AN H^p SCALE FOR COMPLETE PICK SPACES

ALEXANDRU ALEMAN, MICHAEL HARTZ, JOHN E. M^CCARTHY, AND STEFAN RICHTER

1. Introduction

Let \mathcal{M} be a reproducing kernel Hilbert space on a set X, with kernel function k. Let $\mathrm{Mult}(\mathcal{M})$ denote the multiplier algebra of \mathcal{M} . We shall make the following assumption throughout our paper:

(A) $\operatorname{Mult}(\mathcal{M})$ is densely contained in \mathcal{M} .

We shall let $\mathcal{M} \odot \mathcal{M}$ denote the weak-product of \mathcal{M} with itself, which is

(1.1)
$$\mathcal{M} \odot \mathcal{M} := \{ \sum_{n=1}^{\infty} f_n g_n : \sum_n \|f_n\|_{\mathcal{M}} \|g_n\|_{\mathcal{M}} < \infty \}.$$

This is a Banach space, where the norm of a function h is the infimum of $\sum_{n} \|f_n\|_{\mathcal{M}} \|g_n\|_{\mathcal{M}}$ over all representations of h as $\sum_{n} f_n g_n$.

If we use the complex method of interpolation to interpolate between $\mathcal{M} \odot \mathcal{M}$ and its anti-dual (the space of bounded conjugate linear functionals) we get a scale of Banach spaces, whose mid-point is the Hilbert space \mathcal{M} . By analogy with the case where \mathcal{M} is the Hardy space H^2 on the unit disk, where the end-points become H^1 and BMOA and the intermediate spaces are H^p for 1 , we shall define

$$(1.2) \mathcal{H}^p := [\mathcal{M} \odot \mathcal{M}, (\mathcal{M} \odot \mathcal{M})^{\dagger}]_{[\theta]}$$

where $p = \frac{1}{1-\theta}$ and A^{\dagger} denotes the anti-dual of A.

We consider \mathcal{H}^p to be the H^p scale for the space \mathcal{M} . In Section 2 we study properties of the \mathcal{H}^p spaces for general \mathcal{M} . In Section 3 we specialize to the case that \mathcal{M} is a complete Pick space.

Date: January 15, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary.

Key words and phrases. Smirnov class, Drury-Arveson space, Toeplitz operator. J.M. was partially supported by National Science Foundation Grant DMS 1565243.

2. General Spaces

The space $(\mathcal{M} \odot \mathcal{M})^{\dagger}$ was described in [1]. Let $\mathcal{M} \otimes_{\pi} \mathcal{M}$ denote the projective tensor product of \mathcal{M} with itself. Its dual is $\mathcal{B}(\mathcal{M}, \overline{\mathcal{M}})$, where $\overline{\mathcal{M}}$ is the complex conjugate of \mathcal{M} . Let $\rho : \mathcal{M} \otimes_{\pi} \mathcal{M} \to \mathcal{M} \odot \mathcal{M}$ be defined by

$$\rho: \sum f_n \otimes g_n \mapsto \sum f_n(z)g_n(z).$$

Then $(\mathcal{M} \odot \mathcal{M})^*$ can be identified with $(\ker \rho)^{\perp}$. We can identify $(\mathcal{M} \odot \mathcal{M})^{\dagger}$ with

$$\operatorname{Han} := \{ \overline{T1} : T \in (\ker \rho)^{\perp} \}.$$

If $b \in \text{Han}$, which is a subset of \mathcal{M} , the corresponding conjugate linear functional on $\mathcal{M} \odot \mathcal{M}$ is given by

$$\Lambda_b: f \mapsto \langle b, f \rangle \quad \forall f \in \mathcal{M}.$$

We write H_b for the unique operator $H \in \mathcal{B}(\mathcal{M}, \overline{\mathcal{M}}) \cap (\ker \rho)^{\perp}$ that satisfies $H_b 1 = \overline{b}$. We put a norm on Han by declaring ||b|| equal to the operator norm of H_b . Let

$$\mathcal{X}(\mathcal{M}) := \{ b \in \mathcal{M} : \exists C \ge 0 \quad \text{s.t. } |\langle b, \phi f \rangle| \le C \|\phi\|_{\mathcal{M}} \|f\|_{\mathcal{M}} \\ \forall \phi \in \text{Mult}(\mathcal{M}), f \in \mathcal{M} \}.$$

Then under assumption (A) it is proved in [1, Thm 2.5] that

$$\operatorname{Han} \subseteq \mathcal{X}(\mathcal{M}).$$

Theorem 2.1. The complex interpolation space $[\mathcal{M} \odot \mathcal{M}, \operatorname{Han}]_{\left[\frac{1}{2}\right]}$ is isometrically isomorphic to \mathcal{M} .

PROOF: Assumption (A) implies that \mathcal{M} is dense in $\mathcal{M} \odot \mathcal{M}$. Pisier proved in [5] that if a Hilbert space \mathcal{M} is densely contained in a Banach space A, then $[A, A^{\dagger}]_{\left[\frac{1}{2}\right]} = \mathcal{M}$. His proof is in the context of operator spaces; a direct proof of the fact is given in [6]. See also [4] for another proof.

We shall let \mathcal{H}^p be defined by (1.2) with $\theta = \frac{p-1}{p}$, and write \mathcal{H}^1 for $\mathcal{M} \odot \mathcal{M}$. Notice that since $\operatorname{Han} \subseteq \mathcal{M} \odot \mathcal{M}$, we have

$$\mathcal{H}^p \supseteq \mathcal{H}^q \supseteq \operatorname{Han}$$

whenever $1 \le p \le q < \infty$.

Theorem 2.2. For $1 , we have <math>(\mathcal{H}^p)^{\dagger}$ is isometrically isomorphic to $\mathcal{H}^{p'}$, where p' is the conjugate index to p.

PROOF: By the reiteration theorem [2, Thm. 4.6.1], if we interpolate between \mathcal{H}^1 and \mathcal{H}^2 we get \mathcal{H}^p for 1 , and if we interpolate

between \mathcal{H}^2 and Han we get \mathcal{H}^p for $2 . Since <math>\mathcal{H}^2$ is reflexive, we have by the duality theorem [2, Cor. 4.5.2]

$$[\mathcal{H}^1,\mathcal{H}^2]^{\dagger}_{[\theta]} = [\operatorname{Han},\mathcal{H}^2]_{[\theta]},$$

which proves the theorem for 1 . In [3, 12.2], Calderon proved that if one end point space is reflexive, all the intermediate ones are too. So this proves the theorem for <math>2 .

We define Han₀ by

$$\operatorname{Han}_0 := \{ b \in \operatorname{Han} : H_b \text{ is compact} \}.$$

By [1, Thm. 2.5], Han_0 is the predual of $\mathcal{M} \odot \mathcal{M}$. We think of Han_0 as the analogue of VMOA.

Proposition 2.3. For $0 < \theta < 1$, we have

$$[\mathcal{M} \odot \mathcal{M}, \operatorname{Han}_0]_{[\theta]} = [\mathcal{M} \odot \mathcal{M}, \operatorname{Han}]_{[\theta]}.$$

PROOF: By [4, Thm. 4.2],

$$[\mathcal{M}\odot\mathcal{M},\mathrm{Han}_0]_{[\frac{1}{2}]}\ =\ \mathcal{M}.$$

Need to show that, in their notation, if D_0 is the set of finite linear combinations of kernel functions, then this is dense in $A = \text{Han}_0$. This works out to showing that finite sums

$$\sum c_j \overline{k_{x_j}} \otimes k_{x_j} : f \mapsto \langle f, \sum c_j k_{x_j} \rangle_{\mathcal{M}} \overline{k_{x_j}}$$

are dense in Han_0 .

This should follow from the Hahn–Banach theorem and the fact that $\operatorname{Han}_0^* = \mathcal{M} \odot \mathcal{M}$.

Therefore the reiteration theorem proves the result for $0 < \theta \le \frac{1}{2}$. It remains to prove that

$$[\mathcal{M}, \operatorname{Han}_0]_{[s]} = [\mathcal{M}, \operatorname{Han}]_{[s]}$$

for 0 < s < 1. But applying the duality theorem twice we get

$$[\mathcal{M}, \operatorname{Han}_0]_{[s]}^{**} = [\mathcal{M}, \operatorname{Han}]_{[s]},$$

and by Calderon's reflexivity theorem again, we have $[\mathcal{M}, \operatorname{Han}_0]_{[s]}$ is reflexive for $0 \le s < 1$, so we are done.

Let δ_x be the functional of evaluation at $x \in X$.

Lemma 2.4. For $1 \le p \le 2$, we have $||\delta_x||_{\mathcal{H}^{p^*}} \le k(x,x)^{1/p}$.

Proof. The complex method of interpolation shows that

where

$$\frac{1}{p} = \frac{1-\theta}{2} + \frac{\theta}{1}.$$

Since $||\delta_x||_{\mathcal{H}^{p^*}} = k(x,x)^{1/2}$ and $||\delta_x||_{(\mathcal{M} \odot \mathcal{M})^*} \leq k(x,x)$, the right-hand side of (2.3) is dominated by $k(x,x)^{(\theta+1)/2} = k(x,x)^{1/p}$.

In Section 3 we shall prove that this estimate is sharp (up to a constant) in complete Pick spaces.

Remark 2.5 There are many interesting Hilbert function spaces for which assumption (A) fails, such as ℓ^2 , the Hardy space of the upper half-plane, or the Fock space. One can still define an \mathcal{H}^p scale for these spaces for $p \in [1,2]$ by interpolating between $\mathcal{M} \odot \mathcal{M}$ and \mathcal{M} . The tricky part is finding a general method for identifying the anti-duals of these spaces with Banach function spaces on X.

3. Complete Pick Spaces

4. CR PROPERTY

Have $\mathcal{X}(\mathcal{M}) = \text{Han}$

References

- [1] Alexandru Aleman, Michael Hartz, John E. McCarthy, and Stefan Richter, Weak products of complete Pick spaces. to appear. †2, 3
- [2] J. Bergh and J. Löfström, *Interpolation spaces*, Springer-Verlag, Berlin, 1976.↑2, 3
- [3] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113−190. ↑3
- [4] Fernando Cobos and Tomas Schonbek, On a theorem by Lions and Peetre about interpolation between a Banach space and its dual, Houston J. Math. 24 (1998), no. 2, 325–344. ↑2, 3
- [5] Gilles Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. ↑2
- [6] Frédérique Watbled, Complex interpolation of a Banach space with its dual, Math. Scand. 87 (2000), no. 2, 200−210. ↑2

Lund University, Mathematics, Faculty of Science, P.O. Box 118, S-221 00 Lund, Sweden

Email address: alexandru.aleman@math.lu.se

FERNUNIVERSITÄT HAGEN

Email address: michael.hartz@fernuni-hagen.de

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY IN ST. LOUIS, ONE BROOKINGS DRIVE, ST. LOUIS, MO 63130, USA

Email address: mccarthy@wustl.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, 1403 CIRCLE DRIVE, KNOXVILLE, TN 37996-1320, USA

Email address: richter@math.utk.edu