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Abstract—Image-based classification of liver disease generally lacks specificity for distinguishing between acute,
resolvable injury and chronic irreversible injury. We propose that ultrasound radiofrequency data acquired in
vivo from livers subjected to toxic drug injury can be analyzed with information theoretic detectors to derive
entropy metrics, which classify a statistical distribution of pathologic scatterers that dissipate over time as livers
heal. Here we exposed 38 C57BL/6 mice to carbon tetrachloride to cause liver damage, and imaged livers in vivo
1, 4, 8, 12 and 18 d after exposure with a broadband 15-MHz probe. Selected entropy metrics manifested mono-
tonic recovery to normal values over time as livers healed, and were correlated directly with progressive restora-
tion of liver architecture by histologic assessment (r2 � 0.95, p < 0.004). Thus, recovery of normal liver
microarchitecture after toxic exposure can be delineated sensitively with entropy metrics. (E-mail:
wicklines@aol.com) © 2019 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

Liver injury is a known complication of numerous medica-

tions that can initiate an injury that spontaneously resolves

or, alternatively, an injury that proceeds to either acute liver

failure (ALF) or chronic liver disease including cirrhosis

(Fisher et al. 2015). Indeed, drug-induced liver injury (DILI)

is the leading cause of ALF in the United States, accounting

for more cases of ALF than all other etiologies combined

including viral hepatitis (Habib and Shaikh 2017; Lee 2013).

Though many cases of DILI recover after cessation of the

offending agent, those that result in a more severe and

non-resolving injury may require rescue with organ trans-

plantation. The use of imaging (magnetic resonance imag-

ing, ultrasound, computed tomography) is common in the

evaluation of liver disease but is generally inadequate for

ascertaining the nature and severity of the injury and for dis-

tinguishing acute from chronic injury (Romero et al. 2014).
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Robust and objective methods for characterizing

hepatic tissue in the setting of liver injury are limited.

Liver biopsy is the most direct method although it is sub-

ject to sampling error, is invasive and is not uniformly

available. The recent development of various forms of

elastography implemented in both magnetic resonance

and ultrasound platforms is restricted to the assessment

of advanced degrees of fibrosis (Friedrich-Rust et al.

2016). A technology that merges non-invasive imaging

with quantitative tissue characterization would provide a

novel approach to the evaluation and management of dis-

eases of the liver and other vital organs.

Here we propose to investigate the application of

information theoretic detectors (ITDs) to ultrasound data

for delineation of liver damage after DILI, and to determine

if recovery can be tracked over time after removal of an

offending toxin. ITDs constitute a class of mathematical

operators that utilize unprocessed radiofrequency (RF) data

as input to generate a set of entropy metrics that reveal

pathologic alterations in acoustic backscatter from dam-

aged tissues. We have used this approach previously to
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sensitively detect cancer angiogenesis and delineate

responses to therapeutic agents in cancer and muscular dys-

trophy (Hughes et al. 2006, 2007b, 2009a, 2009b, 2011,

2013, 2015), and now seek to apply it to acute hepatic dam-

age in rabbits caused by the classic hepatotoxin carbon

tetrachloride (CCl4). In particular, we are interested in

determining how well-selected entropy metrics derived

from ultrasound image data might map the temporal evolu-

tion of hepatic injury after drug exposure, which could be

applicable to quantification of liver damage for any form of

acute liver injury.
Fig. 1. Discretely digitized waveform segments (three exam-
ples are shown in the center column) were used to derive either
a histogram for computation of Shannon entropy (left column)
or a continuous time-domain approximation using a smoothing
spline for computation of continuous, R�enyi and joint entropies

via computation of the density function (right column).
METHODS

Entropy measures

In general, entropy describes the statistical distribution

of amplitude in the backscattered ultrasound RF wave train;

traditional ultrasound analysis instead uses the absolute

magnitude of backscatter or other related measures such as

integrated backscatter (Hughes 1994). Entropy is most

commonly computed via the histogram of input data values

for discretely sampled waveforms or an estimation of the

density function in the case of continuous inputs. As such,

the entropy associated with some finite region of interest

(ROI) might differ for two dissimilar types of tissue that

may have equivalent average backscatter magnitudes or

envelopes. Thus, entropy metrics may represent additional

useful descriptors of the local structure created by scatterers

within a volume of tissue.

Entropy is used to detect changes in the homogeneity

of the tissue. This is a complex high-dimensional pattern,

and an entropy descriptor must reduce it to a single num-

ber. Although there is strong experimental support that the

entropy descriptors provide more robust descriptors of

pathology or flaws in noisy environments than do conven-

tional energy-based measures (Hughes et al. 2006, 2007b,

2009b), it is still unknown which particular descriptor

might be optimal for any particular purpose. Moreover, we

propose that the use of a set of different entropy descriptors

to process ultrasound waveforms might offer a more objec-

tive and robust demonstration of the capability of entropy

metrics than would a single selected entropy. The algo-

rithms were applied to 32-point segments of each wave-

form extracted in sliding-boxcar fashion, either through

each segment’s histogram or from the continuous approxi-

mation to its time-domain representation via a smoothing

spline (Fig. 1). Here we briefly review the definition of

each metric and how they were computed.
Shannon entropy. The Shannon entropy, HS, is

determined from the histogram of values fpigi¼1;...;N in

the digitized waveform (where N is the number of dis-

crete digitizer levels) and is defined as (Hughes et al.

2005b, 2006)
HS ¼�
XN

i¼1
pi log pi½ �; where 0 ln 0½ � : ¼ 0 ð1Þ

In the results presented below, 256-bin histograms

were used with maximum/minimum values correspond-

ing to the maximum amplitude setting of the digitizer.
Continuous entropy. The finite part of the Shan-

non entropy in the limit of infinitely small sampling

intervals and digitization levels (Hughes 1994; Hughes

et al. 2007b) is given by

HC ¼�
Z

w yð Þ log w yð Þ½ �dy ð2Þ

where w(y) is the probability density function (PDF) of

the waveform y ¼ f ðtÞ (note that we have changed the

sign convention of this value relative to the references

listed above to maintain consistency with the definition

of the Shannon entropy). Because the PDF of a continu-

ous, smoothly varying oscillating waveform can have

multiple singularities and is therefore non-trivial to com-

pute, we make use of an alternative formulation derived

from the time-domain function through the relation

HC ¼
Z

log f 0" tð Þ� �
dt ð3Þ

where f"(t) denotes the increasing rearrangement of f(t)

(Hughes et al. 2007b). In the case of discretely sampled

waveforms, this may be approximated quickly by sorting

the input waveform (Hughes et al. 2007b). It should,

however, be noted that the increasing rearrangement of a

sufficiently long, discretely digitized, oscillating signal

will likely have regions of zero slope, leading to
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singularities in this approximation. For the present

results, waveform segments were resampled using cubic

spline interpolation at points between the original sam-

pling times to effectively remove artifacts associated

with digitization before applying the approximation.

This procedure yields results consistent with the PDF

approach of eqn (2) while permitting efficient computa-

tion (Hughes et al. 2011).
Singular R�enyi entropy. The R�enyi entropy is a

generalization of the Shannon entropy and is defined

as

If rð Þ ¼ 1

1�r
log

Z
wf yð Þrdy

� �
ð4Þ

where r is an adjustable parameter. In the limit as

r! 1, we get If (r)!HC. Prior work has revealed that

this quantity exhibits sensitivity to small changes in

scattering parameters that is enhanced in the limit r!
2� (Hughes et al. 2009b). It is important to note that the

density function wf(y) of a continuous, smoothly vary-

ing oscillating waveform, f(t) yields an expression for

If(r) that is undefined when r� 2 because of the singu-

larities in wf(y). However, it has been found that the

asymptotic form of If (r) as r! 2 from below can be

given by

If ;1 ¼�log
X

ftkjf 0 tkð Þ¼0g

1

jf 00 tkð Þj

2
4

3
5 ð5Þ

where the tk are the zeroes of the derivative of f(t) (again

note the change in sign convention) (Hughes et al.

2009a). In the present study, an optimal smoothing

spline (Reinsch 1967) was used to compute the required

first and second derivatives of the input waveform seg-

ment and reduce the impact of noise on the computation

of derivatives needed for computation of If, 1 (Hughes

et al. 2011).
Joint entropy. The joint entropy of two functions f

(t) and g(t) having associated joint density w(x, y) is

given by

H f ; gð Þ ¼�
Z Z

w x; yð Þ log w x; yð Þ½ � dx dy ð6Þ

As with the continuous and singular R�enyi entro-
pies, the density function w(x, y) for the types of

“well-behaved” time-domain input functions consid-

ered here renders this equation not well defined,

because the support of w(x, y) is one-dimensional. It

has, however, been found that the following relation-

ship holds true (note change in sign convention)

(Hughes et al. 2013):
Hf ;g �
1

2

Z
dt

min

����f 0 tð Þ
����;
����g0 tð Þ

����
� �

max

����f 0 tð Þ
����;
����g0 tð Þ

����
� �

þ
Z

dt log
����max

����f 0 tð Þ
����;
����g0 tð Þ

����
� �� �

ð7Þ

In this case we again made use of an optimal smooth-

ing spline fit to each waveform segment to obtain the

required first derivatives of the functions f(t) and g(t). As

described above, RF waveform segments are assigned to f

(t). The choice for the reference waveform g(t) is an addi-

tional degree of freedom, which in this case was derived

from the reflection of the imaging system’s interrogating

pulse from a planar reflector (Hughes et al. 2015).

Treatment

All animal experiments used in this study were con-

ducted in an ethical and humane fashion governed by pro-

tocols approved by the Institutional Animal Care and Use

Committee of Washington University. Normal mice

(C57 BL/6 J, The Jackson Laboratory, Bar Harbor, ME,

USA) at 12 wk of age were administered intraperitoneal

injections of CCl4 twice weekly for 4 wk. CCl4 (Sigma-

Aldrich, St. Louis, MO, USA) was prepared in a vehicle of

sunflower oil and administered at a dose of 0.4 mL/g

weight. The mice were divided into groups according to

the interval between the final injection and data acquisi-

tion/sacrifice: 1 d (n = 9), 4 d (n = 8), 8 d (n = 9), 12 d

(n = 6) or 18 d (n = 6). Sample numbers were larger for the

1-, 4- and 8-d recovery groups because of inclusion of addi-

tional mice from a smaller, identically prepared pilot study

(not previously published) conducted to determine project

feasibility. A separate group of control mice (n = 5) were

left untreated. After ultrasound data acquisition (described

below), each mouse was euthanized by cervical dislocation,

and thoracotomy/laparotomy was performed. While the

heart was still beating, physiologic saline solution was

infused continuously into the left ventricle until the liver

turned pale and stopped changing color. The liver was then

excised, immersed in optimal cutting temperature

compound (Tissue-Plus, Fisher Scientific, Waltham, MA,

USA) and frozen for histologic processing and biochemical

collagen assay.

Data acquisition

At selected intervals during recovery after liver

injury, mice were lightly anesthetized with 1.5% isoflur-

ane before depilation of the abdomen. Each mouse was

placed semi-supine on a heated platform and maintained

on isoflurane anesthetic. Pre-warmed ultrasound gel was

liberally applied to the skin above the liver. A handheld
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15-MHz linear array (Spark Imaging System, Ardent

Sound, Inc., Mesa, AZ, USA) was used to acquire trans-

cutaneous images of the liver. Before the start of the

study, optimal system settings for transmit power (�3

dB), receive gain (0.0 dB) and focal zones (single focal

zone at position 4, with 30-mm field of view) were

selected to provide the best view of the right medial

lobe of the liver, while ensuring RF signal output levels

were within the dynamic range of the digitizer. These

settings remained constant for all time points and all

mice to maintain consistency between measurements

The imaging system was modified to output beam-

formed raw RF data and associated line and frame trigger

signals. The RF output for each A-line was digitized to 12

bits at a sampling rate of 66.67 MHz with an externally

clocked Peripheral Component Interface (PCI)-based dig-

itizer card (GaGe Compuscope 12400, DynamicSignals

LLC, Lockport, IL, USA) using custom software written

in LabVIEW (National Instruments Corp., Austin, TX,

USA). A 3-s cine loop (200 frames, with 256 lines per

frame and 2048 points per A-line) was acquired in this

manner as the probe was manually positioned over the

abdomen proximal to the right medial lobe of the liver,

and the resulting data were stored for offline processing.

Data processing

Data were processed using custom plugins written

in Java for the open-source image-editing package

ImageJ (Schneider et al. 2012). Data processing was per-

formed using 32-point (0.48-ms, equivalent to 0.37-mm)

moving-window analysis, in which a specific ITD (HS,

HC, If,1, or Hf,g) was computed for each window seg-

ment. The window segment length was selected based

on the approximate length of the transducer output pulse,

and corresponded to approximately 7 cycles at the trans-

ducer center frequency. Each computed value was

mapped to the center point of the original segment. The

fully processed data set was mapped to gray scale, and

the resulting image scaled to the appropriate aspect ratio.
Fig. 2. Grayscale rendering of an example frame using conv
entropy processing with each of the information theoretic det

row: frame for a mouse exp
For each mouse, a representative frame revealing a

portion of the right liver lobe (having uniform texture

and free from major ducts or vessels) was selected from

the conventional ultrasound cine loop. Figure 2 illus-

trates grayscale rendering of an example frame using

conventional processing (i.e., log of signal magnitude)

and entropy processing with each of the ITDs, from an

untreated mouse (top row) and a mouse exposed for 4

wk to CCl4 (bottom row). A 15-mm2 circular ROI was

positioned within the central portion of the right medial

lobe approximately 3 mm below the skin (see Fig. 3 for

illustration). The same ROI was applied to images gener-

ated with each of the previously described quantities, and

the mean values within the ROIs were computed. A two-

parameter exponential equation of the form DH ¼ aebF

(where DH is an entropy metric’s difference from base-

line and F is the fibrosis metascore, defined below) was

fit to the results as a means of modeling the correlation

with liver recovery.

Histology

Frozen liver tissue was sectioned and treated

with hematoxylin and eosin (H&E) and picrosirius

red stains for visualization of fatty and fibrous compo-

nents. Slides were imaged at 20£ and large represen-

tative areas (e.g., between 6 to 12 contiguous visual

fields) were captured and stitched together digitally

for subsequent blinded examination by an expert

pathologist (T.C.L.). Example H&E fields for control

livers and livers exposed to CCl4 with sequential

stages of recovery are provided in Figure 4. Liver sec-

tions were graded on a nominal scale for portal

fibrosis (0 = none, 1 = thickened basement membrane,

2 = mild periportal fibrosis, 3 = moderate periportal

fibrosis, 4 = portal�portal bridging); perivenular

fibrosis (0 = none, 1 = thickened basement membrane,

2 = fibrosis extending into parenchyma, 3 = long fibro-

sis bands extending into parenchyma, 4 = zone

3�zone 3 bridging); cholestasis (0 = none, 1 = mild,
entional processing (i.e., log of signal magnitude) and
ectors. Top row: frame for an untreated mouse; bottom
osed to 4 wk of CCl4.



Fig. 3. B-Scan view (conventional ultrasound, i.e., log of analytic signal magnitude) of right lobe of example mouse liv-
ers after varying lengths of treatment with CCl4. The circular region of interest delineated by the white dotted line indi-

cates area from which entropy metrics were extracted.

Fig. 4. Example fields of hematoxylin and eosin stains of mouse liver for untreated mice (A) and for mice given CCl4 for
4 wk and left to recover for 1 d (B), 4 d (C), 8 d (D), 12 d (E) and 18 d (F). Bars = 100 mm.
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2 = moderate, 3 = severe); and zone 3 chronic inflam-

mation (0 = none, 1 = mild, 2 = moderate, 3 = severe).

Area of necrosis also was estimated visually. Steato-

sis was not graded because no significant fat accumu-

lation was observed in any of the groups.
Liver function and collagen content

Samples of excised liver tissue from each mouse

were assayed to determine total liver collagen content

(Cedarlane Labs kit, Burlington, NC, USA). Amino-

transferases were determined in a subset of mice from

the 1-d recovery group and a set of untreated mice (n = 3

for each group).
RESULTS

Histologic analysis revealed substantial changes in

liver morphology associated with acute exposure to

CCl4, with moderate necrosis (typically »20%) and

focal fibrosis especially evident in perivenular areas

(zone 3). Zone 3 inflammation, fibrosis and cholestasis

decreased during the recovery period. To succinctly

express the degree of pathology exhibited in the tissue

from each mouse, a single metascore was computed by

expressing each of the individual pathology grades as a

fraction of the maximum value and taking the mean of

the resulting normalized scores. The continuously

improving liver metascore clearly reflects liver healing



Fig. 5. Fibrosis metascore exhibits continuous improvement with recovery time, although not yet to baseline level at the
final observed time point at 18 d.
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over time, although recovery to normal values was

incomplete within the 18-d recovery time frame of

this study (Fig. 5; for all whisker plots, an ‘X’ symbol

marks the mean value, the horizontal line within the box

marks the median, the box top and bottom mark the lim-

its of the 75th and 25th percentiles, respectively, and the

whiskers mark the extent of the rest of the data. Outliers,

defined as lying more than 1.5 times the interquartile

range from either end of the box, are plotted as individ-

ual points). Elevated liver enzymes for the earliest recov-

ery group (1-d recovery: alanine aminotransferase

[ALT] = 1710 § 170 U/L, aspartate aminotransferase

[AST] = 1020 § 5 U/L) further confirmed impaired liver

function relative to untreated animals (ALT = 70 §
10 U/L, AST = 70 § 20 U/L). In contrast, liver collagen
Fig. 6. Collagen fraction (measured by histochemical assay)
content did not exhibit a clear trend over the recovery

times (Fig. 6).

Entropy metric mean values likewise exhibited a

dependence on recovery time (Fig. 7). Significant dif-

ferences at the p < 0.05 level (unpaired two-tail

t-tests) with respect to the untreated cohort were

observed at the 1- and 4-d recovery time points.

Unlike the fibrosis scores, however, these metrics

returned to normal values by the 18-d recovery point.

Moreover, all metrics had a monotonic relationship to

fibrosis score with a recovery process that fit an expo-

nential model well over the range of data in this study

(Fig. 8, Table 1). All entropy metrics behaved simi-

larly, outside of expected differences in magnitude

and offset.
exhibits no clear trend as a function of recovery time.



Fig. 7. Mean entropy values as a function of recovery time. All metrics demonstrate a return to normal values at the
4-wk recovery point.
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DISCUSSION

In the present investigation, we acquired radiofre-

quency ultrasound backscatter waveforms in vivo from

mouse livers with reversible toxic damage and quantified

the natural healing response with the use of sensitive and

objective ITD signal processing techniques (Hughes 1994;

Hughes et al. 2005b, 2006, 2007b, 2009a, 2009b, 2011,

2013, 2015; Wallace et al. 2007). In general, ITD methods

operate by analyzing the statistical distribution of digitized

voltage levels from an acoustic signal and are sensitive to

diffuse, low-amplitude features of the signal that often are

obscured by noise or lost in large specular echoes that can

inhibit recognition (Cheng et al. 2009; Hughes 1992,

1993a, 1993b; Hughes et al. 2005b). The relative insensi-

tivity to confounding atypical bright spot scatterers, noise

and specular echoes indicates that these features would not

dominate the outcome for entropy analysis as they might

for measures of the average magnitudes of energy in a win-

dowed region of interest, for example. The family of

entropy metrics investigated here all performed similarly
well to depict tissue recovery, suggesting that any or all

might be candidates for further evaluation in actual patients

with liver diseases.

We have previously reported that ultrasound

entropy metrics can detect subtle tissue damage in a

number of distinct pathologies. For example, in the mdx

mouse, a model of Duchenne muscular dystrophy result-

ing from a complete lack of the membrane-stabilizing

protein dystrophin, entropy metrics were able to differ-

entiate diseased from normal biceps in mdx mice versus

non-dystrophic control mice (Hughes et al. 2007b,

2011). Moreover, treatment of mdx mice with corticoste-

roids elicited improvements in muscle disease that could

be sensitively depicted after only 2 wk as a restoration of

more normal entropy values. Traditional energy metrics

(e.g., “integrated backscatter”) proved insensitive for

detection of the therapeutic response to steroids in this

study. Exceptional sensitivity to weak scattering perfluo-

rocarbon nanoparticles that are molecularly targeted to

neovasculature in tumors and injured tissues in animal

models in vivo has been demonstrated at concentrations



Fig. 8. Difference in mean entropy metrics from baseline (no treatment) exhibits a clear monotonic increase with
increasing fibrosis metascore. The dotted line indicates the exponential fit to data (see Table 1 for details).

Table 1. Exponential model fit parameters for difference in mean entropy metrics from baseline as a function of fibrosis metascore*

Shannon Continuous R�enyi Joint

a b r2 A b r2 a b r2 a b r2

0.0135 11.53 0.953 0.0152 11.67 0.951 0.0082 12.93 0.966 0.0039 12.06 0.966

* See Figure 7. The exponential model is of the form DH ¼ aebF , where DH is the associated entropy metric difference from baseline, and F is the
fibrosis metascore.
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that are undetectable with conventional methods

(Hughes et al. 2006, 2007b, 2009b). In industrial appli-

cations, these receivers allow detection of subtle flaws in

materials that are obscured by strong specular reflectors,

thereby overcoming some of the limitations of more con-

ventional signal processing schemes (Hughes 1994;

Hughes et al. 2005b, 2015).

Alternative strategies have been proposed for quanti-

fying and/or staging liver disease processes using ultra-

sound tissue characterization (Oelze and Mamou 2016).

Well-known metrics such as backscatter and attenuation
show increased magnitude associated with hepatopathy

(Guimond et al. 2007; Lu et al. 1997). Multiparametric

combinations of these quantities with other conventional

metrics such as speed of sound discriminate fibrosis better

than when considered singularly (Bouzitoune et al. 2016).

Statistical modeling of the envelope-detected backscatter

from liver (Ho et al. 2012; Ma et al. 2016; Owjimehr et al.

2017) has shown promise for evaluating the degree of

hepatic fibrosis and steatosis, whereas B-scan texture analy-

sis (Vicas et al. 2011) has proved less useful in the clinic.

Recently, photoacoustic techniques have been used utilized
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to differentiate healthy and fibrotic livers in a CCl4 mouse

liver injury model (van den Berg et al. 2016).

The recent advent of shear wave ultrasound imag-

ing for quantification of liver fibrosis is a welcome addi-

tion to the diagnostic armamentarium of non-invasive

imaging; however, this approach requires the use of

equipment capable of propagating shear waves transcu-

taneously into the liver and of simultaneously receiving

and processing backscattered compressional waves that

are used to register the speed of sound in regions of inter-

est for calculation of an elastic modulus (Barr 2018). The

ability to employ conventional clinical imaging plat-

forms would render point-of-care applications more via-

ble as entropy detection now can be done in real time if

unprocessed RF data are available (Hughes et al. 2009a).

What is not addressed in this study is the fundamental

nature of the scattering elements that are responsible for

the basic signal and its progressive recovery over time.

Because there is no specific trend in overall liver collagen

concentration over time, we do not attribute the observed

behavior to gross changes in physical characteristics such

as material compressibility or density that would be indica-

tive of resolving fibrosis. However, our blinded pathologic

analyses do indicate changes in the organization of colla-

gen over time even if the total amounts of collagen are not

changing enough to account for restoration of entropy val-

ues. Therefore, we propose that the entropy metrics are sen-

sitive to the specific microscopic organization of disrupted

liver tissue elements rather than collagen amount as far as

this model of toxic injury is concerned. This notion is

entirely consistent with the expectation that entropy metrics

more likely represent how scatterers are arranged, in the

sense of local information content, rather than their average

backscatter cross-section per se Whether entropy metrics

would be sensitive to collagen formation characteristic of

cirrhosis is an interesting question for future study. Other

potential mechanisms that could influence entropy metrics

include cellular ballooning, hepatocyte necrosis/apoptosis,

hemorrhage and inflammatory infiltrates, many of which

are represented in our liver metascore metric (Fig. 5) and

are topics for further exploration.

In terms of limitations, the present study was per-

formed with an experimental broadband imaging system

operating at a nominal center frequency of 15 MHz.

Whether the same sensitivities of entropy metrics to liver

damage might be obtained at lower frequencies with

clinical imaging systems is conjectural, but certainly

testable in patients. We have applied entropy imaging

and analytical techniques in vivo to actual patients with

Duchenne muscular dystrophy versus normal control

patients using broadband clinical 7-MHz (»4.5�9.5

MHz) ultrasound to reveal clear differences between

damaged and normal biceps muscle tissues (Hughes

et al. 2007a). These muscles harbor many similarities in
altered and disordered cellular and matrix structures as

do the damaged livers (edema, fibrosis, cellular damage,

etc.) indicating that at clinical imaging frequencies,

ITDs are sensitive to tissue damage. We also have

reported in vivo sensitivity to pathologic changes in mus-

cular dystrophy and cancer at frequencies up to 40 MHz,

indicating the applicability of entropy metrics over a

broad range of frequencies (Hughes et al. 2005a; Wal-

lace et al. 2007). Testing of entropy metrics against

well-characterized phantom scattering models for rele-

vant clinical imaging units would be required to ensure

equivalent performance of the various platforms.

CONCLUSIONS

We suggest that the entropy metrics derived from

conventional longitudinal wave ultrasound RF backscat-

ter data could offer more sensitivity to early changes in

liver architecture, whereas shear wave-based readouts

appear to be somewhat less sensitive, and conventional

spectral tissue characterization metrics (e.g., integrated

backscatter, frequency dependence) appear even less

sensitive in clinical trials larger than those mentioned

above (Audi�ere et al. 2011). With recent algorithmic

improvements in entropy computation allowing real-

time quantification, the opportunity now exists for port-

ing these procedures to any imaging platform for patient

imaging and stand-alone point-of-care analyses.
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