty}(K_S)$ by Theorem 1.3. We shall show in Theorem 3.7 and Proposition 3.5 that the converse holds if S is finite, or if a certain generic assumption holds.

We shall say that T is a generic matrix d-tuple on Ω if, for some $n \in \mathbb{N}$, we have that T is a d-tuple of commuting n-by-n matrices that have a common set of n linearly independent eigenvectors with distinct joint eigenvalues, which means there are n linearly independent eigenvectors v_j in \mathbb{C}^n so that

$$T^r v_j = \lambda_j^r v_j, \qquad 1 \le r \le d, \ 1 \le j \le n, \tag{3.4}$$

and the *n* points $\lambda_j = (\lambda_j^1, \dots, \lambda_j^d)$ are distinct points in Ω . The advantages of working with generic *d*-tuples were pointed out in [1].

We shall define an algebra $H_{\mathrm{gen}}^{\infty}(S)$ to be the holomorphic functions on Ω for which the norm

$$\|\phi\|_{H^{\infty}_{gen}(S)} := \sup\{\|\phi(T)\| : T \text{ is a generic matrix } d\text{-tuple on } \Omega,$$

and $\|\psi(T)\| \le 1 \ \forall \psi \in S\}.$

Proposition 3.5. Let S be a set of holomorphic functions from Ω to \mathbb{D} . Then $H_{\text{gen}}^{\infty}(S) = A^{\infty}(K_S)$ isometrically.

PROOF: Let ϕ be in the closed unit ball of $A^{\infty}(K_S)$. Let T be a generic matrix tuple on Ω , with eigenvectors as in (3.4), and assume that $\|\psi(T)\| \leq 1$ for all ψ in S. Let $F = \{\lambda_1, \ldots, \lambda_n\}$. Define a kernel k(z, w) on Ω by setting it to zero unless both z and w are in F, and on F define

$$k(\lambda_i, \lambda_j) = \langle v_i, v_j \rangle.$$

Then $k \in K_S$, so

$$(1 - \phi(\lambda_i)\overline{\phi(\lambda_j)})\langle v_i, v_j \rangle \ge 0. \tag{3.6}$$

Then (3.6) says that $\|\phi(T)\| \leq 1$, so ϕ is in the closed unit ball of $H_{\text{gen}}^{\infty}(S)$.

Conversely, if ϕ is in the closed unit ball of $H_{\text{gen}}^{\infty}(S)$, then for every finite set $F \subset \Omega$, by Theorem 3.2 applied to F, we have that (3.3) holds on F. Hence by the Theorem again, we have ϕ is in the closed unit ball of $A^{\infty}(K_S)$.

Theorem 3.7. Let S be a set of holomorphic functions from Ω to \mathbb{D} . Let \mathcal{H} be an infinite dimensional Hilbert space. If S is finite, then $H^{\infty}(\mathcal{H}(S)) = A^{\infty}(K_S)$.

PROOF: By Theorem 1.3, we have $H^{\infty}(\mathcal{H}(S))$ is contractively contained in $A^{\infty}(K_S)$. For the converse, let ϕ be in the closed unit ball of $A^{\infty}(K_S)$, with a network realization formula as above. Let $S = \{\psi_1, \ldots, \psi_n\}$.

Let Λ_j be the elements of $C_b(S)$ defined by $\Lambda_j(\psi_i) = \delta_{ij}$. Since each Λ_j is a projection, we get that $\rho(\Lambda_j) = P_j$ gives n mutually orthogonal projections that sum to the identity on \mathcal{M} . Then $\rho(E(z)) = \sum_{j=1}^n \psi_j(z) P_j$.

Expanding (3.1) as a Neumann series in $D\rho(E(z))$, the partial sums ϕ_n will converge locally uniformly on Ω . Therefore if T is in $\mathcal{H}(S)$, since its

spectrum is a compact subset of Ω , we get that $\phi(T) = \lim_n \phi_n(T)$. We have $\rho(E(T)) = \sum_{j=1}^n \psi_j(T) \otimes P_j$, and (3.1) extends to

$$\phi(T) = I_{\mathcal{H}} \otimes A + (I_{\mathcal{H}} \otimes B)\rho(E(T))(I - (I_{\mathcal{H}} \otimes D)\rho(E(T)))^{-1}I_{\mathcal{H}} \otimes C. \quad (3.8)$$

A calculation with (3.8) shows that $I_{\mathcal{H}} - \phi(T)^* \phi(T) \geq 0$, so we conclude $\phi \in \mathscr{S}(\mathcal{H}(S))$.

Problem 3.9 Let \mathcal{H} be an infinite dimensional Hilbert space. Do $H^{\infty}(\mathcal{H}(S))$ and $A^{\infty}(K_S)$ coincide for all non-empty sets S of holomorphic functions from Ω to \mathbb{D} ?

References

- [1] Jim Agler and John E. McCarthy, Operator theory and the Oka extension theorem, Hiroshima Math. J. **45** (2015), no. 1, 9–34. ↑12
- [2] Jim Agler, John E. McCarthy, and N. J. Young, *Operator analysis*, Cambridge University Press. To appear. ↑5
- [3] C.-G. Ambrozie and D. Timotin, A von Neumann type inequality for certain domains in \mathbb{C}^n , Proc. Amer. Math. Soc. 131 (2003), 859–869. \uparrow 10
- [4] Tsuyoshi Andô, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88–90. ↑4
- [5] David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), no. 1, 188–201. ↑7
- [6] Michael J. Crabb and Alexander M. Davie, Von Neumann's inequality for Hilbert space operators, Bull. London Math. Soc. 7 (1975), 49–50. ↑4
- [7] Michael A. Dritschel, Stefania Marcantognini, and Scott McCullough, *Interpolation in semigroupoid algebras*, J. Reine Angew. Math. **606** (2007), 1–40. ↑10
- [8] Michael A. Dritschel and Scott McCullough, Test functions, kernels, realizations and interpolation, Operator theory, structured matrices, and dilations, 2007, pp. 153–179. ↑10
- [9] Greg Knese, The von Neumann inequality for 3×3 matrices, Bull. Lond. Math. Soc. 48 (2016), no. 1, 53–57. $\uparrow 4$
- [10] Meghna Mittal and Vern I. Paulsen, Operator algebras of functions, J. Funct. Anal. **258** (2010), no. 9, 3195–3225. ↑10
- [11] Vern I. Paulsen, Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2002. ↑7

- [12] Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. ↑1
- [13] N.Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83–100. ↑4
- [14] John von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281. $\uparrow 2$