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Abstract. For s ∈ R the weighted Besov space on the unit ball
Bd of Cd is defined by

Bsω = {f ∈ Hol(Bd) :
∫
Bd

|Rsf |2ωdV <∞}.

HereRs is a power of the radial derivative operatorR =
∑d
i=1 zi

∂
∂zi

,
V denotes Lebesgue measure, and ω is a radial weight function not
supported on any ball of radius < 1.

Our results imply that for all such weights ω and ν, every
bounded column multiplication operator Bsω → Btν ⊗ `2 induces a
bounded row multiplierBsω⊗`2 → Btν . Furthermore we show that if
a weight ω satisfies that for some α > −1 the ratio ω(z)/(1−|z|2)α
is nondecreasing for t0 < |z| < 1, then Bsω is a complete Pick space,
whenever s ≥ (α+ d)/2.

1. Introduction

Let d ∈ N. In this paper we will address certain questions about
functions and multipliers in weighted Besov Hilbert spaces of analytic
functions in the unit ball Bd = {z ∈ Cd : |z| < 1}. In particular, we will
show that results about multipliers in standard and Bekollé weighted
Besov spaces of [17] and [9] extend to hold for all radial weights, and we
will provide simple, but general conditions on radial weight functions
ω that imply that all results of [4] can be applied to such a weighted
Besov space.

We will use V to denote Lebesgue measure on Cd restricted to Bd,
normalized so that V (Bd) = 1. A non-negative integrable function ω
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on Bd is called a radial weight, if for each 0 < r < 1 the value ω(rz) is
independent of z ∈ ∂Bd and the non-degeneracy condition

(1.1)
∫
|z|>r

ωdV > 0 for each 0 < r < 1

holds. It is easily checked that for radial weights the weighted Bergman
space L2

a(ω) = L2(ωdV )∩Hol(Bd) is closed in L2(ωdV ), and that point
evaluations f → f(z) are bounded on L2

a(ω) for each z ∈ Bd.
We now fix a radial weight ω. Then we have

‖f‖2
L2
a(ω) =

∫
Bd
|f |2ωdV =

∑
n≥0

‖fn‖2
L2
a(ω),

where f =
∑

n≥0 fn is the decomposition of the analytic function f
into a sum of homogeneous polynomials fn of degree n. We associate
a one-parameter family of weighted Besov spaces {Bs

ω}s∈R with ω as
follows:

(1.2) ‖f‖2
Bsω

= ‖ω‖L1(V )|f(0)|2 +
∞∑
n=1

n2s‖fn‖2
L2
a(ω)

Bs
ω = {f ∈ Hol(Bd) : ‖f‖2

Bsω
<∞}.

Let R =
∑d

i=1 zi
∂
∂zi

denote the radial derivative operator, then Rf =∑
n≥1 nfn. More generally, for each nonzero s ∈ R we may consider

the "fractional" transformation Rs :
∑

n≥0 fn →
∑

n≥1 n
sfn. It is thus

clear that

Bs
ω = {f ∈ Hol(Bd) : Rsf ∈ L2

a(ω)},

‖f‖2
Bsω

= ‖ω‖L1(V )|f(0)|2 +

∫
Bd
|Rsf |2ωdV.

One checks that (1.1) implies that each Bs
ω is a Hilbert space, and point

evaluations for all points in Bd are bounded. A space H of analytic
functions that occurs as one of the spaces Bs

ω for a radial weight ω and
some s ∈ R will be called a weighted Besov space.

If ω(z) = 1, s ∈ R, and f ∈ Hol(Bd), then f ∈ Bs
ω if and only if Rsf ∈

L2
a, the unweighted Bergman space. Thus, in this case the collection

Bs
ω consists of standard weighted Bergman or Besov spaces. We have

B
d/2
1 = H2

d , the Drury-Arveson space, B1/2
1 = H2(∂Bd), the Hardy

space of the Ball, and for s < 1/2 we obtain the weighted Bergman
spaces Bs

1 = L2
a((1 − |z|2)−2sdV ), where all equalities are understood

to mean equality of spaces with equivalence of norms. These spaces
have been extensively studied in the literature. We refer the reader to
[25], where the Lp-analogues of these spaces were considered as well. If
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d = 1 and s = 1, then B1
1 = D, the classical Dirichlet space of the unit

disc. More generally, if d = 1 and s > 1/2, then these spaces are have
been referred to as Dirichlet-type spaces, see [8].

If ω(z) = (1 − |z|2)α for some α > −1, then ω is called a standard
weight, and we obtain the same spaces as for ω0 = 1, but with a shift
in indices: Bs

ω = B
s−α

2
1 . This can be verified by using polar coordinates

and the asymptotics
∫ 1

0
tn(1 − t)αdt = Γ(n+1)Γ(α+1)

Γ(n+α+2)
≈ n−α−1, which

follows e.g. from Stirling’s formula. We refer the reader to Section 2 of
the current paper for more detail on further calculations of this type.

Observe that for standard weights ω the spaces Bs
ω are weighted

Bergman spaces for all s ≤ 0. More generally, the following will be
Theorem 2.4.

Theorem 1.1. Let ω be a radial weight, let s > 0, and for z ∈ Bd
define

ωs(z) =
1

d
|z|2−2d

∫
|w|≥|z|

(|w|2 − |z|2)2s−1

Γ(2s)
ω(w)dV (w).

Then ωs is a weight and Bt
ω = Bt+s

ωs with equivalence of norms for all
t ∈ R. In particular, L2

a(ωs) = B−sω with equivalence of norms.

One checks that for all s ≤ 0 and all radial weights ω, we have
Mult(Bs

ω) = H∞. Here H∞ denotes the bounded analytic functions on
Bd, and

Mult(B) = {ϕ ∈ Hol(Bd) : ϕf ∈ B for all f ∈ B}
denotes the multiplier algebra of B.

In this paper we are interested in Mult(Bs
ω) for s > 0. In general in

those cases it turns out that Mult(Bs
ω) is a proper subset of H∞, but

it is worthwhile to note that there are radial weights ω such that Bs
ω =

L2
a(µs) for each s ∈ R for some weight µs and hence Mult(Bs

ω) = H∞

holds for all s ∈ R. The weight ω(z) = e
−1

1−|z|2 is an example of a weight
where this happens. Indeed, in this case for each positive integer N
the function (1 − |z|2)−4Nω(z) is also integrable, and in Example 4.9
we will show that RNf ∈ L2

a(ω) if and only if∫
Bd
|f |2(1− |z|2)−4NωdV <∞.

By Theorem 1.1 this implies that Bs
ω is a weighted Bergman space for

each s ≤ N , and since N was arbitrary it follows that the same is true
for all s ∈ R.

If H ⊆ Hol(Bd) is a Hilbert function space and if E is an auxiliary
Hilbert space, then the identification of elementary tensors of the type
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f ⊗ x, f ∈ H, x ∈ E with E-valued functions f(·)x extends to define a
Hilbert space H(E) of E-valued analytic functions on Bd that is isomor-
phic toH⊗E . IfH andK are two Hilbert spaces of analytic functions on
Bd and if E and F are auxiliary Hilbert spaces, then Mult(H(E),K(F))
will denote the multipliers from H(E) to K(F), i.e. those functions
Φ : Bd → B(E ,F) such that F → MΦF, (MΦF )(z) = Φ(z)F (z) defines
a bounded linear transformation from H(E) to K(F). We will write
Mult(H,K) = Mult(H(C),K(C)) for the scalar-valued multipliers.

In the paper [4], an important role was played by the multiplier
inclusion condition. For a weighted Besov space BN

ω , where N ∈ N,
this condition means that

Mult(BN
ω , B

N
ω (`2)) ⊆ Mult(BN−1

ω , BN−1
ω (`2)) ⊆ · · · ⊆ Mult(B0

ω, B
0
ω(`2))

with continuous inclusions. We established this condition for the Drury–
Arveson space and a few other standard weighted Besov spaces using
an elementary method. It is also possible to use the complex method
of interpolation to establish inclusions of multiplier spaces. Indeed, if
s, t, α ∈ R with s ≤ t and α ≥ 0, then it is shown in [9] that for
Bekollé-Bonami weights ω one has

Mult(Bt+α
ω , Bs+α

ω ) ⊆ Mult(Bt
ω, B

s
ω).

Note that for Bekollé-Bonami weights that are not necessarily radial
the following definition is used for the weighted Besov space

Bs
ω = {f ∈ Hol(Bd) : RNf ∈ L2

a((1− |z|2)2(N−s)ω(z))},
where N is any non-negative integer ≥ s. For radial weights satisfying
a Bekollé-Bonami condition this coincides with the definition used here
since in that case (1 − |z|2)2(N−s)ω ≈ ωN−s, see e.g. Lemmas 4.2 and
4.7.

In this paper, we use a third method to establish a general result
about inclusions of multiplier spaces of unitarily invariant Hilbert func-
tion spaces on Bd, using the fact that multiplication operators are tri-
angular with respect to the common orthogonal basis of monomials.
In particular, we obtain the following theorem, which shows that the
multiplier inclusion condition holds whenever ω is a radial weight. It
is proved in Corollary 3.8 (also see Corollary 3.4).

Theorem 1.2. Let ω and ν be radial weights in Bd and let s, t, s′, t′ ∈ R
with t ≤ s and t′ − s′ ≤ t − s. Then for any pair E ,F of separable
Hilbert spaces,

Mult(Bs
ω(E), Bs′

ν (F)) ⊆ Mult(Bt
ω(E), Bt′

ν (F))

and the inclusion is contractive.
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Given a sequence Φ = {ϕ1, ϕ2, . . .} ⊆ Mult(H,K) of multipliers, we
can consider the column operator ΦC : h→ (ϕ1h, ϕ2h, ...)

T and the row
operator ΦR : (h1, h2, ...)

T →
∑

i≥1 ϕihi. Here for ease of writing we
have used (h1, ...)

T to denote the transpose of a row vector. We write
MC(H,K) for the set of those sequences Φ whose column operator ΦC

is bounded, that is, ΦC ∈ Mult(H,K(`2)). Similarly, let MR(H,K)
denote all sequences Φ for which the row operator is bounded, i.e.
ΦR ∈ Mult(H(`2),K). We will abbreviate the notations toMR(H) and
MC(H), if H = K.

Trent showed that for the Dirichlet space D of the unit disc D ⊆ C
one has the continuous inclusion MC(D) ⊆ MR(D) and the norm of
the inclusion is at most

√
18, see Lemma 1 of [24]. The results in [4]

establish that MC(H) ⊆ MR(H) for certain standard weighted Besov
spaces H including the Drury–Arveson space. Using Theorem 1.2, we
now obtain a more general result, which is Theorem 3.9.

Theorem 1.3. Let ω and ν be radial weights in Bd, and let s, t ∈ R.
Then

MC(Bs
ω, B

t
ν) ⊆MR(Bs

ω, B
t
ν)

and the inclusion is continuous.

It is known and easy to verify that MC(L2
a(ω)) = MR(L2

a(ω)) =
H∞(`2), where

H∞(`2) = {(ϕ1, ϕ2, ...) : ϕj ∈ H∞ and sup
z∈Bd

∑
j

|ϕj(z)|2 <∞}.

One application of Theorem 1.3 is to provide another proof of the
characterization of interpolating sequences established in [3] in the case
of radially weighted Besov spaces with the complete Pick property. The
proof in [3] uses the Marcus–Spielman–Srivastava theorem [15], but as
explained in Remark 3.7 in [3], this theorem can be avoided for spaces
H with the property that MC(H) ⊆MR(H).

A Hilbert function space H is a Hilbert space of complex-valued
functions on a set X such that point evaluations for points in X define
continuous linear functionals on H. Every Hilbert function space H
has a reproducing kernel, i.e. a function k : X × X → C such that
f(w) = 〈f, kw〉 for all w ∈ X, where kw(z) = k(z, w). We say that k is
normalized, if there is a z0 ∈ X such that kz0 = 1.

By a normalized complete Pick kernel we mean a normalized re-
producing kernel of the form kw(z) = 1

1−uw(z)
, where uw(z) is positive

definite, i.e. whenever n ∈ N, z1, ..., zn ∈ X, and a1, ..., an ∈ C we have
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i,j aiajuzj(zi) ≥ 0. (Normally complete Pick kernels are defined in-

trinsically, but by the McCullough-Quiggin theorem they are precisely
of this form. See [16, 20, 1]).

An important example of such a complete Pick kernel is the Szegő
kernel kw(z) = (1− wz)−1. It is the reproducing kernel for the Hardy
space H2 of the unit disc D. Many properties of the Hardy space
carry over to other spaces with complete Pick kernels—see [5] for some
examples. We will say that a Hilbert function space H is a complete
Pick space, if there is an equivalent norm on the space such that the
reproducing kernel for that norm is a normalized complete Pick kernel.
In [5] it is proven that complete Pick spaces H are contained in the
Smirnov class N+(H) associated with H, where

N+(H) = {f =
ϕ

ψ
: ϕ, ψ ∈ Mult(H), ψ cyclic in H}

and a multiplier ψ is called cyclic if ψH is dense in H.
It is known that for all s ≥ d/2 the spaces Bs

1 are complete Pick
spaces (this can be seen as in Corollary 7.41 of [2]). In particular, for
d/2 ≤ s < (d+ 1)/2 the space Bs

1 has reproducing kernel 1
(1−〈z,w〉)d+1−2s

(up to equivalence of norms), which can be seen to be a complete
Pick kernel by consideration of the binomial series coefficients. On the
other hand, if s < d/2, then Bs

1 is not a complete Pick space, because
Bs

1 * N+(Bs
1). Indeed, in this case Bs

1 has a reproducing kernel of the
type 1

(1−〈z,w〉)γ for some γ > 1. If d = 1, then Bs
1 is a weighted Bergman

space, which will contain functions that are not in the Nevanlinna class,
and hence cannot be ratios of multipliers. The same is true if d > 1. In
that case the d = 1 result implies that there are functions of the form
f(z1, 0, ..., 0) in Bs

1 that are not the ratio of two bounded functions.
An observation that was shared years ago with us by Serguey Shi-

morin is that if the Cauchy dual of a space of functions in the unit disc
is a weighted Bergman space, then the original space is a complete Pick
space. An analogue of this holds for functions in Bd and for radially
symmetric spaces we have worked that out in Lemma 5.1. For many
radially symmetric weighted Besov spaces that leads to a condition
which is easy to check:

Theorem 1.4. Let α > −1, 0 ≤ r0 < 1, and let ω be a radial weight
such that ω(z)

(1−|z|2)α
is nondecreasing in |z| for r0 < |z| < 1. Then Bs

ω is
a complete Pick space for all s ≥ α+d

2
.

This will follow from Theorem 5.2, which holds for weights that
satisfy a related, but weaker condition.
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If H and K are two Hilbert function spaces on the same set, then
we will write H = K to mean that H and K agree as vector spaces
and their norms are equivalent, but not necessarily equal. If ‖ · ‖1 and
‖ · ‖2 are two norms, then we will write ‖f‖1 ≈ ‖f‖2 to denote that the
norms are equivalent. Similarly, if an, bn ≥ 0, then an ≈ bn will mean
that there are constants c, C > 0 such that can ≤ bn ≤ Can holds for
all n ∈ N.

The remainder of this paper is organized as follows. In Section 2, we
collect basic facts about radially weighted Besov spaces and then prove
Theorem 1.1. In Section 3, we prove several results about inclusions
of multiplier algebras and of multiplier spaces. In particular, we show
Theorems 1.2 and 1.3. Section 4 is devoted to the study of several
finer properties of weights. In particular, we introduce weakly normal
weights, which will be important in the proof of Theorem 1.4. Section
5 then contains the proof of Theorem 1.4. In the final Section 6, we
use the methods developed in this paper to establish some additional
properties of multipliers of weighted Besov spaces.

2. Radially weighted Besov spaces and index shifts

2.1. Basics about radially weighted Besov spaces. Let ω be a
radial weight on Bd. We will temporarily write uω(r) = ω(r, 0, ..., 0)
if r ∈ (0, 1). Let σ be Lebesgue measure on ∂Bd, normalized so that
σ(∂Bd) = 1. Then for any non-negative measurable function h on Bd
we have the change of variables∫

Bd
hωdV =

∫ 1

0

(∫
∂Bd

h(rw)dσ(w)

)
uω(r)2dr2d−1dr.

In particular, if f ∈ Hol(Bd) with homogeneous expansion f =
∑∞

n=0 fn,
then ∫

Bd
|f |2ωdV =

∞∑
n=0

an(ω)‖fn‖2
H2(∂Bd),(2.1)

where

an(ω) = 2d

∫ 1

0

r2n+2d−1uω(r)dr =

∫ 1

0

tnv(t)dt.

Here we used v(t) is the product d · td−1 · uω(
√
t) and note that v ∈

L1[0, 1]. It is clear that this process can be reversed and any positive
L1[0, 1]-function v can be used as above to associate a function ω on
Bd. The non-degeneracy condition (1.1) is equivalent to

(2.2)
∫ 1

t

v(x)dx > 0 for all t < 1.
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We will say that a non-negative function v ∈ L1[0, 1] is a weight if
(2.2) holds.

The following elementary lemma about moments of weights will be
useful in several places.

Lemma 2.1. Let v, w ∈ L1[0, 1] be two non-negative weights such that
limt↗1

v(t)
w(t)

= 1 (with the convention 0/0 = 1). Then

lim
n→∞

∫ 1

0
tnv(t) dt∫ 1

0
tnw(t) dt

= 1.

Proof. By symmetry, it suffices to show that

lim sup
n→∞

∫ 1

0
tnv(t) dt∫ 1

0
tnw(t) dt

≤ 1.

To this end, let r ∈ (0, 1) be such that v(t)
w(t)

is finite for t ∈ [r, 1]. Then∫ 1

0

tnw(t) dt ≥
∫ 1

r

tnw(t) dt ≥ rn/2
∫ 1

√
r

w(t) dt,

where the last quantity is strictly positive by (2.2). Moreover,∫ 1

0

tnv(t) dt =

∫ r

0

tnv(t) dt+

∫ 1

r

tnv(t) dt

≤ rn
∫ 1

0

v(t) dt+ sup
x∈[r,1]

v(x)

w(x)

∫ 1

r

tnw(t) dt.

Therefore, ∫ 1

0
tnv(t) dt∫ 1

0
tnw(t) dt

≤ sup
x∈[r,1]

v(x)

w(x)
+ rn/2

∫ 1

0
v(t) dt∫ 1√

r
w(t) dt

,

so that

lim sup
n→∞

∫ 1

0
tnv(t) dt∫ 1

0
tnw(t) dt

≤ sup
x∈[r,1]

v(x)

w(x)
.

This is true for all r sufficiently close to 1. The result now follows by
taking the limit r ↗ 1. �

Let now ω be a radial weight in Bd. We will use the moments
an(ω) =

∫ 1

0
tnv(t)dt to express the norm of Bs

ω. For f ∈ Hol(Bd)
we will continue to write f =

∑
fn for its expansion into a sum of

homogeneous polynomials.
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Let s ∈ R. Comparison of (1.2) and (2.1) shows that

‖f‖2
Bsω

= a0(ω)|f(0)|2 +
∞∑
n=1

n2san(ω)‖fn‖2
H2(∂Bd).(2.3)

Since RNf =
∑

n≥0 n
Nfn it is clear that for each s ∈ R we have f ∈ Bs

ω,
if and only if RNf ∈ Bs−N

ω .
We also remark that the reproducing kernel of Bs

ω is of the form

kw(z) =
∞∑
n=0

bn〈z, w〉n,

where for n ≥ 1

bn = ||zn1 ||−2
Bsω

= n−2san(ω)−1‖zn1 ‖−2
H2(∂Bd) ≈ n−2s+d−1an(ω)−1.

It follows from Lemma 2.1 that
∫ 1
0 t

n+1v(t)dt∫ 1
0 t

nv(t)dt
→ 1 as n → ∞ for any

weight v ∈ L1[0, 1]. Hence, limn→1 bn/bn+1 = 1. This condition is fre-
quently useful in operator theoretic contexts. For instance, it implies
that the tuple (Mz1 , . . . ,Mzd) of multiplication operators by the coordi-
nate functions is essentially normal and has essential Taylor spectrum
∂Bd, see Theorem 4.5 of [12].

2.2. Index shift. Recall from the Introduction that Bs
1 = B

s+α
2

ωα for
all s ∈ R and α > −1, where ωα(z) = (1− |z|2)α is a standard weight.
We now introduce a generalization of this procedure which will allow
us to shift the index s of the space Bs

ω for more general radial weights
ω.

We saw in Section 2.1 that by a change to polar coordinates any
radial weight ω on Bd is associated with a non-negative function v ∈
L1[0, 1]. More generally, let µ be a finite Borel measure on [0, 1]. For
x > 0 consider∫ 1

0

∫
[t,1]

(s− t)x−1dµ(s)dt =

∫
[0,1]

∫ s

0

(s− t)x−1dtdµ(s)

=

∫
[0,1]

sx

x
dµ(s) <∞.

Thus, for all x > 0 we can define a non-negative L1[0, 1]-function vx by

vx(t) =

∫
[t,1]

(s− t)x−1

Γ(x)
dµ(s), t ∈ [0, 1).

Here Γ(x) denotes the Gamma function. It is easy to check that the
functions vx obey the semigroup law (vx)y = vx+y for all x, y > 0. We
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also remark that if v1(t) > 0 for all r ∈ (0, 1), then vx satisfies (2.2) for
all x > 0.

The following lemma will be used repeatedly. It will allow us to
perform the desired index shift for Bs

ω (see Theorem 2.4 below).

Lemma 2.2. Let µ be a finite positive Borel measure on [0, 1], for
x > 0 let vx be the function associated with µ as above, and assume
that v1(t) > 0 for all 0 ≤ t < 1.

Then for each x > 0 we have

lim
n→∞

nx
∫ 1

0
tnvx(t)dt∫

[0,1]
tndµ

= 1.

Proof. We start with the observation that for any integer n > 0 we have∫ 1

0
tn−1 (log(1/t))x−1 dt = n−xΓ(x). This can easily be verified with the

substitution t = e−
u
n (see [14], p.56). Next we define the auxiliary

function

v∗x(t) =

∫
[t,1]

(
log s

t

)x−1

Γ(x)
dµ(s).

An application of Fubini’s theorem and the earlier observation shows
that

nx
∫ 1

0

tn−1v∗x(t)dt =

∫
[0,1]

tndµ(t), n = 1, 2, ...

So in order to prove the Lemma, it suffices to show that

lim
n→∞

∫ 1

0
tn−1v∗x(t)dt∫ 1

0
tnvx(t)dt

= 1.

Since v1(t) > 0 for all t ∈ (0, 1), the weights vx and v∗x satisfy (2.2), so
the last statement follows from Lemma 2.1 and the observation that
limt↗1

vx(t)
v∗x(t)

= 1 by elementary properties of the natural logarithm. �

We will now again restrict attention to absolutely continuous mea-
sures dµ = v(t)dt. In this case, it makes sense to define v0(t) = v(t).
We also write

v̂(t) = v1(t) =

∫ 1

t

v(x)dx.

Note that in this case vx+1(t) =
∫ 1

t
vx(s)ds = v̂x(t) is valid for all x ≥ 0,

and thus the functions vx get smoother as x increases. They also decay
faster near 1. The estimate in the following lemma is obvious.

Lemma 2.3. If v ∈ L1[0, 1] is positive, and vx is as above, then for all
x, α > 0 we have vx+α(t) ≤ Γ(x)

Γ(x+α)
(1− t)αvx(t) for all t ∈ [0, 1).
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We now investigate this procedure on the level of radial weights in
the ball. Let ω be a radial weight in Bd. For each x ≥ 0 we define a
radial weight ωx by

ωx(z) =
1

d
|z|2−2d

∫
|w|≥|z|

(|w|2 − |z|2)2x−1

Γ(2x)
ω(w)dV (w).

Then ωx is the radial weight that corresponds to the L1[0, 1]-function
v2x that is associated with v as in Lemma 2.2.

Theorem 2.4. Let ω be a radial weight and let x ≥ 0.
Then ωx is a weight,

‖f‖2
B−xω
≈
∫
Bd
|f |2ωxdV,

and for each s ∈ R we have Bs
ω = Bs+x

ωx with equivalence of norms.

Proof. Since ω is a radial weight, so is ωx. Lemma 2.2 implies that
n2xan(ωx) ≈ an(ω) as n → ∞. Now the Theorem follows from (2.3).

�

For later reference we note that Lemma 2.3 applies and we conclude
that for all x > 0 and α ≥ 0

(2.4)
ωx+α(z)

(1− |z|2)2α
≤ Γ(2x)

Γ(2x+ 2α)
ωx(z) for all z ∈ Bd.

3. Multiplier inclusions

3.1. Inclusion of multiplier algebras. Let ω be a radial weight in
Bd and let N ∈ N. A crucial condition in [4] is the multiplier inclusion
condition for BN

ω , which demands that
(3.1)
Mult(BN

ω , B
N
ω (`2)) ⊆ Mult(BN−1

ω , BN−1
ω (`2)) ⊆ · · · ⊆ Mult(B0

ω, B
0
ω(`2))

with continuous inclusions. In this Section we will show that all weighted
Besov spaces defined by radial weights satisfy this multiplier inclusion
condition. In fact, we will prove a more general result about inclusion
of the multipliers between spaces of analytic functions on the unit ball
with unitarily invariant kernels.

We first recall a few notions from the theory of operator spaces. Let
H be a Hilbert space and letM⊆ B(H) be a subspace. For n ∈ N, let
Mn(M) denote the space of all n×n matrices with entries inM. The
natural identification ofMn(B(H)) with B(Hn) allows us to endow each
space Mn(M) with a norm. Suppose now that K is another Hilbert
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space and that Φ :M→ B(K) is a linear map. Then for each n ∈ N,
we obtain an induced linear map

Φ(n) : Mn(M)→Mn(B(K)), [mij] 7→ [Φ(mij)].

In this setting, we say that Φ is completely contractive if each map Φ(n)

is contractive.
In Section 3.2 we will see that this notion has a natural analogue for

operators between possibly different Hilbert spaces, and then we will
mostly be interested in the case when M = Mult(H,K) for Hilbert
function spaces H and K. In this case, Mn(Mult(H,K)) can be identi-
fied with Mult(H(Cn),K(Cn)), so this approach allows us to deal with
operator-valued multipliers.

We begin with the following result, which is essentially due to Kac-
nelson [13], see also [11, Theorem 2.1]. For completeness, we provide a
proof. If H is a Hilbert space with an orthogonal basis (en), let T (K)
denote the algebra of all bounded lower triangular operators on K with
respect to (en).

Lemma 3.1 (Kacnelson). Let H be a Hilbert space with orthonor-
mal basis (en), let (dn) be a nonincreasing sequence of strictly positive
numbers and let D denote the diagonal operator on H with diagonal
(dn), and let D−1 be its possibly unbounded inverse. Then for every
T ∈ T (H), the densely defined operator DTD−1 is bounded and the
homomorphism

T (H)→ T (H), T 7→ DTD−1,

is completely contractive.

Proof. If Pn denotes the orthogonal projection onto the linear span
of e0, . . . , en, then Pn commutes with every diagonal operator. Thus,
a straightforward approximation argument shows that it suffices to
prove the following assertion: For every n ∈ N and every nonincreasing
sequence of strictly positive numbers d0, . . . , dn, the map

Φ : Tn+1 7→ Tn+1, T 7→ diag(d0, . . . , dn)T diag(d0, . . . , dn)−1,

is completely contractive. Here, Tn+1 denotes the algebra of all lower
triangular (n+1)×(n+1) matrices, and diag(d0, . . . , dn) is the diagonal
matrix with diagonal d0, . . . , dn.

To this end, let d0, . . . , dn be nonincreasing strictly positive numbers.
By multiplying the sequence d0, . . . , dn with d−1

0 , we may assume that
d0 = 1. For j ≥ 1, let αj = dj/dj−1 and α = (α1, . . . , αn). Then
dj = α1 . . . αj for j ≥ 1 and αj ∈ (0, 1] by assumption.
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We will use the maximum modulus principle to show that the map
Φ is completely contractive. For z = (z1, . . . , zn) ∈ (C \ {0})n, define

D(z) = diag(1, z1, z1z2, . . . , z1z2 . . . zn).

In particular, D(α) = diag(d0, . . . , dn). If T = [tij] ∈ Tn+1 and i ≥ j,
then the (i, j)-entry of D(z)TD(z)−1 is given by

z1z2 . . . zitijz
−1
1 z−1

2 . . . z−1
j = tijzj+1 . . . zi.

Since T is lower triangular, we therefore conclude that the map z 7→
D(z)TD(z)−1 extends to an analytic Mn+1-valued map on Cn.

Let [Tij] ∈Mr(Tn+1). By the maximum modulus principle,

||[Φ(Tij)]|| = ||[D(α)TijD(α)−1]|| ≤ sup
z∈Tn
||[D(z)TijD(z)−1]||.

But if z ∈ Tn, then D(z) is unitary, hence

||[D(z)TijD(z)−1]|| = ||(D(z)⊗ Ir)[Tij](D(z)⊗ Ir)−1|| = ||[Tij||,

which finishes the proof. �

The following corollary is merely a reformulation of Lemma 3.1.

Corollary 3.2. Let K be a Hilbert space with an orthonormal basis
(en). Suppose that H is another Hilbert space such that H ⊆ K as
vector spaces, such that (en) is an orthogonal basis for H and such that
the sequence (||en||H) is nondecreasing. Then T (H) ⊆ T (K), and the
inclusion is a complete contraction.

Proof. Observe that every operator in T (H) is at least densely de-
fined on K. Let D be the diagonal operator on H with diagonal
(||en||−1

H ). Then D extends to a unitary operator K → H. Thus, if
[Tij] ∈Mr(T (H)), then by Lemma 3.1,

||[Tij]||B(Kr) = ||[DTijD−1]||B(Hr) ≤ ||[Tij]||B(Hr).

This shows that T (H) ⊆ T (K) completely contractively. �

LetH be a reproducing kernel Hilbert space on D with a reproducing
kernel of the form

kw(z) =
∞∑
n=0

anzw
n,

where an > 0 for all n ∈ N0. Then

||z||2Mult(H) = sup
n∈N0

an
an+1

.

This motivates the condition in the following result.
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Proposition 3.3. Let H and K be two reproducing kernel Hilbert
spaces on Bd, d ∈ N, with reproducing kernels kw(z) =

∑∞
n=0 an〈z, w〉n

and `w(z) =
∑∞

n=0 bn〈z, w〉n, respectively. Assume that an, bn > 0 for
all n ∈ N0. If

bn
bn+1

≤ an
an+1

for all n ∈ N0,

then Mult(H) ⊆ Mult(K), and the inclusion is a complete contraction.

Proof. Observe that H and K each have orthonormal bases consisting
of monomials. If we order the monomials such that their degrees are
nondecreasing, then every multiplication operator on H is lower trian-
gular with respect to such an orthonormal basis. Moreover, if p is a
monomial of degree n with ||p||K = 1, then

||p||H =

√
bn
an
.

The assumption implies that the sequence
√
bn/an is nondecreasing.

In particular, there exists a constant C > 0 such that an ≤ Cbn, so
that H is densely contained in K and every multiplication operator on
H is at least densely defined on K. An application of Corollary 3.2
now shows that every multiplication operator on H is bounded on K,
and hence a bounded multiplication operator, and that the inclusion
Mult(H) ⊆ Mult(K) is a complete contraction. �

We obtain the following consequence for multiplier algebras of weighted
Besov spaces.

Corollary 3.4. Let ω be a radial weight in Bd and let s, t ∈ R with
t ≤ s. Then

Mult(Bs
ω) ⊆ Mult(Bt

ω)

and the inclusion is a complete contraction. In particular,

Mult(Bs
ω, B

s
ω(`2)) ⊆ Mult(Bt

ω, B
t
ω(`2))

and the inclusion is a contraction.

In particular, by taking s = n and t = n − 1 for n = 1, 2.., N we
see that any weighted Besov space H = BN

ω associated with a radial
weight satisfies the multiplier inclusion condition (3.1).

Proof. We saw in Section 2 that Bs
ω and Bt

ω have reproducing kernels
of the form

kw(z) =
∞∑
n=0

an〈z, w〉n and `w(z) =
∞∑
n=0

bn〈z, w〉n,
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respectively, where an = ||zn1 ||−2
Bsω

and bn = ||zn1 ||−2
Btω

. From Equation
(2.3), we deduce that for n ≥ 1,

an
bn

= n2(t−s)

and a0/b0 = 1. Since t ≤ s, the sequence (an/bn) is nonincreasing, so
that the result is a special case of Proposition 3.3. �

It was shown in [4, Theorem 1.5] that the multiplier inclusion con-
dition (3.1) for BN

ω implies that every bounded column multiplication
operator on BN

ω is also a bounded row multiplication operator. More-
over, by Theorem 2.4, each Besov space Bs

ω can also be regarded as a
space of the form BN

ω̃ for a suitable radial weight ω̃ and N ∈ N. Thus,
we obtain the following consequence.

Corollary 3.5. Let ω be a radial weight in Bd and let s ∈ R. Then

MC(Bs
ω) ⊆MR(Bs

ω)

and the inclusion is continuous.

We do not know if the inclusion in the preceding corollary is con-
tractive, even in the case of the Drury–Arveson space. Even though
Corollary 3.4 shows that the multiplier inclusion condition (3.1) holds
with contractive inclusions, [4, Theorem 1.5] only yields boundedness
of the inclusion MC(BN

ω ) ⊆MR(BN
ω ).

3.2. Inclusion of multiplier spaces. We also require a version of
the preceding result for multipliers between different spaces. Thus,
we seek conditions that imply inclusions of the form Mult(H,H′) ⊆
Mult(K,K′). The proofs based on Kacnelson’s lemma (Lemma 3.1)
generalize to this setting. The results in this subsection contain the
results of the preceding subsection as a special case. But for the sake
of readability, we chose to treat inclusions of multiplier algebras first.

We begin with a version of Corollary 3.2 for four Hilbert spaces.
First of all, observe that if H and H′ are Hilbert space, then B(H,H′)
can be identified with a subspace of B(H ⊕ H′), hence the notion of
a completely contractive map applies in this setting as well. Equiv-
alently, Mr(B(H,H′)) is normed by means of the identification with
B(Hr, (H′)r). If H and H′ are Hilbert spaces with orthogonal bases
(en) and (e′n), respectively, let T (H,H′) ⊆ B(H,H′) denote the space
of all operators that are lower triangular with respect to (en) and (e′n).
Thus, an operator T ∈ B(H,H′) belongs to T (H,H′) if and only if

〈Tei, e′j〉 = 0 whenever j > i.
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Corollary 3.6. Let K and K′ be Hilbert spaces with orthonormal bases
(en) and (e′n), respectively. Let H and H′ be another pair of Hilbert
spaces such that

• H ⊆ K and H′ ⊆ K′ as vector spaces,
• (en) is an orthogonal basis for H and (e′n) is an orthogonal
basis for H′,
• the sequence (||en||H) is nondecreasing, and
• ||en||H ≤ ||e′n||H′ for all n ∈ N.

Then T (H,H′) ⊆ T (K,K′) and the inclusion is completely contractive.

Proof. Every operator in T (H,H′) is at least a densely defined operator
from K to K′. Our goal is to show that these operators are bounded.

In the proof, we will require the following diagonal operators. Let D
be the diagonal operator on H with diagonal (||en||−1

H ). Similarly, let
D′ be the diagonal operator on H′ with diagonal (||e′n||−1

H′ ). Observe
that D extends to a unitary operator from K to H and D′ extends to
a unitary operator from K′ to H′. Moreover, let U ∈ B(H′,H) be the
unique unitary operator with

Ue′n =
||e′n||H′
||en||H

en (n ∈ N).

Suppose now that [Tij] ∈ Mr(T (H,H′)). Then by Lemma 3.1, we
find that

‖[Tij]‖B(Kr,(K′)r) = ‖[UD′TijD−1]‖B(Hr) = ‖[DD−1UD′TijD
−1]‖B(Hr)

≤ ‖[D−1UD′Tij]‖B(Hr).

Observe that

D−1UD′e′n = en = USe′n (n ∈ N),

where S is the diagonal operator on H′ with diagonal ( ||en||H||e′n||H′
). By

assumption, this operator is a contraction. From the estimate above
and the identity D−1UD′ = US, we infer that

‖[Tij]‖B(Kr,(K′)r) ≤ ‖[USTij]‖B(Hr) = ‖[STij]‖B(Hr,(H′)r)

≤ ||[Tij]||B(Hr,(H′)r),

which finishes the proof. �

The following result is a generalization of Proposition 3.3.

Proposition 3.7. Let d ∈ N and let H,H′,K,K′ be reproducing ker-
nel Hilbert spaces on Bd with respective reproducing kernels kw(z) =∑∞

n=0 an〈z, w〉n, k′w(z) =
∑∞

n=0 a
′
n〈z, w〉n, `w(z) =

∑∞
n=0 bn〈z, w〉n and
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`′w(z) =
∑∞

n=0 b
′
n〈z, w〉n. Suppose that for all n ∈ N0, the inequalities

an, a
′
n, bn, b

′
n > 0 and

bn
bn+1

≤ an
an+1

and
bn
an
≤ b′n
a′n

hold. Then
Mult(H,H′) ⊆ Mult(K,K′),

and the inclusion is completely contractive.

Proof. This follows as in the proof of Proposition 3.3 from an applica-
tion of Corollary 3.6. Indeed, all four spaces have an orthogonal basis
of monomials and if we order the monomials such that their degrees are
nondecreasing, then every operator in Mult(H,H′) is lower triangular.
Moreover, if p is a monomial of degree n, then

||p||2H =
bn
an
||p||2K and ||p||2H′ =

b′n
a′n
||p||2K′ ,

from which it readily follows that the last two conditions in Corollary
3.6 hold. Finally, the assumptions imply that both sequences (an

bn
) and

(a
′
n

b′n
) are bounded above, so that H ⊆ K and H′ ⊆ K′. �

The last result applies in particular to the spaces Bs
ω.

Corollary 3.8. Let ω and ν be radial weights in Bd and let s, t, s′, t′ ∈ R
with t ≤ s and t′ − s′ ≤ t− s. Then

Mult(Bs
ω, B

s′

ν ) ⊆ Mult(Bt
ω, B

t′

ν )

and the inclusion is completely contractive. In particular,

Mult(Bs
ω, B

s
ν(`2)) ⊆ Mult(Bt

ω, B
t
ν(`2))

and the inclusion is contractive.

Proof. We apply Proposition 3.7 with H = Bs
ω,H′ = Bs′

ν ,K = Bt
ω and

K′ = Bt′
ν . With notation as in that Proposition, the argument in the

proof of Corollary 3.4 shows that
an
bn

= n2(t−s)

for n ≥ 1 and a0/b0 = 1, so the sequence (an/bn) is nonincreasing as
t ≤ s. Similarly,

a′n
b′n

= n2(t′−s′)
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for n ≥ 1 and a′0/b′0 = 1. Since t′−s′ ≤ t−s, we conclude that a′n/b′n ≤
an/bn for all n ∈ N0, so the result is a special case of Proposition
3.7. �

We also obtain a multiplier space version of Corollary 3.5.

Theorem 3.9. Let ω and ν be radial weights in Bd, and let s, t ∈ R.
Then

MC(Bs
ω, B

t
ν) ⊆MR(Bs

ω, B
t
ν)

and the inclusion is continuous.

Proof. Let H = Bs
ω and K = Bt

ν . We will use [4, Theorem 4.2], accord-
ing to which the result follows from the multiplier inclusion condition
for the pair (H,K). To establish this property, by definition, we have
to show that there are weights ω̃ and ν̃ and N ∈ N such that H = BN

ω̃ ,
K = BN

ν̃ (with equivalent norms) and

Mult(BN
ω̃ , B

N
ν̃ (`2)) ⊆ Mult(BN−1

ω̃ , BN−1
ν̃ (`2)) ⊆ · · · ⊆ Mult(B0

ω̃, B
0
ν̃(`

2))

with continuous inclusions.
To this end, let x, y ≥ 0 be real numbers such that s+x = t+ y ∈ N

and let N = s+x = t+ y be this common value. Moreover, let ω̃ = ωx
and ν̃ = νy. Then by Theorem 2.4, we have H = BN

ω̃ and K = BN
ν̃ .

The continuity of the inclusions above now follows from Corollary 3.8,
which concludes the proof. �

4. Weakly normal weights

In this section, we will study several finer properties of L1[0, 1] weights
that will translate to Hilbert space properties of the associated radially
weighted Besov spaces.

4.1. A doubling condition. Recall from Section 2.2 that if v ∈
L1[0, 1] is non-negative, then we defined for x > 0 a weight vx ∈ L1[0, 1]
by

vx(t) =

∫
[t,1]

(s− t)x−1

Γ(x)
v(s)ds, t ∈ [0, 1)

and we also write v̂ = v1. We will now discuss a class of weights on
[0, 1], where one has an asymptotics of the type vx+α(t) ≈ (1− t)αvx(t)
for all t ∈ [0, 1] at least when x ≥ 1. As in [19] we define the class D̂ by
saying that a non-negative integrable function v is in D̂ if v̂ is doubling
near 1, i.e. if there is a constant c > 0 such that v̂(t) ≤ cv̂(1+t

2
) for all

t ∈ [0, 1). It is clear that if v ∈ D̂ is not identically equal to 0, then
it is a weight. For later reference we record the following elementary
lemma.
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Lemma 4.1. If v ∈ L1[0, 1] is a weight, then v ∈ D̂ if and only if there
is M > 1 such that∫ 1

t

v̂(s)ds ≤ (1− t)v̂(t) ≤M

∫ 1

t

v̂(s)ds.

Proof. The inequality on the left is true for all v ≥ 0 since v̂ is nonin-
creasing. First suppose that v̂ is doubling. Then there is a C > 0 such
that v̂(t) ≤ Cv̂(1+t

2
) for all t ∈ [0, 1). Now fix t ∈ [0, 1), then∫ 1

t

v̂(s)ds ≥
∫ (1+t)/2

t

v̂(s)ds

≥ v̂(
1 + t

2
)
1− t

2

≥ v̂(t)
1− t
2C

.

Next suppose that there isM > 1 such that (1−t)v̂(t) ≤M
∫ 1

t
v̂(s)ds

for all t ∈ [0, 1). Then one checks by taking a derivative that
∫ 1
t v̂(s)ds

(1−t)M
is nondecreasing and thus

v̂(t)

(1− t)M−1
≤M

∫ 1

t
v̂(s)ds

(1− t)M

≤M

∫ 1
1+t
2
v̂(s)ds

(1− 1+t
2

)M

≤Mv̂(
1 + t

2
)

2M−1

(1− t)M−1
.

It follows that v̂ is doubling. �

Notice that for x > 0 one has v̂x(t) = vx+1(t) =
∫ 1

t
(s−t)x−1

Γ(x)
v̂(s)ds and

with that it is easy to show that if v ∈ D̂, then vx ∈ D̂ for each x > 0.
Then the previous lemma along with Lemma 2.3 implies that for every
v ∈ D̂ we have vx+1(t) ≈ (1− t)vx(t) for every x ≥ 1. Since v̂ = v1 we
inductively obtain vn+1(t) ≈ (1− t)nv̂(t) for each n ∈ N. But then we
have for 0 ≤ x ≤ n that

1 ≥
∫ 1

t

(
s−t
1−t

)x
v(s)ds

v̂(t)
≥
∫ 1

t

(
s−t
1−t

)n
v(s)ds

v̂(t)
=

∫ 1

t
(s− t)nv(s)ds

(1− t)nv̂(t)
≥ Cn.

Thus we have proved the following Lemma.

Lemma 4.2. If v ∈ D̂, then for all x ≥ 0 we have vx+1(t) ≈ (1 −
t)xv̂(t) = (1− t)xv1(t).
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4.2. Weakly normal weights. The following definition goes back to
S.N. Bernstein, [7].

Definition 4.3. Let a < b. A function f : [a, b) → [0,∞) is called
almost decreasing if there is some C > 0 such that f(t) ≤ Cf(s),
whenever a ≤ s ≤ t < b. Almost increasing is defined similarly.

One reason this definition is useful for weights is the following lemma.

Lemma 4.4. f : [a, b) → [0,∞) is almost decreasing, if and only if
there is a nonincreasing function g : [a, b)→ R and c, C > 0 such that

cg(t) ≤ f(t) ≤ Cg(t)

for all t ∈ [a, b). If f is continuous, then g can be chosen to be contin-
uous as well.

Proof. Suppose that g is nonincreasing such that cg(t) ≤ f(t) ≤ Cg(t)
for all t ∈ [a, b). Then for a ≤ s ≤ t < b we have

f(t) ≤ Cg(t) ≤ Cg(s) ≤ C

c
f(s) = C ′f(s).

Conversely, suppose that f is almost decreasing, then for t ∈ [a, b) set
g(t) = inf{f(s) : s ≤ t}.

Note that if f is continuous, then g is continuous. Clearly g is nonin-
creasing and g(t) ≤ f(t) for all t ∈ [a, b). Furthermore, the hypothesis
on f implies the existence of C > 0 such that f(t) ≤ Cf(s), whenever
a ≤ s ≤ t < b. This implies f(t) ≤ Cg(t) for all t ∈ [a, b). �

Lemma 4.5. Let v ∈ L1[0, 1] be a weight. If t0 ∈ [0, 1), α ∈ R, and
x ≥ 0 such that (1−t)α

vx(t)
is almost decreasing in [t0, 1), then so is (1−t)α+y

vx+y(t)

for every y ≥ 0.

Proof. We consider reciprocals and thus prove a statement about al-
most increasing functions. One verifies that vx+y = (vx)y for all x, y ≥
0. Let t, t′ ∈ [t0, 1) with t < t′, and define λ = 1−t′

1−t . Then (1−λ)+λt =
t′ and

vx+y(t) =

∫ 1

t

(s− t)y−1

Γ(y)

vx(s)

(1− s)α
(1− s)αds

≤ C

∫ 1

t

(s− t)y−1

Γ(y)

vx((1− λ) + λs)

λα(1− s)α
(1− s)αds

= Cλ−(α+y)

∫ 1

t′

(u− t′)y−1

Γ(y)
vx(u)du

= Cλ−(α+y)vx+y(t
′).
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The Lemma follows. �

Now recall from [23] that a weight function v is called normal, if there
are α > β ∈ R such that (1−t)β

v(t)
is almost increasing in [t0, 1) and (1−t)α

v(t)

is almost decreasing in [t0, 1) for some 0 ≤ t0 < 1. Actually, Shields
and Williams required β > 0 for their results, and they wanted the
limits to be ∞ and 0. Furthermore, in the paper [22] the ratios were
assumed to be nondecreasing (resp. nonincreasing), but this definition
was modified in the later paper [23]. That is a convention that has
been used by many authors since then.

Definition 4.6. Let α ∈ R. We call a weight v weakly normal of order
α, if there is x ≥ 0 such that (1−t)α+x

vx(t)
is almost decreasing in [t0, 1) for

some 0 ≤ t0 < 1. The weight v is called weakly normal, if it is weakly
normal of order α for some α ∈ R.

Since vx is nonincreasing for all x ≥ 1, we do not require an assump-
tion corresponding to the parameter β above.

If a weight is weakly normal of order α, then α > −1. Indeed, if v
is weakly normal of order α, then by Lemma 4.5 we may assume that
(1−t)α+x
vx(t)

is almost decreasing in [t0, 1) for some x ≥ 1 and 0 ≤ t0 < 1.
Then for t ∈ [t0, 1) we have

(1− t)α+x ≤ Cvx(t) ≤
C

Γ(x)
(1− t)x−1v̂(t).

But we have v̂(t) → 0 as t → 1. We see that this is only possible if
α > −1.

Obviously v(t) = (1 − t)α is weakly normal of order α, whenever
α > −1. It is also clear from the identity vx+y = (vx)y and Lemma
4.5 that v is weakly normal, if and only if vx is weakly normal for each
x ≥ 0, and this happens if and only if vx is weakly normal for some
x ≥ 0. In the following Lemma we have summarized the relationship
of the weakly normal weights with the class D̂ and with another class
of weights that has been considered in the literature. For η > −1 the
Bekollé-Bonami class B2(η) is defined by

v(t)

(1− t)η
∈ B2(η) ⇐⇒

∫ 1

t

v(s)ds

∫ 1

t

(1− s)2η

v(s)
ds ≈ (1− t)2η+2.

This is the radial weight version of a more general definition that char-
acterizes the weights ω on Bd such that a corresponding Bergman pro-
jection is bounded on L2(ω), see e.g. [6].

Lemma 4.7. Let v ∈ L1[0, 1] be a weight.
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(a) If η > −1 and v(t)
(1−t)η ∈ B2(η), then v is weakly normal of order

2η + 1.
(b) Let v ∈ L1[0, 1] be non-negative. Then the following are equiva-

lent:
(i) v is weakly normal,
(ii) there are x ≥ 0 and η > −1 such that vx(t)

(1−t)η ∈ B2(η),
(iii) there is x ≥ 0 such that vx ∈ D̂.

Proof. (a) Let η > −1 and suppose v(t)
(1−t)η ∈ B2(η), then g(t) =∫ 1

t
(1−s)2η
v(s)

ds is nonincreasing and the hypothesis implies that

g(t) ≈ (1− t)2η+2

v1(t)
.

Thus Lemma 4.4 implies that (1−t)2η+2

v1(t)
is almost decreasing, i.e. v

satisfies the definition of weakly normal of order 2η + 1 with x = 1.
(b) (ii) ⇒ (i) follows from (a) and the earlier observation that v is

weakly normal if and only if vx is weakly normal for some x ≥ 0.
(iii) ⇒ (ii) By Lemma 4.1 vx ∈ D̂ if and only if there is a C > 1

such that (1 − t)vx+1(t) ≤ Cvx+2(t). By use of a first derivative one
sees that this is equivalent to (1−t)C

vx+2(t)
being nonincreasing. Hence∫ 1

t

vx+2(s)ds

∫ 1

t

(1− s)C

vx+2(s)
ds ≤ vx+2(t)(1−t)(1− t)C

vx+2(t)
(1−t) = (1−t)C+2.

Thus vx+2(t)

(1−t)C/2 ∈ B2(C/2).
(i) ⇒ (iii) If v is weakly normal, then there are x ≥ 1 and α > −1

such that (1−t)α+x
vx(t)

is almost decreasing. Then one easily checks directly
that vx ∈ D̂. �

Weights of the type (1−t)α
(

1
t

log 1
1−t

)β for α > −1, β ≥ 0 are weakly
normal of order α. If β < 0, then such a weight would be weakly normal
of order γ for each γ > α. This also holds when α = −1, although for

β < −1 the weight ( 1
t

log 1
1−t)

β

1−t is not a Bekollé weight.
Part (b) of the previous lemma could be paraphrased by saying that

the weakly normal weights could also have been called "weakly dou-
bling" or "weak Bekollé weights". For us the viewpoint of weakly nor-
mal is important, because the order of a weakly normal weight deter-
mines the cut-off for a weighted Besov space to have the Pick property,
see Theorem 5.2. The following Theorem is instrumental for the proof.
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Theorem 4.8. Let v ∈ L1[0, 1] be a weight. If v is weakly normal of
order α > −1, then there is a positive Borel measure µ on [0, 1] such
that ∫ 1

0

tnv(t)dt

∫
[0,1]

tndµ(t) ≈ n−α−1 as n→∞.

Proof. By Lemma 2.2 it will suffice to show that for some x ≥ 0 there
is a measure µ with∫ 1

0

tnvx(t)dt

∫
[0,1]

tndµ(t) ≈ n−α−x−1 as n→∞.

Note that vx is continuous for all x ≥ 1. Thus, by the hypothesis
and Lemmas 4.5 and 4.4 there is x ≥ 1 and a nonincreasing continuous
function g on [0, 1) such that g(t) ≈ (1−t)α+x

vx(t)
for t ∈ [t0, 1).

By Lemmas 4.5 and 4.7 we may assume that x ≥ 1, vx−1 ∈ D̂, and
hence that vx is nonincreasing.

We set g(1) = limt→1 g(t). Then there is a Borel measure µ on [0, 1]
such that g(t) = µ([t, 1]). Note that g ∈ L1[0, 1],

ĝ(t) =

∫ 1

t

g(s)ds ≈
∫ 1

t

(1− s)α+x

vx(s)
ds ≤

∫ 1

t

(1− s)α+x

vx(
1+s

2
)
ds, t ∈ [t0, 1).

Hence

ĝ(t) . 2α+x+1

∫ 1

1+t
2

(1− u)α+x

vx(u)
du ≈ ĝ(

1 + t

2
).

This implies that g ∈ D̂.
Since vx−1 ∈ D̂ we also have vx ∈ D̂. Thus Lemma A of [19] with

vx, g ∈ D̂ implies that
∫ 1

0
tng(t)dt ≈

∫ 1

1− 1
n
g(t)dt and

∫ 1

0
tnvx(t)dt ≈∫ 1

1− 1
n
vx(t)dt. Furthermore, by Lemma 4.1 applied with vx−1 we have∫ 1

t
vx(s)ds ≈ (1 − t)vx(t). Also noting that Lemma 2.2 implies that∫ 1

0
tndµ ≈ n

∫ 1

0
tng(t)dt we obtain∫ 1

0

tnvx(t)dt

∫
[0,1]

tndµ(t) ≈ vx(1−
1

n
)

∫ 1

1− 1
n

(1− s)α+x

vx(s)
ds.(4.1)

Since vx is nonincreasing we immediately obtain∫ 1

0

tnvx(t)dt

∫
[0,1]

tndµ(t) ≥ c

∫ 1

1− 1
n

(1− s)α+xds ≈ n−α−x−1.
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By the hypothesis the ratio vx(t)
(1−t)α+x is almost increasing, hence there

is C > 0 such that for s ≥ 1− 1
n

vx(1−
1

n
) ≤ Cn−α−x

vx(s)

(1− s)α+x
.

Thus we may substitute this inequality into (4.1), and this concludes
the proof of the Theorem. �

We will say that a radial weight ω on Bd is weakly normal (of order
α > −1), if the associated L1[0, 1]-function v (see Section 2) is weakly
normal (of order α > −1). For weakly normal radial weights Lemmas
4.2 and 4.7 imply that there is x0 ≥ 0 such that ωx+x0 ≈ (1−|z|2)2xωx0
for all x ≥ 0.

Example 4.9. Examples of weights that are not weakly normal are
ω(z) = (1−|z|2)βe

−1

1−|z|2 , β ∈ R. One checks with Lemma 4.4 that such
a weight would be weakly normal, if and only if v(t) = (1 − t)βe

−1
1−t is

weakly normal. We calculate

(1− t)2v(t) = −
∫ 1

t

d

ds
(1− s)β+2e

−1
1−sds

=

∫ 1

t

(1 + (β + 2)(1− s))v(s)ds

≈
∫ 1

t

v(s)ds = v̂(t)

Iteration of this shows that for each positive integer N we have (1 −
t)2Nv(t) ≈ vN(t) and hence ωN ≈ (1 − |z|2)4Nω. For more on such
weights, see [18].

5. Radial weights and complete Pick spaces

Our result on radially weighted Besov spaces that are complete Pick
spaces is based on the following Lemma.

Lemma 5.1. Let µ be a probability measure on [0, 1]. Then there are
cn ≥ 0 such that ∫

[0,1]

1

1− tz
dµ(t) =

1

1−
∑∞

n=1 cnz
n

for all |z| < 1.

It follows that kw(z) =
∫

[0,1]
1

1−t〈z,w〉dµ(t) defines a normalized Pick
kernel in Bd.
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Proof. Let F (s) =
∫

[0,1]
tsdµ(t) be the moment generating function for

this set-up. It is well-known that logF (s) defines a convex function on
[0,∞). In fact, it easily follows from Hölder’s inequality that F (λs1 +
(1− λ)s2) ≤ F (s1)λF (s2)1−λ for all s1, s2 ∈ [0,∞) and 0 < λ < 1. The
logarithmic convexity of F follows from this. Thus for each n ≥ 0 we
have

logF (n+ 1)− logF (n) ≤ logF (n+ 2)− logF (n+ 1),

which is equivalent to F (n+1)
F (n)

being nondecreasing in n. Now the con-
clusion of the lemma follows from Kaluza’s lemma (see e.g. [2], Lemma
7.38) since

∫
[0,1]

1
1−tzdµ(t) =

∑∞
n=0 F (n)zn. �

Theorem 5.2. If ω is a weakly normal radial weight of order α > −1,
then Bs

ω is a complete Pick space for all s ≥ α+d
2
.

Proof. Let v be the L1[0, 1]-function associated with ω and set α′ =
2s− d ≥ α. Then v is a weakly normal weight of order α′.

For n ∈ N0 let an = an(ω) =
∫ 1

0
tnv(t)dt, and choose a probability

measure µ such that bn =
∫

[0,1]
tndµ ≈

(
nα
′+1an

)−1
=
(
n2s−d+1an

)−1
.

This can be done by Theorem 4.8. Define

kw(z) =

∫
[0,1]

1

1− t〈z, w〉
dµ(t).

Then kw(z) =
∑∞

n=0 bn〈z, w〉n is a normalized complete Pick kernel by
Lemma 5.1. Let H be the reproducing kernel Hilbert space with kernel
k, and let ‖f‖H2

d
denote the Drury-Arveson norm of a function f =∑

n fn. It is easy to check and well-known that ‖f‖2
H =

∑∞
n=0

1
bn
‖fn‖2

H2
d
.

Recall that for homogeneous polynomials fn of degree n we have

‖fn‖2
H2
d

= cn‖fn‖2
H2(∂Bd), where cn ≈ (n+ 1)d−1,

see for example formula (2.2) of [21]. We now apply the above and the
definition of the Bs

ω-norm to obtain

‖f‖2
Bsω

= |f(0)|2 +
∞∑
n=1

n2san‖fn‖2
H2(∂Bd)

≈ |f(0)|2 +
∞∑
n=1

n2s−d+1an‖fn‖2
H2
d

≈ |f(0)|2 +
∞∑
n=1

1

bn
‖fn‖2

H2
d

= ‖f‖2
H.



26 A. ALEMAN, M. HARTZ, J. MCCARTHY, AND S. RICHTER

�

Corollary 5.3. If ω is a weakly normal radial weight of order α >
−1, then for every s0 ≥ (α + d)/2, there is a positive nonincreasing
continuous function g ∈ D̂ such that for every x, y ≥ 0

kw(z) =

∫ 1

0

(1− t)x

(1− t〈z, w〉)x+3+2y
ĝ(t)dt

is a reproducing kernel for Bs0−y
ω .

By this we mean that there is an alternate norm on Bs0−y
ω which is

equivalent to the natural norm and such that kw(z) is the reproducing
kernel for the space under the alternate norm.

Proof. Since s0 ≥ (α+ d)/2 Theorem 5.2 implies that the space Bs0
ω is

a complete Pick space. Furthermore, the proof of Theorem 5.2 shows
that

ks0w (z) =

∫ 1

0

1

1− t〈z, w〉
dµ(t) =

∑
n=0

〈z, w〉n
∫

[0,1]

tndµ(t)

is a reproducing kernel for Bs0
ω . The existence of the measure µ was

established by means of Theorem 4.8, whose proof shows that µ can
be chosen so that g(t) = µ([t, 1]) is continuous and satisfies g ∈ D̂. For
x ≥ 0 let wx be the L1[0, 1]-function associated with µ as in Lemma
2.2, then w1 = g, w2 = ĝ, and Lemma 4.2 implies that wx+2(t) ≈
(1− t)xĝ(t). Now consider the power series

kw(z) =

∫ 1

0

(1− t)x

(1− t〈z, w〉)x+3+2y
ĝ(t)dt =

∞∑
n=0

an〈z, w〉n,

where

an ≈ (n+ 1)x+2+2y

∫ 1

0

tn(1− t)xĝ(t)dt

≈ (n+ 1)x+2+2y

∫ 1

0

tnwx+2(t)dt

≈ (n+ 1)2y

∫
[0,1]

tndµ(t)

by Lemma 2.2. It is easy to see that if ks0w (z) is a reproducing kernel
for Bs0

ω , then kw(z) is a reproducing kernel for Bs0−y
ω . �

Corollary 5.4. Let ω be a weakly normal radial weight on Bd. For
s ∈ R let ksw(z) be the reproducing kernel for Bs

ω.
Then for each s ≤ t there is c > 0 such that ksz(z) ≤ c ktz(z)

(1−|z|2)2(t−s)
for

all z ∈ Bd.
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Proof. If v is weakly normal normal of order α > −1, then choose
s0 ≥ max(t, (α + d)/2). Then by the previous corollary with x = 0 we
have

ksz(z) ≈
∫ 1

0

ĝ(u)

(1− u|z|2)3+2(s0−s)
du

and

ktz(z) ≈
∫ 1

0

ĝ(u)

(1− u|z|2)3+2(s0−t)
du.

The Corollary follows from this. �

6. Further results about multipliers of Bs
ω

Some of the main results from the previous sections are about bounded
column operators on weighted Besov spaces with radial weights. In this
section we collect more facts about such operators.

Let α ≥ 0 be a real parameter. We will need to use the growth space
A−α(`2) defined by

A−α(`2) = {Φ = (ϕ1, ϕ2, ...), ϕi ∈ Hol(Bd), ‖Φ‖A−α(`2) <∞},
where

‖Φ‖2
A−α(`2) = sup

z∈Bd
(1− |z|2)2α

∞∑
i=1

|ϕi(z)|2.

If α = 0, then we just obtain the bounded analytic functions and we
observe H∞(C, `2) = A0(`2) and ‖Φ‖∞ = ‖Φ‖A0(`2).

The following lemma is well-known.

Lemma 6.1. Let γ > 0, n ∈ N. Then there is a c > 0 such that for
all sequences of analytic functions Φ = (ϕ1, ϕ2, ...) on Bd we have

1

c
‖Φ‖A−γ(`2) ≤ ‖Φ(0)‖`2 + ‖RnΦ‖A−γ−n(`2) ≤ c‖Φ‖A−γ(`2).

and hence Φ ∈ A−γ(`2) if and only if RnΦ ∈ A−γ−n(`2) and Φ(0) ∈ `2.
Furthermore, if Φ ∈ H∞(C, `2), then RnΦ ∈ A−n(`2) and

‖RnΦ‖A−n(`2) ≤ c‖Φ‖H∞ .

Proof. By induction it follows that it suffices to prove the case where
n = 1. Furthermore, that case follows easily from the formulas ϕ(z) =

ϕ(0) +
∫ 1

0
Rϕ(tz)dt

t
and Rϕ(z) = 1

2πi

∫
|λ−1|=r

ϕ(λz)
(λ−1)2

dλ, r = (1 − |z|)/2.
�

Theorem 6.2. Let ω be a radial weight, let s, t ∈ R with t ≤ s, and
let Φ ∈ A−(s−t)(`2).

Then the following are equivalent:
(a) Φ ∈ Mult(Bs

ω, B
t
ω(`2)),
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(b) there exists n ∈ N0 such that RnΦ ∈ Mult(Bs
ω, B

t
ωn(`2)),

(c) for all n ∈ N0 we have RnΦ ∈ Mult(Bs
ω, B

t
ωn(`2)).

In fact, for each n ∈ N we have

‖Φ‖A−(s−t)(`2)+‖Φ‖Mult(Bsω ,B
t
ω(`2)) ≈ ‖Φ‖A−(s−t)(`2)+‖RnΦ‖Mult(Bsω ,B

t
ωn

(`2)).

Proof. Let n ∈ N0. The equivalence of the three conditions and the
equivalence of norms will follow from an obvious inductive argument
once we show the two inequalities

‖Rn+1Φ‖Mult(Bsω ,B
t
ωn+1

(`2)) . ‖RnΦ‖Mult(Bsω ,B
t
ωn (`2))(6.1)

‖RnΦ‖Mult(Bsω ,B
t
ωn

(`2)) . ‖Φ‖A−(s−t)(`2) + ‖Rn+1Φ‖Mult(Bsω ,B
t
ωn+1

(`2)).

(6.2)

Let RnΦ ∈ Mult(Bs
ω, B

t
ωn(`2)). It follows from Corollary 3.8 that

‖RnΦ‖Mult(Bs−1
ω ,Bt−1

ωn (`2)) ≤ ‖R
nΦ‖Mult(Bsω ,B

t
ωn

(`2)).

Since Bs−1
ω = Bs

ω1
and Bt−1

ωn = Bt
ωn+1

with equivalence of norms by
Theorem 2.4, we conclude that for h ∈ Bs

ω

‖(Rn+1Φ)h‖Btωn+1
(`2)

≤‖R((RnΦ)h)‖Btωn+1
(`2) + ‖(RnΦ)Rh‖Btωn+1

(`2)

.‖(RnΦ)h‖Btωn (`2) + ‖RnΦ‖Mult(Bsω1 ,B
t
ωn+1

(`2))‖Rh‖Bsω1
.2‖RnΦ‖Mult(Bsω ,B

t
ωn (`2))‖h‖Bsω .

Thus (6.1) holds and Rn+1Φ ∈ Mult(Bs
ω, B

t
ωn+1

(`2)).
Next we assume that Rn+1Φ ∈ Mult(Bs

ω, B
t
ωn+1

(`2)), we write

Mn+1(Φ) = ‖Rn+1Φ‖Mult(Bsω ,B
t
ωn+1

(`2)) + ‖(RnΦ)(0)‖`2

and we choose an integer N ≥ s. Let k be an integer with 0 ≤ k ≤ N .
Since Bs

ωk
= Bs−k

ω and Bt
ωn+1+k

= Bt−k
ωn+1

with equivalence of norms,
Corollary 3.8 applied to the function Rn+1Φ implies that

‖Rn+1Φ‖Mult(Bsωk
,Btωn+1+k

(`2)) ≤Mn+1(Φ).
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Then for all h ∈ Bs
ω we have

‖(RnΦ)h‖Btωn (`2)

.‖(RnΦ)(0)h(0)‖`2 + ‖R((RnΦ)h)‖Btωn+1
(`2)

.Mn+1(Φ)‖h‖Bsω + ‖(Rn+1Φ)h‖Btωn+1
(`2) + ‖(RnΦ)Rh‖Btωn+1

(`2)

.2Mn+1(Φ)‖h‖Bsω + ‖R((RnΦ)Rh)‖Btωn+2
(`2)

.2Mn+1(Φ)‖h‖Bsω + ‖(Rn+1Φ)Rh‖Btωn+2
(`2) + ‖(RnΦ)R2h‖Btωn+2

(`2)

.2Mn+1(Φ)‖h‖Bsω +Mn+1(Φ)‖Rh‖Bsω1 + ‖(RnΦ)R2h‖Btωn+2
(`2)

.3Mn+1(Φ)‖h‖Bsω + ‖(RnΦ)R2h‖Btωn+2
(`2).

Thus iteration of this argument shows that

‖(RnΦ)h‖Btωn (`2) . (N + 1)Mn+1(Φ)‖h‖Bsω + ‖(RnΦ)RNh‖Btωn+N (`2).

Since Mn+1(Φ) is dominated by the right-hand side of (6.2), it remains
to estimate the second summand. Note that as n + N ≥ t we have
Bt
ωn+N

(`2) = L2
a(ωn+N−t, `2) with equivalence of norms. The growth

hypothesis on Φ and Lemma 6.1 imply that RnΦ ∈ A−(s−t+n)(`2) with
‖RnΦ‖A−(s−t+n) . ‖Φ‖A−(s−t) , so using (2.4), we see that

‖(RnΦ)RNh‖2
Btωn+N

(`2) ≈
∫
Bd
‖(RnΦ)(z)RNh(z)‖2

`2
ωn+N−tdV

. ‖RnΦ‖2
A−(s−t+n)

∫
Bd
|RNh(z)|2 ωn+N−t

(1− |z|2)2(s−t+n)
dV

. ‖RnΦ‖2
A−(s−t+n)

∫
Bd
|RNh(z)|2ωN−sdV

. ‖Φ‖2
A−(s−t)(`2)‖R

Nh‖2
L2
a(ωN−s)

. ‖Φ‖2
A−(s−t)(`2)‖h‖

2
Bsω
.

Thus (6.2) holds and this concludes the proof. �

Since the multipliers of a space into itself are always bounded we
obtain an immediate consequence:

Theorem 6.3. Let ω be a radial weight in Bd, and let s ∈ R, N ∈ N0.
Then

Mult(Bs
ω, B

s
ω(`2)) = {Φ ∈ H∞(C, `2) : RNΦ ∈ Mult(Bs

ω, B
s−N
ω (`2))

and ‖Φ‖Mult(Bsω ,B
s
ω(`2)) ≈ ‖RNΦ‖Mult(Bsω ,B

s−N
ω (`2)) + ‖Φ‖∞.

Note that if N ≥ s, then Bs−N
ω = L2

a(ωN−s) is a weighted Bergman
space and the condition in the Corollary says that the higher order
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derivatives of multipliers satisfy a Carleson measure condition that is
appropriate for the space Bs

ω (see [10]): There exists a c > 0 such that∫
Bd
|f(z)|2‖RNΦ(z)‖2

`2
ωN−s(z)dV ≤ c‖f‖2

Bsω

for all f ∈ Bs
ω.

For the standard weights ω(z) = (1− |z|2)η, η > −1 the scalar case
of this theorem is due to Fabrega and Ortega and [17], also see [10].
For general Bekollé-Bonami weights (not necessarily radial) it is in [9].
We note that in those contexts the Lp-case was treated as well.

We don’t know whether the equivalence of (b) and (c) of Theorem
6.2 for n ≥ 1 remains true without the hypothesis that Φ ∈ A−(s−t)(`2).
For general Bekollé-Bonami weights that is the case, see [9]. We will
now see that it also holds for all weakly normal radial weights.

Lemma 6.4. Let ω be a weakly normal radial weight, and let s, α ∈ R
with α ≥ 0. Then

Mult(Bs
ω, B

s−α
ω (`2)) ⊆ A−α(`2).

Proof. Let Φ = {ϕ1, ...} ∈ Mult(Bs
ω, B

s−α
ω (`2)). Then for each z ∈ Bd

we have∑
n≥1

|ϕn(z)|2 =
∑
n≥1

|〈ϕnksz, ks−αz 〉|2

|ksz(z)|2

≤
‖Φ‖2

Mult(Bsω ,B
s−α
ω (`2))

‖ksz‖2‖ks−αz ‖2

|ksz(z)|2

= ‖Φ‖2
Mult(Bsω ,B

s−α
ω (`2))

‖ks−αz ‖2

‖ksz‖2

≤ c‖Φ‖2
Mult(Bsω ,B

s−α
ω (`2))

(1− |z|2)−2α by Corollary 5.4.

�

Corollary 6.5. Let ω be a weakly normal radial weight, and let s, t ∈ R
with t < s. Then the following are equivalent:

(a) Φ ∈ Mult(Bs
ω, B

t
ω(`2)),

(b) there exists n ∈ N0 such that RnΦ ∈ Mult(Bs
ω, B

t
ωn(`2)),

(c) for all n ∈ N0 we have RnΦ ∈ Mult(Bs
ω, B

t
ωn(`2)).

Proof. This follows from Theorem 6.2, because by Lemmas 6.4 and 6.1
each of the cases (a), (b), or (c) automatically implies the required
growth hypothesis. �
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In particular, applying this to RΦ and t = s − 1, we conclude that
for weakly normal radial weights we have RΦ ∈ Mult(Bs

ω, B
s−1
ω (`2)) if

and only if there is n ∈ N such that RnΦ ∈ Mult(Bs
ω, B

s−n
ω (`2)).
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