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Abstract: A relatively polynomially convex subset V of a domain Ω
has the extension property if for every polynomial p there is a bounded
holomorphic function φ on Ω that agrees with p on V and whose H∞ norm on
Ω equals the sup-norm of p on V . We show that if Ω is either strictly convex
or strongly linearly convex in C2, or the ball in any dimension, then the only
sets that have the extension property are retracts. If Ω is strongly linearly
convex in any dimension and V has the extension property, we show that V
is a totally geodesic submanifold. We show how the extension property is
related to spectral sets.

1 Introduction

1.1 Statement of Results

Let Ω be an open set in Cd, and V be a subset of Ω, not necessarily open. A
function f : V → C is said to be holomorphic if, for every point λ ∈ V , there
exists ε > 0 and a holomorphic function F defined on the ball B(λ, ε) in Cd

such that F agrees with f on V ∩B(λ, ε). Let H∞(V ) denote the algebra of
all bounded holomorphic functions on V , equipped with the sup-norm on V .
Let A be a sub-algebra of H∞(V ), with the same norm.

Definition 1.1. We say V has the A extension property if, for every f in
A, there exists F ∈ H∞(Ω), such that F |V = f and ‖F‖Ω = ‖f‖. If Ω is a
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bounded domain, and A is the algebra of polynomials, we shall say V has the
extension property.

If Ω is pseudo-convex, and V is an analytic subvariety of Ω, it is a deep
theorem of H. Cartan that every holomorphic function on V extends to a
holomorphic function on Ω [10]. However, in general functions do not have
extensions that preserve theH∞-norm. There is one easy way to have a norm-
preserving extension. We say V is a retract of Ω if there is a holomorphic
map r : Ω→ Ω such that the range of r is V and r|V is the identity. If V is
a retract, then f ◦ r will always be a norm-preserving extension of f to Ω.

In [4], it was shown that if Ω is the bidisk, that is basically the only way
that sets can have the extension property.

Theorem 1.2. [4] Let V be a relatively polynomially convex subset of D2.
Then V has the extension property if and only if V is a retract of D2.

We say that a set V contained in a domain Ω is relatively polynomially
convex if the intersection of the polynomial hull V̂ with Ω is V . If V̂ ∩Ω has
the extension property, so does V , so the assumption of relative polynomial
convexity is a natural one.

In [1], J. Agler, Z. Lykova and N. Young proved that, for the symmetrized
bidisk, that is the set

G = {(z + w, zw) : z, w ∈ D}, (1.3)

not all sets with the extension property are retracts. They proved:

Theorem 1.4. [1] The set V is an algebraic subset of G having the H∞(V )
extension property if and only if either V is a retract of G, or V = R∪Dβ,
where R = {(2z, z2) : z ∈ D} and Dβ = {(β + β̄z, z) : z ∈ D}, and β ∈ D.

It is the purpose of this note to study the extension property for domains
other than the bidisk and symmetrized bidisk. Our first main result is for
strictly convex bounded domains in C2:

Theorem 1.5. Let Ω be a strictly convex bounded subdomain of C2, and as-
sume that V ⊆ Ω is relatively polynomially convex. Then V has the extension
property if and only if V is a retract of Ω.

We prove Theorem 1.5 in Section 2. In Section 3 we prove a similar result
for balls in any dimension. In Section 4 we consider strongly linearly convex
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domains. We shall give a definition of strongly linearly convex in Section 4;
roughly it says that the domain does not have second order contact with
complex tangent planes. We prove:

Theorem 1.6. Let Ω ⊆ Cd be a strongly linearly convex bounded domain
with C3 boundary, and assume that V ⊆ Ω is relatively polynomially convex,
and not a singleton. If V has the extension property, then V is a totally
geodesic complex submanifold of Ω.

As a corollary of Theorem 1.6, we conclude:

Corollary 1.7. Let Ω ⊆ C2 be a strongly linearly convex bounded domain
with C3 boundary, and assume that V ⊆ Ω is relatively polynomially convex.
If V has the extension property, then V is a retract.

In [23], Pflug and Zwonek proved that the symmetrized bidisk is an in-
creasing union of strongly linearly convex domains with smooth (even real
analytic) boundaries. So contrasting Theorem 1.4 with Corollary 1.7 shows
that the extension property implying a retract is not stable under increasing
limits.

1.2 Motivation and history

One reason to study sets with the extension property is provided by spectral
sets. Let Ω be an open set in Cd. If T = (T1, . . . , Td) is a d-tuple of commuting
operators on a Hilbert space with spectrum in Ω, then one can define f(T ) for
any f ∈ H∞(Ω) by the Taylor functional calculus [25]. We say Ω is a spectral
set for T if the following analogue of von Neumann’s inequality holds:

‖f(T )‖ ≤ sup
λ∈Ω
|f(λ)| ∀f ∈ H∞(Ω). (1.8)

If V ⊆ Ω, we say that T is subordinate to V if the spectrum of T is in V and
f(T ) = 0 whenever f ∈ H∞(Ω) and f |V = 0.

Definition 1.9. Let V ⊆ Ω, a domain in Cd. Let A be a sub-algebra of
H∞(V ) that contains the polynomials and has the property that every f in A
can be extended to some function φ in H∞(Ω) that agrees with f on V . We
say V is an A von Neumann set with respect to Ω if, whenever T is a d-tuple
of commuting operators on a Hilbert space that has Ω as a spectral set and
that is subordinate to V , then

‖f(T )‖ ≤ sup
λ∈V
|f(λ)| ∀f ∈ A. (1.10)
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To make sense of (1.10), we must know what we mean by f(T ). Since
every f in A can be extended to some φ in H∞(Ω), we can define f(T ) =
φ(T ). Since T is subordinate to V , the definition does not depend on the
choice of extension—if φ1 and φ2 are both extensions of f that are in H∞(Ω),
then φ1(T ) = φ2(T ) since φ1 − φ2 is identically zero on V .

Note the big difference between (1.8) and (1.10) is whether the norm of
f(T ) is controlled by just the values of f on V , or all of the values on Ω.

One of the main results of [4] is this:

Theorem 1.11. Let Ω be the bidisk D2, and V be a subset. Let A be a
sub-algebra of H∞(V ) that contains the polynomials. Then V is an A von
Neumann set if and only if it has the A extension property.

In [1], the same theorem is proved when Ω is the symmetrized bidisk (1.3).
In Section 5, we prove that the theorem holds for any bounded domain Ω
and any algebra containing the polynomials.

Theorem 1.12. Let Ω be a bounded domain in Cd, and let V ⊆ Ω. Let A
be a sub-algebra of H∞(V ) that contains the polynomials. Then V is an A
von Neumann set if and only if it has the A extension property.

Another reason to study sets with the extension property is if one wishes
to understand Nevanlinna-Pick interpolation. Given a domain Ω and N
distinct points λ1, . . . , λN in Ω, the Nevanlinna-Pick problem is to determine,
for each given set w1, . . . , wN of complex numbers,

inf{‖φ‖H∞(Ω) : φ(λi) = wi, 1 ≤ i ≤ N},

and to describe the minimal norm solutions. This problem has been ex-
tensively studied in the disk [9], where the minimal norm solution is always
unique, but is more elusive in higher dimensions. Tautologically there is some
holomorphic subvariety V on which all minimal norm solutions coincide, but
sometimes one can actually say something descriptive about V , as in [3, 17].
If V had the extension property, one could split the analysis into two pieces:
finding the unique solution on V , and then studying how it extends to Ω.

The first result we know of norm-preserving extensions is due to W. Rudin
[24, Thm 7.5.5], who showed that if V is an embedded polydisk in Ω, and
there is an extension operator from H∞(V ) to H∞(Ω) that is linear of norm
one, then V must be a retract of Ω. Theorem 1.2 from [4] characterized sets
in D2 that have the extension property, and Theorem 1.4 from [1] did this
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for the symmetrized bidisk. Neither of these results assume that there is a
linear extension operator. In [15], Guo, Huang and Wang proved

Theorem 1.13. Suppose V is an algebraic subvariety of D3 that has the
H∞(V ) extension property, and there is a linear extension operator from
H∞(V ) to H∞(D3). Then V is a retract of D3.

If V is an H∞(Dd)-convex subset1 of Dd for any d, it has the H∞(V )
extension property, and there is a norm one extension operator that is an
algebra homomorphism, then V is a retract of Dd.

2 Strictly convex domains in C2

A convex set Ω in Cd is called strictly convex if for every boundary point λ,
there is a real hyperplane P such that P ∩ Ω = {λ}. Equivalently, it means
that there are no line segments in ∂Ω.

Let Ω be a domain in Cd, and let λ, µ be two distinct points in Ω. Follow-
ing [1], we shall call the pair δ = (λ, µ) a datum. A Kobayashi extremal for δ
is a holomorphic map k : D→ Ω such that both λ and µ are in the range of
k, and the pseudo-hyperbolic distance ρ between the pre-images of λ and µ
is minimized at k over all holomorphic maps from D to Ω. A Carathéodory
extremal for δ is a holomorphic map φ : Ω→ D that maximizes ρ(φ(λ), φ(µ)).

If δ is a datum, we shall say that the Kobayashi extremal is essentially
unique if, given any two Kobayashi extremals k1 and k2, they are related by
k2 = k1 ◦ m, where m is a Möbius automorphism of D. We shall call the
range of a Kobayashi extremal with datum δ a geodesic through δ. If a set
V ⊆ Ω has the property that for any λ, µ in V , a geodesic through (λ, µ) is
contained in V , we shall say that V is totally geodesic.

A theorem of L. Lempert [20] asserts that if Ω is a bounded convex
domain, every Kobayashi extremal k has a left inverse, i.e. a Carathéodory
extremal φ satisfying

φ(k(z)) = z ∀ z ∈ D.

A consequence is that every geodesic is a retract, since r = k ◦ φ is the iden-
tity on Ran(r). By Lempert’s theorem, on a convex domain the Kobayashi
distance between two points λ and µ in Ω is the same as the Carathéodory

1We say V is H∞(Dd)-convex if for every point λ in Dd \ V there is a function φ in
H∞(Dd) such that |φ(λ)| > supz∈V |φ(z)|.
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distance, defined by
κ(λ, µ) = ρ(φ(λ), φ(µ)),

where φ is a Carathéodory extremal for the datum (λ, µ).
Much of the difficulty in characterizing subsets of D2 with the extension

property in [4] stemmed from the fact that on the bidisk, Kobayashi extremals
need not be essentially unique. In strictly convex domains, Kobayashi ex-
tremals are essentially unique [16, Prop 8.3.3]. Kobayashi extremals are also
essentially unique in the symmetrized bidisk G [5].

We shall need the following result, the Royden-Wong theorem. A com-
plete proof is in Lemmata 8.2.2 and 8.2.4 and Remark 8.2.3 in [16]. For a
function on the unit disk that is in a Hardy space, we shall use the same
symbol for the function on D and for its non-tangential limit function on the
circle T. We shall use • to mean the bilinear form on Cd

z • w =
d∑
j=1

zjwj.

Theorem 2.1. Let Ω be a bounded convex domain in Cd, and k : D → Ω a
Kobayashi extremal for some datum. Then:

(i) k(z) ∈ ∂Ω for a.e. z ∈ T.
(ii) There exists a non-zero function h ∈ H1(D,Cd) such that

Re [(λ− k(z)) • (z̄h(z))] < 0 ∀ λ ∈ Ω, and a.e. z ∈ T. (2.2)

(iii) There exists a holomorphic φ : Ω → D that satisfies φ ◦ k is the
identity on D, and satisfies the equation

[λ− k(φ(λ))] • h(φ(λ)) = 0 ∀ λ ∈ Ω.

Definition 2.3. Let Ω be an open set in Cd, and V ⊆ Ω. Let V denote
the closure of V in Cd. We say that V is relatively polynomially convex if
V ∩ Ω = V , and V is polynomially convex in Cd.

Proposition 2.4. Let Ω be a strictly convex bounded domain in Cd. Let V
be relatively polynomially convex in Ω. If V has the extension property, then
V is totally geodesic.

Proof: Let us assume that µ, µ′ are distinct points in V , let G be the
unique geodesic through them, and let k : D → G ⊂ Ω be a Kobayashi
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extremal for these points. Assume that G is not contained in V ; we shall
derive a contradiction.

Since V is polynomially convex, there must exist some part of the bound-
ary of G that is not in V . So there exists ξ ∈ ∂G, η ∈ T and ε0, ε1 > 0,
so that B(ξ, ε0) ∩ V = ∅ and k(∆(η, ε1)) ⊆ B(ξ, ε0), where ∆(η, ε1) is some
triangle in D with vertex η and diameter ε1.

Let h and φ be as in Theorem 2.1. Wiggling η a little if necessary, we
can assume that both h and k have non-tangential limits at η, and that (2.2)
holds for z = η. Then by part (ii) of Theorem 2.1, we have that

{λ ∈ Ω : Re [(λ− ξ) • (η̄h(η))] = 0}

is a supporting plane for Ω that contains ξ. Since Ω is strictly convex, small
perturbations of this plane will only intersect Ω in B(ξ, ε0). So there is a
small triangle ∆(η, ε2) such that for z ∈ ∆(η, ε2), we have

{λ ∈ Ω : Re [(λ− k(z)) • zh(z)] = 0} ∩ V = ∅. (2.5)

Therefore if λ ∈ V , and z = φ(λ), then by part (iii) of Theorem 2.1,

[λ− k(z)] • h(z) = 0. (2.6)

If z were in ∆(η, ε2), then by (2.5), we would have

Re [(λ− k(z)) • zh(z)] 6= 0,

which would contradict (2.6). So we can conclude that if λ ∈ V , then φ(λ) /∈
∆(η, ε2).

The set Ω is convex, and without loss of generality we can assume 0 ∈ Ω.
Let φt(λ) = φ(tλ), for t in the interval [0, 1]. By continuity, there exists
t0 < 1 and a non-empty triangle ∆(η, ε3) so that, for every t between t0 and
1,

φt(V ) ∩∆(η, ε3) = ∅. (2.7)

Since φ(µ) 6= φ(µ′) (as φ◦k is the identity), increasing t0 we can also assume
that φt(µ) 6= φt(µ

′) for t ∈ [t0, 1]. Now we adapt an idea of P. Thomas, [26].
Let g be the Riemann map from D \∆(η, ε3) to D. Let ψt = g ◦ φt. For any
t in (t0, 1) the function φt is holomorphic on a neighborhood of Ω, and by
(2.7) there is a neighborhood of V on which ψt is defined. Since g maps a
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subset of the disk to the whole disk, there is some ε4 > 0, independent of t,
so that

ρ(g(φt(µ)), g(φt(µ
′))) > ρ(φt(µ), φt(µ

′)) + ε4.

By the Oka-Weil theorem, we can approximate ψt uniformly by polyno-
mials on V , and hence by the extension property, we can find a holomorphic
function Ft that maps Ω to D and such that

ρ(Ft(µ), ψt(µ)) + ρ(Ft(µ
′), ψt(µ

′)) <
ε4

2
.

Therefore
ρ(Ft(µ), Ft(µ

′)) > ρ(φt(µ), φt(µ
′)) +

ε4

2
.

Since φt(λ) approaches φ(λ) for λ ∈ Ω, as t → 1, taking t sufficiently close
to 1 we have that F := Ft is a holomorphic function Ω→ D that satisfies

ρ(F (µ), F (µ′)) > ρ(φ(µ), φ(µ′)). (2.8)

Inequality (2.8) means that φ is not a Carathéodory extremal for (µ, µ′) in
Ω. But this is a contradiction, since φ is a left inverse to k. 2

We can now prove Theorem 1.5.
Proof of Theorem 1.5: Assume that V has the extension property.

It is obviously a retract if V is a singleton, so we shall assume it contains at
least two points. By Proposition 2.4, we know that V is totally geodesic. We
shall prove that in fact V must either be a single geodesic, and hence a one
dimensional retract, or all of Ω.

Take two different points in V and let G be a unique geodesic of Ω passing
through them. Since V is totally geoedesic, G is contained in V . Assume
that there is some point a ∈ V \ G. For each point λ ∈ G, let kλ be the
Kobayashi extremal that passes through a and λ, normalized by kλ(0) = a
and kλ(r) = λ for some r in the interval (0, 1); so by Lempert’s theorem [20]
r is κ(λ, a), the Kobayashi distance between λ and a.

Let D be a subdisk of G with compact closure. Note that

{r : kλ(r) = λ, λ ∈ D} = {κ(λ, a) : λ ∈ D}

is bounded away from 0 and 1, as Ω is a bounded domain. Let B = D(1
2
, 1

4
).

Define

Ψ : B ×D → Ω

(z, λ) 7→ kλ(z).
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Claim: Ψ is continuous and injective.
Proof of claim: Since geodesics are unique in strictly convex domains

[16, Prop 8.3.3], any two geodesics that share two points must coincide. As
kλ(0) = a for each λ, it follows that if λ1 6= λ2, then kλ1(z1) 6= kλ2(z2) unless
z1 = 0 = z2. Moreover, since each kλ has a left inverse, each kλ is injective,
so Ψ is injective.

To see that Ψ is continuous, suppose that λn → λ and zn → z. We have
rn = κ(λn, a) satisfies kλn(rn) = λn. By Montel’s theorem, every subsequence
of kλn has a subsequence that converges uniformly on compact subsets of D
to a function k : D → Ω (since Ω is bounded and convex, and hence taut).
But clearly k(0) = a and k maps some positive real number r to λ, where
r = limκ(λn, a) = κ(λ, a) (use a uniform convergence argument together
with the equality kλn(rn) = λ). So k is a holomorphic map from D to Ω that
maps 0 to a, and r to λ, and is therefore a Kobayashi extremal for the datum
(λ, a). Since these are essentially unique in strictly convex domains, we have
that k = kλ. So lim Ψ(λn, zn) = Ψ(λ, z), and hence Ψ is continuous. �

So Ψ is a continuous injective map between two open subsets of C2; hence
by the invariance of domain theorem, Ψ is open. Therefore the range of Ψ
is an open subset U of Ω. As U is a union of geodesics going through pairs
of points in V (more precisely, through a ∈ V and λ ∈ D ⊂ V ), and V is
totally geodesic by Proposition 2.4, we have that V contains the whole open
set U . This forces V to be all of Ω, since if ν is any point in U and µ is any
point not in U , there is some geodesic containing ν and µ. As U is open, this
geodesic must contain a continuum of points in U . In particular, it contains
two distinct points in U ⊆ V , so as V is totally geodesic, we have that V
contains the whole geodesic, and in particular µ ∈ V . Therefore V = Ω. 2

3 The ball

Let Bd be the unit ball in Cd, the set {z ∈ Cd :
∑d

j=1 |zj|2 < 1}.

Theorem 3.1. Let V be be a relatively polynomially convex subset of Bd that
has the extension property. Then V is a retract of Bd.

Proof: The result is obvious if V is a singleton, so let us assume it has
more than one point. Composing with an automorphism of Bd, we can assume
that 0 ∈ V . We will show that then V is the image under a unitary map of
Bk, for some 1 ≤ k ≤ d. First observe that if a ∈ V \ {0}, we can compose
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with a unitary so that it has the form (a1, 0, . . . , 0). By Proposition 2.4, we
have that B1 ⊆ V . Now we proceed by induction. Suppose that Bk−1 ( V ,
and that b ∈ V \ Bk−1. Composing with a unitary, we can assume that b =
(b1, . . . , bk, 0, . . . , 0) and bk 6= 0. Let c be any point in Bk with ‖c‖ < |bk|/2.
Then

c =
ck
bk

(b1, . . . , bk, 0, . . . , 0) + (c1 −
ck
bk
b1, c2 −

ck
bk
b2, . . . , 0, . . . , 0).

Then the first point on the right-hand side is in the geodesic connecting b
and 0, so in in V ; and the second point is in Bk−1, and so is also in V .
Therefore the geodesic containing these two points, which is the intersection
of the plane containing these two points with Bd, is also in V , and hence
c ∈ V .

Continuing until we exhaust V , we conclude that V = Φ(Bk), for some k
between 1 and d and some automorphism Φ of Bd. 2

4 Strongly linearly convex domains

A domain Ω ⊆ Cd is called linearly convex if, for every point a ∈ Cd \ Ω,
there is a complex hyperplane that contains a and is disjoint from Ω. Now
assume that Ω is given by a C2 defining function r (i.e. Ω = {z : r(z) < 0}
and grad(r) 6= 0 on ∂Ω). Then Ω is called strongly linearly convex if

d∑
j,k=1

∂2r

∂zj∂z̄k
(a)XjX̄k > |

d∑
j,k=1

∂2r

∂zj∂z̄k
(a)XjXk|,

∀ a ∈ ∂Ω, X ∈ (Cd)∗ with
d∑
j

∂r

∂zj
(a)Xj = 0.

Notice that we only check the inequality on complex tangent vectors. Roughly
speaking, a domain is strongly linearly convex if it is smooth, linearly convex
and it remains linearly convex after small deformations.

A smooth domain D is strictly convex if for any a in the boundary of D
its defining function restricted to the real tangent plane to ∂D at a attains
a strict minimum at a, and it is strictly linearly convex if for any a in the
boundary of D its defining function restricted to the complex tangent plane
(i.e. the biggest complex plane contained in the tangent plane) to ∂D at
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a attains a strict minimum at a. Note that a smooth domain is strongly
linearly convex if the Hessian of its defining function is strictly positive on
the complex tangent plane. We call a smooth domain strongly convex if the
Hessian of its defining function is strictly positive on the real tangent plane.
It is obvious that strong linear convexity implies strict linear convexity and
that any strongly convex domain is strongly linearly convex.

For convenience we shall only consider C3 domains, though the regularity
actually needed is C2,ε (which means that second order derivatives of the
defining function are ε-Hölder continuous).

If Ω is strongly linearly convex and has smooth boundary, it was proved by
Lempert [21] that the Kobayashi extremals are unique and depend smoothly
on points, vectors and even domains (in the sense of their defining functions)

Lemma 4.1 ([21], Proposition 11, see also [19], Proof of Theorem 3.1). Let
Ω be a strongly linearly convex domain with C3 boundary, and let f : D→ Ω
be a complex geodesic. Then there exist a domain G ⊂ D × Cd−1 and a
biholomorphic mapping Γ : Ω→ G that extends to a homeomorphism D → G
and such that Γ(f(λ)) = (λ, 0), λ ∈ D. Moreover, G∩ (T×Cd−1) = T×{0}.

Proof of Theorem 1.6:
The proof is split into two parts. The first one says that V is totally

geodesic. To get it we shall use the argument from the proof of Proposition
2.4, but using Lemma 4.1 in lieu of the Royden-Wong theorem.

The second part says that any totally geodesic variety in Ω having an
extension property is regular.

Lemma 4.2. Let Ω and V be as in Theorem 1.6. Then V is totally geodesic.

Proof. It was proven by Lempert in [21] for smoothly bounded strongly lin-
early convex domains, and in [18] for C2-boundaries, that the Carathéodory
and Kobayashi metrics coincide on Ω, and that geodesics f : D → Ω are
essentially unique and C1/2-smooth on D, so they extend continuously to the
closed unit disk.

Take µ, µ′ ∈ V and a complex geodesic f passing through these points.
Let F = f(D) and let Γ be as in Lemma 4.1, a biholomorphic mapping
that maps Ω to G ⊂ D × Cd−1 that extends continuously to Ω and satisfies
Γ(f(λ)) = (λ, 0). Define π(x) = x1 for x = (x1, . . . , xd) ∈ Cd. Then F :=
π ◦ Γ is a left inverse of f and extends continuously on Ω.

We shall show that the set F (V ) contains the whole circle T. Assume this
is not true. Then F (V ) omits some D(ξ, ε0)∩D for ξ ∈ T and ε0 > 0. As Ω is
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strongly pseudoconvex (as a strongly linearly convex domain), the function
F (holomorphic on Ω and continuous on Ω) can be uniformly approximated
by functions that are holomorphic on neighborhoods of Ω [11, Thm. ii.5.10].
Since strong linear convexity is preserved under small perturbations, we can
assume that the domains where the approximating functions are defined are
also strongly linearly convex. Any smooth strongly linearly convex domain
is Runge, (see, for example, [8, 2.1.9,2.3.9,2.5.18]) so any function that is
holomorphic on a neighborhood of Ω can be uniformly approximated on Ω
by polynomials. Therefore, we can find a sequence of polynomials (pn) such
that pn(V ) ⊂ D \ D(ξ, ε0) and pn converges uniformly to F on V . Since V
has the extension property, we can extend each polynomial pn to an H∞(Ω)
functions φn : Ω → D \ D(ξ, ε0). Let g : D \ D(ξ, ε0) → D be the Riemann
map.

There exists ε1 > 0 and N ∈ N such that

ρ(g(φn(µ)), g(φn(µ′))) > ρ(φn(µ), φn(µ′)) + ε1,

for all n ≥ N . Thus for n big enough we get that

ρ(g(φn(µ)), g(φn(µ′))) > ρ(F (µ), F (µ′)).

This contradicts the fact that F is a left inverse to the geodesic f , and thus
a Carathéodory extremal for (µ, µ′).

We have shown that T ⊂ F (V ). By Lemma 4.1 the only points of Ω on
which F ◦ Γ is unimodular are on the boundary of F . Therefore, since V is
relatively polynomially convex, we have F ⊆ V , as required.

Lemma 4.3. Let Ω be a bounded open set in Cd, and let V ⊆ Ω be a rela-
tively polynomially convex set that has the extension property. Then V is a
holomorphic subvariety of Ω.

Proof. Let b be any point in Ω \ V . Then there is a polynomial p such that
|p(b)| > ‖p‖V . By the extension property, there is a function φ ∈ H∞(Ω)
such that φ|V = p and ‖φ‖Ω = ‖p‖V . Let ψb = φ − p. Then ψb vanishes on
V and is non-zero on b. Therefore V = ∩b∈Ω\VZψb

.
Locally, at any point a in V , the ring of germs of holomorphic functions

is Noetherian [14, Thm. B.10]. Therefore V is locally the intersection of
finitely many zero zets of functions in H∞(Ω), and therefore is a holomorphic
subvariety.
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In the next proof, we shall write X∗ to mean X \ {0}.

Lemma 4.4. Let V be a totally geodesic holomorphic subvariety of a strongly
linearly convex domain Ω, and assume that V has the extension property.
Then V is a complex manifold.

Proof. Set m = dimC V and take a ∈ V . We want to show that V is a
complex submanifold near a. If m = 0, there is nothing to prove, so we
shall assume m > 0. Take any point in V \ {a} and a complex geodesic
passing through it and a. According to Lemma 4.3 this geodesic is contained
in V . Of course, it is a 1-dimensional complex submanifold, so trivially a
2-dimensional real submanifold.

Claim. (i) If F is a local 2k dimensional real submanifold smoothly
embedded in V in a neighbourhood of a ∈ F , and there is a geodesic f :
D→ V such that f(0) = a and f ′(0) /∈ ωTaF for any ω ∈ T, then there is a
local real submanifold of dimension 2k + 2 that is contained in V and that
contains a.

(ii) Moreover, one can always find such a geodesic f whenever k < m or
if k = m and V does not coincide with F near a.

To prove part (i) of the claim, let us take a geodesic f such that f(0) = a,
and f ′(0) /∈ ωTaF for any ω ∈ T. Take any t0 ∈ (0, 1) and set a0 = f(t0).
It follows from Lempert’s theorem [20, 21] (see [18] for an exposition) that
there are a neighbourhood U of a and a smooth mapping Φ : U × D → Cd

such that, for any z near a, a disc Φ(z, ·) is a geodesic passing through a0

and z, and such that Φ(z, 0) = a0 and Φ(z, tz) = z for some tz > 0. It
also follows from Lempert’s theory that z 7→ tz is smooth. Observe that
Φ(a, λ) = f(mt0(λ)). Note that the mapping:

F × D 3 (z, λ) 7→ Φ(z, λ)

sends (a, t0) to a. We shall show that its Jacobian is non-degenerate in a
neighborhood of (a, t0). This will imply that the image of this mapping is a
smooth 2k + 2 dimensional real submanifold, thus proving (i) of the claim.

Let p : (−1, 1)2k → F give local coordinates for F , p(0) = a. We need to
compute the Jacobian of (s, λ) 7→ Ψ(s, λ) := Φ(p(s), λ) at (0, t0). Write λ in
coordinates (x, y) ∈ R2 and Ψ = (Ψ1, . . . ,Ψ2d).

13



The Jacobian matrix of Ψ is the (2k + 2)-by-2d matrix with columns
∂Ψi

∂sj

∂Ψi

∂x

∂Ψi

∂y


Differentiating Ψ(s, r(s)) = p(s), where r(s) = tp(s), we get

∂Ψi

∂sj
+
∂Ψi

∂x

∂r

∂sj
=

∂pi
∂sj

.

So the rank of the Jacobian of Ψ is the same as the rank of the matrix with
columns 

∂pi
∂sj

∂Ψi

∂x

∂Ψi

∂y

 (4.5)

Since Ψ(0, λ) = f(mt0(λ)), by differentiating with respect to λ we find that
∂Ψ/∂λ(0, t0) = −f ′(0)/(1 − t20). So if f ′(0) 6∈ ωTaF for any unimodular ω,
the rank of (4.5) is 2 more than the rank of ( ∂pi

∂sj
), which is 2k. Therefore the

Jacobian of Ψ is of rank 2k + 2, and so we have established (i) of the claim.

Proof of part (ii) of the claim, the existence of the geodesic.
For z ∈ V \ {a}, let fz denote a complex geodesic such that fz(0) = a

and fz(tz) = z for some tz > 0.
Case: when k < m. Note that the real dimension of the set {tf ′z(0) : z ∈

V, t > 0} is equal at least to 2m. To see this one can proceed as follows:
take z0 ∈ Vreg \ {a} such that dimz0 V = m. Let W be an 2m − 1-real
dimensional manifold near z0 that is contained in V and is transversal at
this point to (0, 1) 3 r 7→ fz0(r). Then the mapping (0,∞) × W → Cm

given by (t, z) 7→ tf ′z(0) is injective for z close to z0, so its image is 2m real
dimensional.

On the other hand, the real dimension of the set

T · TaF := {ωX : ω ∈ T, X ∈ TaF}

14



is equal to 2k + 1 or 2k. So the existence of the geodesic follows.
Case: k = m. Then F is a real submanifold of dimension 2m that is

contained in an analytic set of complex dimension m. The singular points of
V are a subset of complex dimension at most m− 1. Looking at the regular
points of V , we get that F is a totally complex manifold, which means that
its tangent space has a complex structure, on the regular points. Since F is
a submanifold near z, its tangent space depends continuously on z, so F has
a complex structure on its tangent space at all points.

By Lemma I.7.15 in [13], it follows that F must be a complex submanifold.
In particular, its tangent space is invariant under complex multiplication.

Change variables so that F is the graph of a holomorphic mapping {(z′, h(z′)) :
||z′ − a′|| < 2ε0} near a = (a′, a′′). Denote by Sε the set

Sε = {(z′, h(z′)) : ||z′ − a′|| = ε}.

If there are ε > 0 and z′ ∈ Sε such that f ′(z′,h(z′))(0) /∈ TaF we are done, as
f(z′,h(z′)) is a geodesic we are looking for. Otherwise, for ε small enough, say
0 < ε < ε1, consider the mapping

αε : (0,∞)× Sε → (TaF)∗

(r, z) 7→ rf ′z(0). (4.6)

It follows from the uniqueness of geodesics (with the normalization that 0
maps to a and f−1

z (z) is positive) that αε is injective. By the invariance of
domain theorem, αε is open. Therefore, as the range of the mapping αε is
open and closed, αε is surjective.

Take a point w ∈ V \ F close to a. Let g be a complex geodesic for a
and w such that g(0) = a, and g(tw) = w. To finish the proof of the claim
it suffices to show that g′(0) 6∈ TaF . Seeking a contradiction suppose that
g′(0) lies in TaF .

By the surjectivity of αε, we get that there is (r, z) ∈ (0,∞) × Sε such
that rf ′z(0) = g′(0). The uniqueness of geodesics implies that fz = g and
consequently g(tz) = fz(tz) = z.

Let
H(z′, z′′) := (||z′ − a′||2, ||z′′ − h(z′)||2).

Then H ◦g is a real analytic mapping, which is well defined on a real interval
surrounding 0. Observe that H ◦ g(tz) = (ε2, 0), since z is in Sε. Applying
this formula for any δ in the interval (0, ε1) we get that there are t(δ) in (0, 1)
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so that H ◦ g(t(δ)) = (δ2, 0). It is an immediate consequence of this equality
that t(δ) 6= t(δ′) if δ 6= δ′. It follows from the identity principle that the
second component of t 7→ H ◦ g(t) is identically equal to zero. In particular,
it also vanishes at tw, so w is in F , a contradiction.

Having proved the claim, we finish the proof of the Lemma in the following
way. Let F1 be a complex geodesic contained in V that passes through a. If
m > 1, for 1 ≤ k ≤ m− 1, by part (ii) of the claim we can find a geodesic f
through a such that f ′(0) is not in ωTaFk for any complex ω, and so by part
(i) we can find a real 2k + 2-dimensional smoothly embedded manifold Fk+1

contained in V and containing a. If Fm does not equal V near a, then by part
(ii) we could find a Fm+1 contained in V , which is ruled out by the dimension
count. Therefore Fm = V near a, so V is a smooth real submanifold, and
hence, as already shown, a complex submanifold.

Combining Lemma 4.2 and Lemma 4.4, we finish the proof of Theo-
rem 1.6. 2

Proof of Corollary 1.7: If d = 2, then we have shown that if V
has the extension property and is not a singleton or all of Ω, then it is a
one dimensional totally geodesic set. So there exists a Kobayashi extremal
f : D → Ω whose range is exactly V . By Lempert’s theorem, there is a left
inverse L : Ω→ D. Let r = f ◦ L; this is a retract from Ω onto V . 2

5 Spectral sets

Let Ω be a bounded open set in Cd, and V ⊆ Ω; they shall remain fixed for
the remainder of this section. Let A(Ω) denote the algebra of holomorphic
functions on Ω that extend to be continuous on the closure Ω, equipped with
the supremum norm. For any positive finite measure µ supported on Ω, let
A2(µ) denote the closure of A(Ω) in L2(µ).

A point λ ∈ Ω is called a bounded point evaluation of A2(µ) if there exists
a constant C so that

|f(λ)| ≤ C‖f‖ ∀f ∈ A(Ω). (5.1)

If (5.1) holds, then by the Riesz representation theorem there is a function
kµλ ∈ A2(µ) such that

f(λ) = 〈f, kµλ〉 ∀f ∈ A(Ω). (5.2)

16



Given a set Λ ⊆ Ω, we say the measure µ is dominating for Λ if every point
of Λ is a bounded point evaluation for A2(µ). We shall need the following
theorem of Cole, Lewis and Wermer [12]; similar results were proved by Amar
[6] and Nakazi [22]. See [2, Thm. 13.36] for an exposition. For the polydisk
or the ball, one can impose extra restrictions on the measures µ that need to
be checked [7, 27].

Theorem 5.3. Let {λ1, . . . , λN} ⊆ Ω and {w1, . . . , wN} ⊆ C be given. For
every ε > 0, there exists a function f ∈ A(Ω) of norm at most 1 + ε that
satisfies

f(λi) = wi, for i = 1, . . . , N

if and only if, for every measure µ supported on ∂Ω that dominates {λ1, . . . , λN},
we have [

(1− wiwj)〈kµλj , k
µ
λi
〉A2(µ)

]N
i,j=1

≥ 0. (5.4)

Proof of Theorem 1.12: We shall actually show slightly more: for
any function f ∈ A (which for this theorem is the algebra of polynomials),
we shall show that f can be extended to a function φ in H∞(Ω) of the same
norm that agrees with f on V if and only if

‖f(T )‖ ≤ sup
λ∈V
|f(λ)| ∀ T subordinate to V. (5.5)

One direction is easy. Suppose that V has the A extension property, and
T is subordinate to V . By the extension property, there exists φ ∈ H∞(Ω)
such that φ|V = f |V , and ‖φ‖ = supV |f |. Since T is subordinate to V and
f − φ vanishes on V , we get that f(T ) = φ(T ), so

‖f(T )‖ = ‖φ(T )‖ ≤ ‖φ‖ = sup
λ∈V
|f(λ)|,

where the inequality comes from the fact that Ω is a spectral set for T .
The converse direction is more subtle. Suppose supλ∈V |f(λ)| = 1, and

assume we cannot extend f to a function φ of norm one in H∞(Ω). We shall
construct T subordinate to V so that (5.5) fails.

Let {λj} be a countable dense set in V . Let wj = f(λj). For each N , let
EN = {λ1, . . . , λN}. If, for each N , one could find φN ∈ A(Ω) of norm at
most 1 + 1

N
and that satisfies

φN(λi) = f(λi), 1 ≤ i ≤ N,
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then by Montel’s theorem some subsequence of (φN) would converge to a
function φ in the closed unit ball of H∞(Ω) that agreed with f on a dense
subset of V , and hence on all of V . So by Theorem 5.3, there must be some
N , and some measure µ that dominates EN , so that (5.4) fails. Fix such an
N and such a µ.

Let kj = kµλj , and let M be the linear span of {k1, . . . , kN}. Define a

d-tuple of operators T = (T1, . . . , Td) on M

T ∗r kj = λrj kj, 1 ≤ r ≤ d, 1 ≤ j ≤ N. (5.6)

(We write λrj for the rth component of λj). By (5.6), the spectrum of T ∗ is

{λ1, . . . , λN}, so the spectrum of T is EN ⊆ V .
If ψ ∈ H∞(Ω), let ψ∪(z) = ψ(z). From (5.6) it follows that

ψ(T )∗kj = ψ∪(T ∗)kj = ψ(λj)kj. (5.7)

Indeed, since T is a d-tuple of matrices, ψ(T ) only depends on the value
of ψ and a finite number of derivatives on the spectrum of T ; so one can
approximate ψ by a polynomial, and for polynomials (5.7) is immediate.

We have that T is the compression to M of multiplication by the coor-
dinate functions on A2(µ). Let P be orthogonal projection from A2(µ) onto
M. If g ∈ A(Ω), then

‖g(T )‖ = ‖PMgP‖ ≤ ‖g‖A(Ω),

where Mg is mutliplication by g in A2(µ). So T has Ω as a spectral set. By
(5.7), if ψ vanishes on V , then ψ(T ) = 0, so T is subordinate to V .

We want to show that ‖f(T )‖ > 1. If it were not, then

I − f(T )f(T )∗ ≥ 0. (5.8)

Evaluating the left-hand side of (5.8) on v =
∑
ajkj and using (5.7), one

gets

〈(I − f(T )f(T )∗)v, v〉 =
N∑

i,j=1

aiaj(1− wiwj)〈kj, ki〉 (5.9)

But we chose N and µ so that for some choice of aj, (5.9) is negative. This
contradicts (5.8). 2
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