
“FUNCTION THEORY AND `p SPACES” BY RAYMOND

CHENG, JAVAD MASHREGHI AND WILLIAM T. ROSS

AMS 2020; ISBN 9781470455934

1. The shift on `2 and the Hardy space H2

In one variable, the fields of operator theory and complex analysis are so
intertwined that many researchers work in both fields, and at conferences
nobody is surprised if a talk about one morphs into a talk about the other.
There is a three-way street between them: operator theory is used to prove
results in complex analysis (e.g. de Branges’s original proof of the Bieber-
bach conjecture [3]); complex analysis is used to prove results in operator
theory (e.g. Stone’s original proof of the spectral theorem [8]); and some of
the deepest results cannot even be stated without using both function the-
ory and operator theory (e.g. Löwner’s characterization of matrix monotone
functions [6]).

One reason for this is the stunning success in the study of the shift op-
erator, and all the function theory that connects to it. The shift operator
S : `2 → `2 is defined by

(1.1) S(a0, a1, a2, . . . ) = (0, a0, a1, . . . ),

and is an isometry that is not unitary (since it is not surjective). By the
Sz.-Nagy dilation theorem [9], every operator T on a separable Hilbert space
with ‖T‖ < 1 is of the form

T =
⊕
J

S∗
∣∣∣
K
,

where J is a countable index set (perhaps finite), and K is a closed invariant
subspace of ⊕JS∗. Therefore understanding invariant subspaces of ⊕JS∗
is critically important in operator theory. For simplicity, we shall restrict
ourselves in this review to when J is just a singleton, and, since K is invariant
for S∗ if and only if K⊥ is invariant for S, we shall discuss the closed S
invariant subspaces.

For each k ∈ N, the set {(aj)∞j=0 : aj = 0 if j ≤ k} is an obvious invariant
subspace. To see more, consider another way to look at the operator. We
associate a holomorphic function on the unit disk D with its sequence of
Maclaurin coefficients. We introduce a new version of the Hilbert space, the
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Hardy space H2 defined as

(1.2) H2 = {f : D→ C | f(z) =
∞∑
n=0

anz
n,
∑
|an|2 <∞}.

We define the norm of a function in H2 to be the `2 norm of the Maclaurin
coefficients. Now, we can reinterpret S as the operator from H2 to H2

(1.3) S : f(z) 7→ zf(z).

Immediately we see that if X is any subset of D, then the subspace of H2

consisting of all functions that vanish on X is invariant for S. Of course,
this subspace may be 0. A necessary and sufficient condition for a sequence
(wn) to be the zero set of a non-zero function in H2 is that it satisfy the
Blaschke condition

(1.4)
∑
n

1− |wn| <∞.

There is a third viewpoint. Every function in L2 of the unit circle T has
a Fourier series, and by Plancherel’s theorem the L2 norm of the function
equals the `2 norm of the Fourier coefficients (which are indexed by Z). We
now define

(1.5) H2(T) = {F ∈ L2(T) : F (eiθ) ∼
∞∑
n=0

ane
inθ}.

We then have

(1.6) S : F (eiθ) 7→ eiθF (eiθ).

By a theorem of Fatou [4], for every f ∈ H2, the boundary value

F (eiθ) = lim
r→1−

f(reiθ)

exists almost everywhere, and gives a function F in H2(T). Conversely, one
can recover f from F by integrating against the Szegő kernel

f(z) =
1

2π

∫ 2π

0

F (eiθ)

1− e−iθz
dθ.

So when studying the operator S on `2, one can use the tools of (i) Hilbert
space (ii) complex analysis and (iii) harmonic analysis. Having three differ-
ent tool-sets available has allowed for a deep understanding. For example
Beurling [2] characterized the closed invariant subspaces of S. A function
u ∈ H2 is called inner if its radial limits have modulus one almost every-
where.

Theorem 1.7. (Beurling) Every closed invariant subspace of S in H2 is of
the form uH2, where u is an inner function.
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Every inner function can be factored uniquely as a Blaschke product times
a singular inner function. We have

u(z) =

zN ∏
n≥1

w̄n
|wn|

wn − z
1− w̄nz

[exp(−
∫
T

ξ + z

ξ − z
dµs(ξ))

]
,

where µs is a singular measure on the circle. The first factor, the Blaschke
product, takes into account u’s zeroes on D (a sequence that satisfies (1.4)).
The second factor, the singular inner function, reflects where u vanishes to
infinite order on the circle. Every function in H2 can be uniquely factored as
an inner function times an outer function, which is a function g that satisfies

g(z) = exp

[
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |g(eiθ)|dθ

]
.

It follows from Beurling’s theorem that the outer functions are precisely the
functions that are cyclic for S (i.e. functions such that the smallest closed
invariant subspace containing them is the whole space H2).

There are many books about function theory in the Hardy space and the
operator theory associated with it; see for example [7].

2. The shift on `p, p 6= 2

Just as in (1.2), for any p ∈ (0,∞] we can define a space of analytic
functions on D, which we shall call `pA

`pA = {f : D→ C | f(z) =

∞∑
n=0

anz
n, (an) ∈ `p}.

For p ≥ 1 this is a Banach space with the `p norm, and for 0 < p < 1 it is a
Fréchet space.

When p 6= 2 the shift operator (1.1) is still an isometry from `p to `p, but
is much harder to understand, since we no longer have the tools of either
Hilbert space or harmonic analysis. Although there are many beautiful
results, the theory is far from complete. Beurling noted in his paper that
his results can easily be modified to the case of Hp (where we take (1.5) and
replace L2 by Lp) but not `pA, “a case of considerably greater interest”. He
asked whether being outer is relevant to being cyclic for the shift in `pA for
1 < p < 2; this question is still unresolved.

These spaces `pA are the principal topic of the book under review. The
first three chapters give a comprehensive introduction to functional analysis
of `p. Chapter 4 is about weak parallelogram laws. These are inequalities
in a Banach space X of the following form: for fixed constants C > 0 and
r > 1, the lower parallelogram law is

(2.1) ‖x+ y‖r + C‖x− y‖r ≤ 2r−1(‖x‖r + ‖y‖r) ∀ x, y ∈ X .
The upper parallelogram law is when ≤ is replaced by ≥. There is a complete
analysis of which weak parallelogram laws hold for each `p, 1 < p <∞.
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Chapter 5 gives a quick summary of some known results in the Hardy
space and the Bergman space (the space of holomorphic functions on the
disk that are square-integrable with respect to area measure). If f ∈ H2,

and f̂ is the projection of f onto the closed linear span of {znf(z) : n ≥ 1},
it follows from Beurling’s theorem that f − f̂ is a scalar multiple of an inner
function; indeed

f − f̂ =
f(0)

u(0)
u,

where u is the inner factor of f . A critical insight of Hedenmalm [5] was
that this could be used to define inner functions in a much broader class of
spaces, namely u is inner if and only if it is of unit norm and is orthogonal
to {znu(z) : n ≥ 1}. This revolutionized the theory of Bergman spaces;
among other things it led to the proof by Aleman, Richter and Sundberg [1]
that every function f in the Bergman space can be factored (not necessarily
uniquely) as an inner function times a function that is cyclic (for multipli-
cation by the independent variable). Moreover, the inner factor is, up to a

constant, f − f̂ .
The spaces `pA are introduced, along with their basic properties, in Chap-

ter 6. The range 0 < p ≤ 1 is quite different from the case p > 1, since for
p ≤ 1 each space `pA is an algebra, and every function in it has an absolutely

convergent Taylor series on D so is continuous there. For p = 1, we have the
analytic part of the Wiener algebra.

Chapter 7 discusses various operators on `pA – the shift, the difference quo-
tient, composition operators, and Lamperti’s characterization of the isome-
tries. The first major difference from the Hardy and Bergman results is
exhibited in Chapter 8, where it is proved that for p = 4/3 there is a poly-

nomial f so that the function J = f − f̂ has one more zero than f in D.
Here we define f̂ to be the closest point to f in the span {znf(z) : n ≥ 1}.
In particular, we cannot have f = Jg for any holomorphic g.

Chapter 9 discusses zero sets of `pA functions. Among other results, it
is proved that for every p > 2 there is a zero set that does not satisfy
the Blaschke condition (1.4), and that for every p < 2 there is a Blaschke
sequence that is not a zero set. The weak parallelogram laws are used in
lieu of Hilbert space constructions. Chapters 10 and 11 discuss what is
known about invariant subspaces for the shift on `pA and cyclic vectors for
the backward shift. Chapter 12 is about multipliers, and the final chapter
13 is on the Wiener algebra.

The book is accessible to anyone who has had basic graduate level ex-
posure to complex and functional analysis. The proofs are clear and well
motivated. Later in the book statements of some results are included with-
out giving the proofs; this is a good decision, as including the full details
would make the book much longer and harder to read.

Many of the theorems about `pA are quite delightful, but the theory is still
far from complete. This book provides a lovely introduction to the field,
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and should serve as an invitation to those who wish to delve further, and to
help fill out the theory.
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