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Abstract. We prove a variant of the well-known result that intertwiners for the bilateral
shift on `2(Z) are unitarily equivalent to multiplication operators on L2(T). This enables
us to unify and extend fundamental aspects of rigidity theory for bar-joint frameworks
with an abelian symmetry group. In particular, we formulate the symbol function for a
wide class of frameworks and show how to construct generalised rigid unit modes in a
variety of new contexts.
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1. Introduction

A bar-joint framework in d-dimensional Euclidean space Rd is a pair (G, p) where G =
(V,E) is a simple undirected graph and p ∈ (Rd)V is an assignment of points in Rd to each
of the vertices in G. The edges of this embedded graph can be viewed as rigid bars of fixed
length and the vertices as rotational joints. Such models arise naturally in engineering
and the natural sciences in contexts where their rigidity and flexibility properties are of
particular interest (eg. structural engineering [15], mineralogy [9], protein analysis [8],
network localisation [1] and formation control [14]). In this article we continue the recent
development of operator theoretic methods for the analysis of infinitesimal (i.e. first-order)
flexibility in bar-joint frameworks (and other related frameworks). This line of research
was initiated in Owen and Power ([18]). (See also [2, 13, 19, 20].)

The presence of an infinitesimal flex can sometimes be explained by an inherent symme-
try in the bar-joint framework and in recent years this interplay between symmetry and
rigidity has received considerable attention ([4, 10]). For example, it is well-known that the
rigidity matrix R(G, p) for a finite bar-joint framework with an abelian symmetry group
admits a block-diagonalisation over the irreducible representations of the group. More-
over, the diagonal blocks can be described explicitly by associated orbit matrices. This
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Figure 1. Factorisation of the `2-coboundary operator C(G,ϕ) for a frame-
work (G,ϕ) with a discrete abelian symmetry group Γ.

property has been utilised to obtain combinatorial characterisations of so-called forced and
incidental rigidity for finite bar-joint frameworks in dimension 2. (See [12, 22].)

Periodic bar-joint frameworks have also received much attention in recent years. Here
R(G, p) is an infinite matrix and so operator theory naturally comes to the fore. In [18], it
is shown that the rigidity matrix for a periodic bar-joint framework gives rise to a Hilbert
space operator which is unitarily equivalent to a multiplication operator MΦ. The symbol
function Φ is matrix-valued and defined on the d-torus Td. The set of points in Td where
Φ has a non-zero kernel is known as the RUM spectrum and takes its name from the
phenomenon of rigid unit modes (RUMs) in silicates and zeolites (see [5, 6, 9]).

RUM theory for periodic bar-joint frameworks and the aforementioned decomposition
theory for finite bar-joint frameworks can be viewed as two sides of the same coin. The first
aim of this article is to formalise this viewpoint using techniques from Fourier analysis.
The second aim is to extend the theory so that it may be applied in new contexts.

In Section 2, we prove a variant of the well-known result that intertwiners for the bilat-
eral shift on `2(Z) are unitarily equivalent to multiplication operators on L2(T) (Theorem
2.8). The distinguishing features of our theorem are that it takes place in the setting of
a general locally compact abelian group, with vector-valued function spaces, and in the
presence of an additional twist arising from a unitary representation.

In Section 3, we adopt the approach taken in [13] and introduce the more general
notions of a framework (G,ϕ) for a pair of Hilbert spaces X and Y and an accompanying
coboundary matrix C(G,ϕ). This convention simplifies the proofs and also allows the
results to be applied in a much wider variety of settings (as demonstrated in the final
section). Applying the results of Section 2, we show that a framework with a discrete
abelian symmetry group gives rise to a Hilbert space coboundary operator C(G,ϕ) which
admits a factorisation as illustrated in Figure 1 (Theorem 3.6). Note that the block
diagonalisation result for finite bar-joint frameworks and the unitary equivalence result for
periodic bar-joint frameworks described above both follow from this factorisation. We then
provide an explicit description of the associated symbol function Φ in terms of generalised
orbit matrices (Theorem 3.7) and as a trigonometric polynomial (Corollary 3.10).
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In Section 4, we introduce a generalised RUM spectrum Ω(G) for frameworks with a
discrete abelian symmetry group Γ and show how to construct χ-symmetric vectors z(χ, a)
which lie in the kernel of the coboundary matrix C(G,ϕ) for each χ ∈ Ω(G) (Theorem
4.1). Note that here we continue to work in the more general setting of coboundary

operators and that the RUM spectrum is presented as a subset of the dual group Γ̂. In the
terminology of [5, 6, 9], characters χ ∈ Γ̂ correspond to wave-vectors in reciprocal space
and χ-symmetric vectors which lie in the kernel of C(G,ϕ) correspond to generalised rigid
unit modes.

Finally, in Section 5, we illustrate the results of the preceding sections with several con-
trasting examples. These include a bar-joint framework in R3 with screw axis symmetry, a
direction-length framework in R2 with both translational and reflectional symmetry and a
symmetric bar-joint framework in R3 with mixed-norm distance constraints. For each ex-
ample, we provide some necessary background, formulate the symbol function Φ, compute
the RUM spectrum Ω(G) and construct generalised rigid unit modes z(χ, a) for points
χ ∈ Ω(G). To the best of our knowledge, the interplay between rigidity and symmetry has
not previously been explored in these contexts.

2. Intertwining relations

Let Γ be a locally compact Hausdorff abelian group. Denote by L2(Γ) the Hilbert space
of square integrable functions, i.e. Borel-measurable functions f : Γ→ C such that,∫

Γ

|f(γ)|2 dγ <∞

where we use normalised Haar measure on Γ. Recall the Haar measure of a locally compact
group is decomposable on Γ; in particular, Γ contains a σ-compact clopen subgroup ([7]).

2.1. The scalar case. Given a set S of bounded operators on a Hilbert space H, recall
that its commutant is the unital w∗-closed algebra

S ′ = {T ∈ B(H) : TS = ST, for all S ∈ S}.
If S is a selfadjoint set, i.e. S∗ ∈ S for all S ∈ S, then S ′ is also selfadjoint and hence a
C∗-algebra. Moreover, S is a set of commuting operators if and only if S ⊆ S ′. Thus, an
operator set is maximal abelian if and only if S = S ′ ([16]).

Proposition 2.1. The algebra of multiplication operators Mµ = {Mf : f ∈ L∞(Γ)} is a
maximal abelian selfadjoint subalgebra of B(L2(Γ)).

Proof. Mµ is abelian, so Mµ is a subset of its commutant. For the reverse inclusion, let
T ∈ (Mµ)′. We shall show that there exists g ∈ L∞(Γ), such that T = Mg.

(i) Suppose first that Γ is compact, so µ(Γ) <∞. Then the constant function 1Γ lies in
L2(Γ). Define g = T1Γ ∈ L2(Γ). Then for every f ∈ L∞(Γ), we have

Tf = T (f1Γ) = TMf1Γ = MfT1Γ = Mfg = fg = gf.

Hence, it suffices to show that g ∈ L∞(Γ). Let α > 0 and Γα = {γ ∈ Γ : |g(γ)| > α}.
Let 1α be the characteristic function of Γα. Then

‖T1α‖2
2 =

∫
Γ

|g1α|2dµ =

∫
Γα

|g|2dµ ≥ α2µ(Γα) = α2‖1α‖2
2,
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hence α ≤ ‖T‖ whenever µ(Γα) > 0. Thus ‖g‖∞ ≤ ‖T‖.
(ii) Suppose now that Γ is σ-compact. Then Γ can be written as a countable union of

pairwise disjoint precompact sets Γn. Write 1n for the characteristic function of Γn
and let gn = T1n. Similarly to the previous case, we obtain that TM1n = Mgn and
‖gn‖∞ ≤ ‖T‖ for every n ∈ N. Hence define g ∈ L∞(Γ) by g

∣∣
Γn

= gn
∣∣
Γn

, for every

n ∈ N. Then ‖g‖∞ ≤ supn ‖gn‖∞ ≤ ‖T‖, so g ∈ L∞(Γ), and for every f ∈ L2(Γ) we
have

Mgf =
∞∑
n=1

M1nMgf =
∞∑
n=1

Mgnf =
∞∑
n=1

TM1nf =
∞∑
n=1

M1nTf = Tf.

(Each of the infinite sums should be interpreted as limits in L2 of the partial sums.)
(iii) In the general case, letH be a clopen σ-compact subgroup of Γ and let Z be a subset of

Γ that contains exactly one element of each coset of H, so that Γ can be written as the
disjoint union of the sets z+H, z ∈ Z. For each z ∈ Z, denote by 1z the characteristic
function of z+H and let gz = T1z. Similarly to the above cases, we have TM1z = Mgz

and ‖gz‖∞ ≤ ‖T‖ for every z ∈ Z. Define g ∈ L∞(Γ) by g
∣∣
z+H

= gz
∣∣
z+H

, for every

z ∈ Z. Then g is locally almost everywhere well-defined, ‖g‖∞ ≤ supz ‖gz‖∞ ≤ ‖T‖,
so g ∈ L∞(Γ). Now given any function f ∈ L2(Γ), there exists a countable family
{zn : n ∈ N} ⊆ Z such that the set supp(f)∩ (Γ\(∪n zn+H)) is null ([21, Appendix
E8]). Check that since T commutes with the multiplication operators of characteristic
functions, it follows that supp(Tf) ⊆ supp(f). Hence

Mgf =
∞∑
n=1

M1znMgf =
∞∑
n=1

Mgznf =
∞∑
n=1

TM1znf =
∞∑
n=1

M1znTf = Tf.

�

The Fourier transform F : (L1 ∩ L2)(Γ)→ L2(Γ̂) given by the formula

f̂(ξ) =

∫
Γ

ξ(γ)f(γ)dγ

extends uniquely to a unitary isomorphism from L2(Γ) to L2(Γ̂) ([7, 21]). The inverse

Fourier transform of a function f ∈ L2(Γ̂) is denoted f̌ .
For each γ ∈ Γ, denote by Dγ the unitary operator

Dγ : L2(Γ)→ L2(Γ), f(γ′) 7→ f(γ′ − γ).

Also, denote by δγ ∈ ˆ̂
Γ, the scalar function δγ(ξ) = ξ(γ) for each ξ ∈ Γ̂. Note that the

map δ : Γ→ ˆ̂
Γ, γ 7→ δγ, is the Pontryagin map ([7]).

Proposition 2.2. Let γ ∈ Γ and let Mδγ be the multiplication operator on L2(Γ̂) by the
scalar function δγ. Then,

M∗
δγ = FDγF

−1.
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Proof. Let f ∈ (L1 ∩ L2)(Γ) such that f̂ ∈ L1(Γ̂). For every ξ ∈ Γ̂ we have

(FDγF
−1f̂)(ξ) =

∫
Γ

(DγF
−1f̂)(x)ξ(x)dx

=

∫
Γ

(F−1f̂)(x− γ)ξ(x)dx

x−γ→x
=

∫
Γ

(F−1f̂)(x)ξ(x+ γ)dx

=

∫
Γ

(F−1f̂)(x)ξ(x)dx ξ(γ)

= (FF−1f̂)(ξ)ξ(γ)

= ξ(γ)f̂(ξ)

= δγ(ξ)f̂(ξ).

Thus, if follows that FDγF
−1f̂ = δγ f̂ . The result now follows since the set of such

functions f̂ forms a dense subspace in L2(Γ̂) ([17, 21]). �

Corollary 2.3. Let L ∈ B(L2(Γ)) and define Λ = FLF−1 ∈ B(L2(Γ̂)). Then, for each
γ ∈ Γ, the following statements are equivalent.

(i) DγL = LDγ.
(ii) M∗

δγ
Λ = ΛM∗

δγ
.

Proof. Let γ ∈ Γ. Note that DγL = LDγ if and only if

FDγF
−1FLF−1 = FLF−1FDγF

−1.

The result now follows by Proposition 2.2. �

Proposition 2.4. Let L ∈ B(L2(Γ)). Then L satisfies the commuting property DγL =
LDγ for all γ ∈ Γ if and only if L is unitarily equivalent to a multiplication operator

MΦ ∈ B(L2(Γ̂)) for some Φ ∈ L∞(Γ̂). In particular, L = F−1MΦF .

Proof. Suppose first that L ∈ B(L2(Γ)) and DγL = LDγ for all γ ∈ Γ. By Corollary 2.3,

setting Λ = FLF−1 ∈ B(L2(Γ̂)), we obtain that

M∗
δγΛ = ΛM∗

δγ ,

for all γ ∈ Γ. Let f, g ∈ L2(Γ̂) ∩ L∞(Γ̂). Then, for all γ ∈ Γ,

F ((Λf)g)(γ) =

∫
Γ̂

δγ(ξ)(Λf)(ξ)g(ξ)dξ

=

∫
Γ̂

(M∗
δγΛf)(ξ)g(ξ)dξ

=

∫
Γ̂

(ΛM∗
δγf)(ξ)g(ξ)dξ

= 〈ΛM∗
δγf, g〉L2(Γ̂)
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Similarly, for all γ ∈ Γ,

F (f(Λ∗g))(γ) =

∫
Γ̂

δγ(ξ)f(ξ)Λ∗g(ξ)dξ

=

∫
Γ̂

(M∗
δγf)(ξ)Λ∗g(ξ)dξ

= 〈M∗
δγf,Λ

∗g〉L2(Γ̂)

= 〈ΛM∗
δγf, g〉L2(Γ̂)

Therefore, by the uniqueness of the Fourier transform we obtain

(Λf)g = fΛ∗g.

It now follows that, for all h ∈ L∞(Γ̂),

〈MhΛf, g〉L2(Γ̂) = 〈Mhf,Λ
∗g〉L2(Γ̂) = 〈ΛMhf, g〉L2(Γ̂)

for every f, g ∈ L2(Γ̂) ∩ L∞(Γ̂), and since these functions are dense in L2, we get MhΛ =
ΛMh, so Λ commutes with the algebra Mµ of multiplication operators. Thus, the result
follows from Proposition 2.1.

The reverse direction is obtained from Corollary 2.3, so the proof is complete. �

Remark 2.5. If Γ is a discrete abelian group and Φ ∈ L1(Γ̂) then the operator L in
Proposition 2.4 satisfies,

L(f)(γ′) =

∫
Γ

Φ̂(γ′ − γ)f(γ)dγ,

for all γ′ ∈ Γ. In particular, if Γ = Z then the matrix for L is the Laurent matrix with
symbol Φ.

2.2. Vector-valued functions. Let Γ be a locally compact abelian group and let X and
Y be complex Hilbert spaces. Let also {x1, x2, . . . } and {y1, y2, . . . } be orthonormal bases
on X and Y , respectively. Denote by L2(Γ, X) the Hilbert space of square integrable
X-valued functions. i.e. Bochner-measurable functions f : Γ→ X such that,∫

Γ

‖f(γ)‖2 dγ <∞

where we use normalised Haar measure on Γ. Note that we identify the Hilbert spaces
L2(Γ, X) and L2(Γ) ⊗ X; given any g ∈ L2(Γ), the function gk ∈ L2(Γ, X) defined by
gk(γ) = g(γ)xk, is identified with the elementary tensor g ⊗ xk ∈ L2(Γ)⊗X.

The Fourier transform FX ∈ B(L2(Γ, X), L2(Γ̂, X)) is the unitary operator given by
FX = F ⊗ 1X , where 1X is the identity operator on X. For each γ ∈ Γ, denote by Uγ and
Wγ the unitary operators

Uγ = Dγ ⊗ 1X : L2(Γ, X)→ L2(Γ, X), f(γ′) 7→ f(γ′ − γ),

Wγ = Dγ ⊗ 1Y : L2(Γ, Y )→ L2(Γ, Y ), g(γ′) 7→ g(γ′ − γ).

Given now an operator T ∈ B(L2(Γ, X), L2(Γ, Y )), for each i, j let Tij ∈ B(L2(Γ)) be
the bounded operator that is uniquely defined by the sesquilinear form,

(1) 〈Tijf, g〉 = 〈T (f ⊗ xj), g ⊗ yi〉, f, g ∈ L2(Γ).
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We call Tij a matrix element of T . A bounded operator T ∈ B(L2(Γ, X), L2(Γ, Y )) is
called a multiplication operator if there exists Φ ∈ L∞(Γ, B(X, Y )) such that

∀f∈L2(Γ,X) (Tf)(γ) = Φ(γ)f(γ) a.e. γ.

We refer to the function Φ as the operator-valued symbol function for T and we write
T = MΦ. In terms of the matrix elements Tij from (1), we have Tij = MΦij where
Φij ∈ L∞(Γ).

Proposition 2.6. Let L ∈ B(L2(Γ, X), L2(Γ, Y )). Then L satisfies the intertwining prop-
erty WγL = LUγ for all γ ∈ Γ if and only if L is unitarily equivalent to a multiplica-

tion operator MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y )) for some Φ ∈ L∞(Γ̂, B(X, Y )). In particular,
L = F−1

Y MΦFX .

Proof. Suppose that the intertwining property holds. Then for every f, g ∈ L2(Γ) we have

〈L(f ⊗ xj),W ∗
γ (g ⊗ yi)〉 = 〈WγL(f ⊗ xj), g ⊗ yi〉 = 〈LWγ(f ⊗ xj), g ⊗ yi〉.

Equivalently, by the definition of Wγ,

〈L(f ⊗ xj), (D∗γg)⊗ yi〉 = 〈L((Dγf)⊗ xj), g ⊗ yi〉.
This implies,

〈Lijf, (D∗γg)〉 = 〈Lij(Dγf), g〉,
which implies

〈DγLijf, g〉 = 〈LijDγf, g〉.
Thus, for each i, j, the operator Lij commutes with Dγ, for all γ ∈ Γ. Hence by Proposition

2.4, for each i, j we have Lij = F−1
Y MΦijFX , for some Φij ∈ L∞(Γ̂).

Define T = FYLF
−1
X . This is a bounded operator that satisfies

(FYUγF
−1
Y )T = T (FXWγF

−1
X ) ∀γ ∈ Γ.

As Tij = MΦij , we conclude that T = MΦ, where Φ is the B(X, Y ) valued function with
matrix elements Φi,j. Moreover

‖Φ‖L∞(Γ̂,B(X,Y )) = ‖T‖ = ‖L‖.

Once again, the reverse direction follows by straightforward calculations. �

2.3. Intertwining with a twist. Let U(X) denote the unitary group of X and let π :
Γ→ U(X) be a unitary representation of Γ on X. Define Tπ ∈ B(L2(Γ, X)) by (Tπf)(γ) =
π(−γ)f(γ). For each γ ∈ Γ, define Uγ,π ∈ B(L2(Γ, X)) by (Uγ,πf)(γ′) = π(γ)f(γ′ − γ).

Lemma 2.7. Let π : Γ→ U(X) be a unitary representation. Then, for each γ ∈ Γ,

TπUγ,π = UγTπ.

Proof. Given f ∈ L2(Γ, X) and γ ∈ Γ, we have

(TπUγ,πf)(γ′) = π(−γ′)(Uγ,πf)(γ′) = π(−γ′)π(γ)f(γ′ − γ) = π(γ − γ′)f(γ′ − γ),

while
(UγTπf)(γ′) = (Tπf)(γ′ − γ) = π(γ − γ′)f(γ′ − γ),

so the proof is complete. �
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Theorem 2.8. Let C ∈ B(L2(Γ, X), L2(Γ, Y )) and let π : Γ → U(X) be a unitary rep-
resentation. Then WγC = CUγ,π for all γ ∈ Γ if and only if C = LTπ, where L is

unitarily equivalent to a multiplication operator MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y )) for some

Φ ∈ L∞(Γ̂, B(X, Y )). In particular, L = F−1
Y MΦFX .

Proof. Suppose WγC = CUγ,π for all γ ∈ Γ. Then, by Lemma 2.7,

WγCT
−1
π = CUγ,πT

−1
π = CT−1

π Uγ

for all γ ∈ Γ. The conclusion now follows from Proposition 2.6 on taking L = CT−1
π .

Conversely, suppose C = LTπ, where L is unitarily equivalent to a multiplication operator
MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y )) for some Φ ∈ L∞(Γ̂, B(X, Y )). By Proposition 2.6 and
Lemma 2.7, for each γ ∈ Γ,

WγC = WγLTπ = LUγTπ = LTπUγ,π = CUγ,π.

�

3. Symbol functions for symmetric frameworks

In this section we introduce frameworks (G,ϕ) and their associated coboundary matrices
C(G,ϕ). We show that the action of a discrete abelian group on (G,ϕ) gives rise to a
Hilbert space coboundary operator which satisfies twisted intertwining relations of the
form considered in Section 2. In particular, this coboundary operator can be expressed
as a composition LTπ in the manner of Theorem 2.8, where L is unitarily equivalent to a
multiplication operator MΦ. We then present an explicit formula for the operator-valued
symbol function Φ.

3.1. Frameworks. Let X and Y be finite dimensional complex Hilbert spaces. A frame-
work for X and Y is a pair (G,ϕ) consisting of a simple undirected graph G = (V,E) and
a collection ϕ = (ϕv,w)v,w∈V of linear maps ϕv,w : X → Y with the property that ϕv,w = 0
if vw /∈ E and ϕv,w = −ϕw,v for all vw ∈ E. We will assume throughout this section that
the vertex set V is a finite or countably infinite set. The graph G is said to have bounded
degree if supv∈V deg(v) <∞, where deg(v) denotes the degree of the vertex v ∈ V .

A coboundary matrix for (G,ϕ) is a matrix C(G,ϕ) with rows indexed by E and columns
indexed by V . The row entries for a given edge vw ∈ E are as follows,

[ v w

vw · · · 0 ϕv,w 0 · · · 0 ϕw,v 0 · · ·
]
.

Example 3.1. Let (G,ϕ) be a framework for X and Y where G = (V,E) is the 4-cycle
with vertex set V = {v1, v2, v3, v4} and edge set E = {v1v2, v2v3, v3v4, v4v1}. A coboundary
matrix for (G,ϕ) has the following form (up to permutations of rows and columns),

Note that a coboundary matrix gives rise to the linear map,

C(G,ϕ) : XV → Y E, (xv)v∈V 7→ (ϕv,w(xv − xw))vw∈E .

We recall the following result.

Proposition 3.2. [13, Corollary 2.9]. Let (G,ϕ) be a framework for X and Y . If G is a
countably infinite graph with bounded degree then the following statements are equivalent.

(i) supvw∈E ‖ϕv,w‖op <∞.
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v1 v2

v4 v3


v1 v2 v3 v4

v1v2 ϕv1,v2 −ϕv1,v2 0 0
v2v3 0 ϕv2,v3 −ϕv2,v3 0
v3v4 0 0 ϕv3,v4 −ϕv3,v4

v4v1 ϕv1,v4 0 0 −ϕv1,v4



Figure 2. A 4-cycle (left) and coboundary matrix (right).

(ii) C(G,ϕ) ∈ B(`p(V,X), `p(E, Y )), for all p ∈ [1,∞].
(iii) C(G,ϕ) ∈ B(`p(V,X), `p(E, Y )), for some p ∈ [1,∞].

3.2. Gain graphs. Let Γ be an additive group with identity element 0. A Γ-symmetric
graph is a pair (G, θ) where G = (V,E) is a simple undirected graph with automorphism
group Aut(G) and θ : Γ → Aut(G) is a group homomorphism. For convenience, we
suppress θ and write γv instead of θ(γ)v for each group element γ ∈ Γ and each vertex
v ∈ V . We also write γe instead of (γv)(γw) for each γ ∈ Γ and each edge e = vw ∈ E. The
orbit of a vertex v ∈ V (respectively, an edge e ∈ E) under θ is the set [v] = {γv : γ ∈ Γ}
(respectively, [e] = {γe : γ ∈ Γ}). We denote by V0 the set of all vertex orbits and by E0

the set of all edge orbits.
We will assume throughout that θ acts freely on the vertices and edges of G. This means

γv 6= v and γe 6= e for all γ ∈ Γ\{0} and for all vertices v ∈ V and edges e ∈ E. We will
also assume that V0 and E0 are finite sets.

Lemma 3.3. Let (G, θ) be a Γ-symmetric graph where θ acts freely on the vertices and
edges of G and E0 is finite. Then G has bounded degree.

Proof. Let v ∈ V and suppose vw1, vw2, vw3 ∈ E are distinct edges which belong to
the same edge orbit. Then vw2 = γ(vw1) for some γ ∈ Γ\{0}. Since θ acts freely on
V it follows that w2 = γv. Note that vw3 = γ′(vw2) for some γ′ ∈ Γ\{0}. Again,
since θ acts freely on V it follows that v = γ′w2 = (γ′γ)v. Thus γ′ = −γ and so
vw1 = −γ(vw2) = γ′(vw2) = vw3, a contradiction. We conclude that each edge orbit
contains at most two edges which are incident with v. Thus v has at most 2|E0| incident
edges. �

The quotient graph G0 is the multigraph with vertex set V0, edge set E0 and incidence
relation satisfying [e] = [v][w] if some (equivalently, every) edge in [e] is incident with a
vertex in [v] and a vertex in [w]. For each vertex orbit [v] ∈ V0, choose a representative
vertex ṽ ∈ [v] and denote the set of all such representatives by Ṽ0. Now fix an orientation on
the edges of the quotient graph G0 so that each edge in G0 is an ordered pair [e] = ([v], [w]).
Then for each directed edge [e] = ([v], [w]) there exists a unique group element γ ∈ Γ such
that ṽ(γw̃) ∈ [e]. This group element is referred to as the gain on the directed edge [e]
and is denoted ψ[e]. A gain graph for the Γ-symmetric graph (G, θ) is any edge-labelled
directed multigraph obtained from the quotient graph G0 in this way.

Example 3.4. Consider again the 4-cycle G = (V,E) with vertex set V = {v1, v2, v3, v4}
and edge set E = {v1v2, v2v3, v3v4, v4v1}. Let θ : Z2 → Aut(G) be the group homo-
morphism with θ(1)v1 = v3 and θ(1)v2 = v4. The Z2-symmetric graph (G, θ) has two
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distinct vertex orbits [v1] = {v1, v3} and [v2] = {v2, v4}, and two distinct edge orbits
[v1v2] = {v1v2, v3v4} and [v1v3] = {v1v3, v2v4}. A gain graph for (G, θ) is illustrated in
Figure 3.

v1 v2

v3 v4

0

1

[v1] [v2]

Figure 3. A Z2-symmetric graph (left) and gain graph (right).

For each directed edge [e] = ([v], [w]) in the gain graph with gain γ we choose ẽ =
ṽ(γw̃) ∈ E to be the representative edge for the edge orbit [e]. The set of all such
representative edges will be denoted Ẽ0. Note that since θ acts freely on the vertex set V
and edge set E we have natural bijections,

βV : Γ× V0 → V, (γ, [v]) 7→ γṽ, and, βE : Γ× E0 → E, (γ, [e]) 7→ γẽ.

For more on gain graphs we refer the reader to [12].

3.3. Symmetric frameworks. Let Γ be a discrete abelian group and denote by Isom(X)
the group of affine isometries of X. A Γ-symmetric framework is a tuple G = (G,ϕ, θ, τ)
where τ : Γ → Isom(X) is a group homomorphism, (G, θ) is a Γ-symmetric graph and
(G,ϕ) is a framework for X and Y with the property that,

ϕγv,γw = ϕv,w ◦ τ(−γ), for all γ ∈ Γ and all v, w ∈ V.
For each γ ∈ Γ, let dτ(γ) denote the linear isometry on X that is uniquely defined by

the linear part of the affine isometry τ(γ). We denote by τ̃ : Γ → U(XV0) the unitary
representation with τ̃(γ)(x) = (dτ(γ)x[v])[v]∈V0 for all x = (x[v])[v]∈V0 ∈ XV0 .

Given a vector z = (zv)v∈V ∈ XV we will write ze = zv − zw for each edge e = vw ∈ E
where the corresponding directed edge [e] in the gain graph is directed from [v] to [w]. We
will also write ϕe = ϕv,w for such an edge.

For each p ∈ [1,∞], the bijections βV and βE give rise to isometric isomorphisms,

SV : `p(V,X)→ `p(Γ, XV0), z = (zv)v∈V 7→ (SV (z)γ)γ∈Γ,

where SV (z)γ = (zγṽ)[v]∈V0 , and,

SE : `p(E, Y )→ `p(Γ, Y E0), z = (ze)e∈E 7→ (SE(z)γ)γ∈Γ,

where SE(z)γ = (zγẽ)[e]∈E0 . We define the bounded operator,

C̃(G,ϕ) := SE ◦ C(G,ϕ) ◦ S−1
V : `p(Γ, XV0)→ `p(Γ, Y E0).

For each p ∈ [1,∞] and each γ ∈ Γ, we have an associated pair of isometric isomorphisms
Uγ,τ̃ ∈ B(`p(Γ, XV0)) and Wγ ∈ B(`p(Γ, Y E0)) where,

(Uγ,τ̃f)(γ′) = τ̃(γ)f(γ′ − γ), ∀ f ∈ `p(Γ, XV0),

(Wγg)(γ′) = g(γ′ − γ), ∀ g ∈ `p(Γ, Y E0).
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Proposition 3.5. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework for X and Y . Then,
for all γ ∈ Γ,

Wγ ◦ C̃(G,ϕ) = C̃(G,ϕ) ◦ Uγ,τ̃ .

Proof. Let γ ∈ Γ and let f ∈ `p(Γ, XV0). Then f = SV (u) where u = (uv)v∈V ∈ `p(V,X)
has components uv = f(γ′)[v] for v = βV (γ′, [v]). We have,

C̃(G,ϕ)(f) = SE ◦ C(G,ϕ) ◦ S−1
V (f) = SE (ϕv,w(uv − uw))vw∈E = g,

where g ∈ `p(Γ, Y E0) satisfies g(γ′) = (ϕγ′ẽ(uγ′ẽ))[e]∈E0 for each γ′ ∈ Γ. Note that,

Wγ(g)(γ′) = (ϕ(γ′−γ)ẽ(u(γ′−γ)ẽ))[e]∈E0 , for each γ′ ∈ Γ.

Let h = Uγ,τ̃ (f). Then h ∈ `p(Γ, XV0) and h(γ′) = τ̃(γ)f(γ′ − γ) for each γ′ ∈ Γ. Also,
if v = βV (γ′, [v]) then,

h(γ′)[v] = dτ(γ)f(γ′ − γ)[v] = dτ(γ)u(γ′−γ)ṽ = dτ(γ)u−γv.

Thus h = SV (z) where z = (zv)v∈V ∈ `p(V,X) has components zv = dτ(γ)u−γv for all
v ∈ V . We conclude that,

(C̃(G,ϕ) ◦ Uγ,τ̃ )f = SE ◦ C(G,ϕ) ◦ S−1
V (h) = SE (ϕe(ze))e∈E = g̃,

where g̃ ∈ `p(Γ, Y E0) satisfies g̃(γ′) = (ϕγ′ẽ(zγ′ẽ))[e]∈E0 for each γ′ ∈ Γ. It remains to show
that Wγ(g) = g̃. To see this, note that for each [e] ∈ E0 and each γ′ ∈ Γ we have,

ϕγ′ẽ(zγ′ẽ) = ϕγ′ẽ(dτ(γ)u(γ′−γ)ẽ) = ϕγ′ẽ(τ(γ)u(γ′−γ)ẽ) = ϕ(γ′−γ)ẽ(u(γ′−γ)ẽ).

�

For each p ∈ [1,∞], the unitary representation τ̃ : Γ→ U(XV0) defined above gives rise
to an isometric isomorphism Tτ̃ ∈ B(`p(Γ, XV0)) where,

(Tτ̃f)(γ) = τ̃(−γ)f(γ), ∀ f ∈ `p(Γ, XV0).

Theorem 3.6. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework for X and Y where G
has a finite or a countably infinite vertex set, Γ is a discrete abelian group, θ acts freely
on the vertices and edges of G and V0 and E0 are finite sets.

Then C(G,ϕ) ∈ B(`2(V,X), `2(E, Y )) and,

C(G,ϕ) = S−1
E ◦ F

−1
Y E0
◦MΦ ◦ FXV0 ◦ Tτ̃ ◦ SV ,

for some Φ ∈ L∞(Γ̂, B(XV0 , Y E0)).

Proof. By Lemma 3.3, G has bounded degree. Note that ϕ satisfies Proposition 3.2(i)
and so C(G,ϕ) ∈ B(`2(V,X), `2(E, Y )). The result now follows from Theorem 2.8 and
Proposition 3.5. �

We refer to Φ in the above theorem as the symbol function for the symmetric framework
G.
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3.4. The symbol function. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework for X and
Y where Γ is a discrete abelian group. Fix a gain graph for the Γ-symmetric graph (G, θ)

and let χ ∈ Γ̂. A χ-orbit matrix for G is a matrix OG(χ) with rows indexed by the directed
edges of the gain graph and with columns indexed by V0. The row entries for a non-loop
directed edge ([v], [w]) ∈ E0 with gain γ ∈ Γ are as follows,

[ [v] [w]

· · · 0 ϕṽ,γw̃ 0 · · · 0 χ(γ)ϕw̃,−γṽ 0 · · ·
]
.

The row entries for a loop edge ([v], [v]) ∈ E0 with gain γ ∈ Γ are as follows,

[ [v]

· · · 0 ϕṽ,γṽ + χ(γ)ϕṽ,−γṽ 0 · · ·
]
.

Note that each orbit matrix gives rise in natural way to a linear map OG(χ) : XV0 → Y E0

and that the function OG : Γ̂ → B(XV0 , Y E0), χ 7→ OG(χ), is continuous. In particular,

OG ∈ L∞(Γ̂, B(XV0 , Y E0)) is the operator-valued symbol function for a multiplication

operator MOG ∈ B(L2(Γ̂, XV0), L2(Γ̂, Y E0)).
We now show that OG is the symbol function for the symmetric framework G.

Theorem 3.7. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework with symbol function

Φ ∈ L∞(Γ̂, B(XV0 , Y E0)). Then,

Φ(χ) = OG(χ), a.e. χ ∈ Γ̂.

Proof. Let f̂ ∈ L2(Γ̂, XV0) and let f = F−1
XV0

(f̂) ∈ `2(Γ, XV0). Note that (T−1
τ̃ f)(γ) =

τ̃(γ)f(γ). Thus T−1
τ̃ (f) = SV (z) where z = (zv)v∈V ∈ `2(V,X) has components zv =

(τ̃(γ)f(γ))[v] for v = βV (γ, [v]). Now,

C̃(G,ϕ) ◦ T−1
τ̃ (f) = SE ◦ C(G,ϕ) ◦ S−1

V ◦ T
−1
τ̃ (f) = SE (ϕe(ze))e∈E = g,

where g ∈ `2(Γ, Y E0) satisfies g(γ) = (ϕγẽ(zγẽ))[e]∈E0 for each γ ∈ Γ.
Let [e] = ([v], [w]) ∈ E0 be a directed edge with gain γ ∈ Γ and let g[e] ∈ `2(Γ, Y ) be

the [e]-component of g. Note that for each γ′ ∈ Γ,

g[e](γ
′) = ϕγẽ(zγẽ)

= ϕγ′ẽ(dτ(γ′)f(γ′)[v] − dτ(γ′ + γ)f(γ′ + γ)[w])

= ϕẽ(f(γ′)[v] − dτ(γ)((U−γf)(γ′)[w])).

Also, by Proposition 2.2, for almost every χ ∈ Γ̂,

Û−γf(χ) = δ−γ(χ)f̂(χ) = χ(−γ)f̂(χ) = χ(γ)f̂(χ),

and so,

ĝ[e](χ) = ϕẽ(f̂(χ)[v] − dτ(γ)(χ(γ)f̂(χ)[w])) = ϕṽ,γw̃(f̂(χ)[v]) + χ(γ)ϕw̃,−γṽ(f̂(χ)[w]).

Thus, for almost every χ ∈ Γ̂,

(MΦf̂)(χ) = (FY E0 ◦ C̃(G,ϕ) ◦ T−1
τ̃ f)(χ) = ĝ(χ) = OG(χ)f̂(χ).

�
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Corollary 3.8. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework with symbol function Φ.
If G is a finite graph then the coboundary matrix C(G,ϕ) is equivalent to the direct sum,⊕

χ∈Γ̂

OG(χ) :
⊕
χ∈Γ̂

XV0 →
⊕
χ∈Γ̂

Y E0 .

Proof. By Theorem 3.6, C(G,ϕ) is equivalent to MΦ. Note that since G is a finite graph

and θ acts freely on the vertices and edges of G it follows that Γ, and hence also Γ̂, is finite.
Thus, MΦ is equivalent to the direct sum ⊕χ∈Γ̂Φ(χ). Also, by Theorem 3.7, Φ(χ) = OG(χ)

for all χ ∈ Γ̂ and so the result follows. �

Example 3.9. Consider again the framework (G,ϕ) in Example 3.1 and let (G, θ) be
the Z2-symmetric graph described in Example 3.4. Let [e1] be the directed edge in the
accompanying gain graph with gain 0 and let [e2] be the directed edge with gain 1. Note
that the dual group for Z2 consists of characters χ0 and χ1 which satisfy χ0(1) = 1 and
χ1(1) = −1. If G = (G,ϕ, θ, τ) is a Z2-symmetric framework then the associated orbit
matrices for G take the following form,

OG(χ0) =

[ [v1] [v2]

[e1] ϕṽ1,ṽ2 −ϕṽ1,ṽ2

[e2] ϕṽ1,ṽ4 ϕṽ2,ṽ3

]
, OG(χ1) =

[ [v1] [v2]

[e1] ϕṽ1,ṽ2 −ϕṽ1,ṽ2

[e2] ϕṽ1,ṽ4 −ϕṽ2,ṽ3

]
.

Applying Corollary 3.8 we obtain the equivalence,

C(G,ϕ) ∼
[
OG(χ0) 0

0 OG(χ1)

]
.

Corollary 3.10. Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework with symbol function

Φ = OG ∈ C(Γ̂, B(XV0 , Y E0)). Fix a gain graph for (G, θ) and let Γ0 ⊂ Γ be the finite set
of non-zero gains on the edges of this gain graph.

(i) Φ is the operator-valued trigonometric polynomial with,

Φ(χ) = Φ̂(0) +
∑
γ∈Γ0

Φ̂(γ)χ(γ), ∀χ ∈ Γ̂.

(ii) For each γ ∈ Γ0, each [v] ∈ V0 and each [e] ∈ E0,

Φ̂(γ)[e],[v] = C(G,ϕ)ẽ,γṽ ◦ dτ(γ),

where Φ̂(γ)[e],[v] is the ([e], [v])-entry of Φ̂(γ) and C(G,ϕ)ẽ,γṽ is the (ẽ, γṽ)-entry of
C(G,ϕ).

Remark 3.11. The orbit matrix OG(1Γ̂) was first introduced in [23] in the context of finite
bar-joint frameworks (G, p) with an abelian symmetry group. There the linear maps ϕv,w
are derived from Euclidean distance constraints and the orbit matrix is used to analyze fully
symmetric motions of the framework in Euclidean space Rd. The general orbit matrices
OG(χ) were later introduced in [22] and used to derive the block-diagonalisation result in
Corollary 3.8.

The symbol function Φ for periodic bar-joint frameworks in Rd, again with Euclidean
distance constraints, was first introduced in [18]. In this setting the symmetry group is
Zd and the dual group is the d-torus Td. It is proved there that the rigidity matrix for
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the framework determines a Hilbert space operator R(G, p) : `2(V,Cd) → `2(E,C) which
is unitarily equivalent to the multiplication operator MΦ : L2(Td, Cd|V0|)→ L2(Td,C|E0|).

Theorem 3.7 unifies and generalises these two contexts to frameworks with a general
(finite or infinite) discrete abelian symmetry group and arbitrary linear edge constraints.
See Section 5 for some examples.

4. A generalised RUM spectrum

Let G = (G,ϕ, θ, τ) be a Γ-symmetric framework for X and Y with symbol function

Φ ∈ C(Γ̂, B(XV0 , Y E0)). Fix χ ∈ Γ̂ and a ∈ XV0 and define z(χ, a) = (zv)v∈V ∈ `∞(V,X)
to be the bounded vector with components,

zv = χ(γ)dτ(γ)a[v], for v = βV (γ, [v]).

We refer to z(χ, a) as a χ-symmetric vector in `∞(V,X).
In this section our aim is to prove the following result.

Theorem 4.1. If a ∈ ker Φ(χ) then z(χ, a) ∈ kerC(G,ϕ).

4.1. Key lemmas. Let (uλ)λ∈Λ be an approximate identity for L1(Γ̂) where, for each

λ ∈ Λ, uλ is a positive continuous function satisfying uλ(η) = uλ(η
−1) for all η ∈ Γ̂ and

‖uλ‖1 = 1. It is a standard procedure to show that,

‖uλ ∗ f − f‖p → 0,

for all p ∈ [1,∞) when f ∈ Lp(Γ̂) and for p = ∞ when f ∈ C(Γ̂). (See [7, Proposition

2.42] eg.) Note that since uλ(η) = uλ(η
−1) for all η ∈ Γ̂ it follows that ǔλ = ûλ ∈ C0(Γ).

For each λ ∈ Λ, denote by uλ,a : Γ̂ → XV0 the function η 7→ uλ(η)a and define

ψλ ∈ C(Γ̂, Y E0)∗ by,

ψλ(g) =

∫
Γ̂

〈Φ(η)(uλ,a(χ
−1η)), g(η) 〉 dη, ∀ g ∈ C(Γ̂, Y E0).

Lemma 4.2. If a ∈ ker Φ(χ) then ψλ
w∗→ 0.

Proof. Let g ∈ C(Γ̂, Y E0) and define f ∈ C(Γ̂) by,

f(η) = 〈Φ(χη)a, g(χη)〉, ∀ η ∈ Γ̂.

Note that f(1Γ̂) = 〈Φ(χ)a, g(χ)〉 = 0. We have,

ψλ(g) =

∫
Γ̂

uλ(χ
−1η)〈Φ(η)a, g(η)〉 dη = (uλ ∗ f)(1Γ̂)→ f(1Γ̂) = 0.

Hence ψλ
w∗→ 0. �

For each λ ∈ Λ, define νλ ∈ `1(Γ, Y E0)∗ by,

νλ(g) =
∑
γ∈Γ

〈 C̃(G,ϕ) ◦ T−1
τ̃ ◦Mδχ(ǔλ,a)(γ), g(γ) 〉, ∀ g ∈ `1(Γ, Y E0).

Lemma 4.3. If a ∈ ker Φ(χ) then νλ
w∗→ 0.
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Proof. For each λ ∈ Λ, define the continuous function φλ ∈ C(Γ̂, Y E0) by,

φλ(η) = Φ(η)(uλ,a(χ
−1η)).

By Proposition 2.2 and Theorem 3.6 we obtain,

φ̌λ = C̃(G,ϕ) ◦ T−1
τ̃ ◦Mδχ(ǔλ,a).

Let g ∈ `1(Γ, Y E0). Then ĝ ∈ C(Γ̂, Y E0) and so, using Lemma 4.2, we have,

νλ(g) =
∑
γ∈Γ

〈φ̌λ(γ), g(γ)〉

=
∑
γ∈Γ

〈
∫

Γ̂

η(γ)φλ(η) dη, g(γ) 〉

=

∫
Γ̂

〈φλ(η),
∑
γ∈Γ

η(γ)g(γ)〉 dη

=

∫
Γ̂

〈φλ(η), ĝ(η)〉 dη

= ψλ(ĝ)→ 0.

Thus νλ
w∗→ 0. �

Denote by χ⊗ a : Γ→ XV0 the function γ 7→ χ(γ)a and define ρ(χ, a) ∈ `1(Γ, Y E0)∗ by,

ρ(χ, a)(g) =
∑
γ∈Γ

〈 C̃(G,ϕ) ◦ T−1
τ̃ (χ⊗ a)(γ), g(γ) 〉, ∀ g ∈ `1(Γ, Y E0).

Lemma 4.4. νλ
w∗→ ρ(χ, a).

Proof. Let g ∈ `1(Γ, Y E0) and let ε > 0. Choose a finite subset K ⊂ Γ such that∑
γ /∈K
‖g(γ)‖ < ε. By [7, Lemma 4.46], ǔλ → 1 uniformly on compact subsets of Γ and

so there exists λ′ ∈ Λ such that maxγ∈K |ǔλ(γ)− 1| < ε for all λ ≥ λ′.
Define fλ ∈ `∞(Γ, XV0) by setting fλ = Mδχ(ǔλ,a) − (χ ⊗ a) for each λ ∈ Λ. Since
‖ǔλ‖∞ ≤ ‖uλ‖1 = 1 we have,

‖fλ‖∞ = sup
γ∈Γ
‖χ(γ)(ǔλ(γ)− 1)a‖ ≤ 2‖a‖.

Let 1K denote the characteristic function for K. Then for all λ ≥ λ′ we have,

‖fλ1K‖∞ = max
γ∈K
‖χ(γ)(ǔλ(γ)− 1)a‖ = max

γ∈K
|ǔλ(γ)− 1|‖a‖ < ‖a‖ε.

Note that, by Proposition 3.2, C̃(G,ϕ)◦T−1
τ̃ ∈ B(`∞(Γ, XV0), `∞(Γ, Y E0)). Moreover, T−1

τ̃

is isometric and so for all λ ∈ Λ,

max
γ∈K
‖C̃(G,ϕ) ◦ T−1

τ̃ (fλ)(γ)‖ = ‖C̃(G,ϕ) ◦ T−1
τ̃ (fλ1K)‖∞ ≤ ‖C̃(G,ϕ)‖op‖fλ1K‖∞.
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Thus, for all λ ≥ λ′ we have,

|(νλ − ρ(χ, a)) (g)| ≤
∑
γ∈Γ

∣∣〈C̃(G,ϕ) ◦ T−1
τ̃ (fλ)(γ), g(γ)〉

∣∣
≤

∑
γ∈Γ

‖C̃(G,ϕ) ◦ T−1
τ̃ (fλ)(γ)‖ ‖g(γ)‖

≤ ‖C̃(G,ϕ)‖op‖fλ1K‖∞
∑
γ∈K

‖g(γ)‖+ ‖C̃(G,ϕ)‖op‖fλ‖∞
∑
γ /∈K

‖g(γ)‖

≤ ‖C̃(G,ϕ)‖op(‖g‖1 + 2)‖a‖ε

We conclude that νλ(g)→ ρ(χ, a)(g). �

4.2. Proof of Theorem 4.1.

Proof. By Lemmas 4.3 and 4.4 we have, νλ
w∗→ 0 and νλ

w∗→ ρ(χ, a). Since the w∗-topology
is Hausdorff it follows that ρ(χ, a) = 0. Thus the function fχ,a ∈ `∞(Γ, XV0) given by,

fχ,a(γ) = T−1
τ̃ (χ⊗ a)(γ) = (χ(γ)dτ(γ)a[v])[v]∈V0

lies in the kernel of C̃(G,ϕ). The result now follows since z(χ, a) = S−1
V (fχ,a). �

The Rigid Unit Mode (RUM) spectrum of G is defined as follows,

Ω(G) = {χ ∈ Γ̂ : ker Φ(χ) 6= {0}}.

Remark 4.5. The study of rigid unit modes and the RUM spectrum was initiated in
[9] as a means of understanding phase-transitions and structural stability in minerals.
An operator-theoretic formulation of these notions was introduced by Owen and Power
in the context of periodic bar-joint frameworks in Euclidean space Rd ([18]). In the

above generalisation, characters χ in the dual group Γ̂ can be thought of as wave vectors
in reciprocal space. The χ-symmetric vectors z(χ, a) which lie in the kernel of C(G,ϕ)
correspond to generalised rigid unit modes for the symmetric framework.

5. Examples from discrete geometry

In this section we present some contrasting examples of symmetric frameworks arising
from systems of geometric constraints. In each case, the underlying geometric structure
is provided by a simple undirected graph G, a normed linear space X and an assignment
p : V → X of points in X to each vertex in G. We consider 1) Euclidean distance
constraints for a bar-joint framework with screw axis symmetry, 2) a direction-length
framework with both periodic and reflectional symmetry and 3) mixed-norm distance
contraints for a finite bar-joint framework with symmetry group C4h. Each vector in
the kernel of the associated coboundary matrix C(G,ϕ) represents an infinitesimal (or
first-order) flex of the framework. We derive the symbol function Φ, compute the RUM
spectrum Ω(G) and construct χ-symmetric infinitesimal flexes (i.e. generalised rigid unit
modes) for these frameworks.
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5.1. Bar-joint frameworks in Rd. A bar-joint framework in Rd is a pair (G, p) consisting
of a simple undirected graph G = (V,E) and a point p = (pv)v∈V ∈ (Rd)V with the
property that pv 6= pw whenever vw ∈ E. For each pair v, w ∈ V , set ϕv,w : Cd → C,
x 7→ (pv − pw) · x if vw ∈ E and ϕv,w = 0 otherwise. Then the pair (G,ϕ) is a framework
(for the Hilbert spaces Cd and C) in the sense of Section 3.

Expressing each linear map ϕv,w as a row vector we obtain the rigidity matrix R(G, p)
with rows indexed by E and columns indexed by V × {1, . . . , d}. The row entries for a
given edge vw ∈ E are as follows,

[ (v,1) ··· (v,d) (w,1) ··· (w,d)

vw · · · 0 p1
v − p1

w · · · pdv − pdw 0 · · · 0 p1
w − p1

v · · · pdw − pdv 0 · · ·
]
.

We begin with a small example.

Example 5.1. Let G = (V,E) be a four cycle with vertex set V = {v1, v2, v3, v4} and
edge set E = {v1v2, v2v3, v3v4, v4v1}. Let p = (pv)v∈V ∈ (R2)V where,

pv1 = (0, 0), pv2 = (1, 0), pv3 = (0, 1), pv4 = (1, 1).

The bar-joint framework (G, p) is illustrated in Figure 2 together with an accompanying
rigidity matrix R(G, p).

pv1 pv2

pv3 pv4


(v1,1) (v1,2) (v2,1) (v2,2) (v3,1) (v3,2) (v4,1) (v4,2)

v1v2 −1 0 1 0 0 0 0 0
v1v4 −1 −1 0 0 0 0 1 1
v2v3 0 0 1 −1 −1 1 0 0
v2v4 0 0 0 −1 0 0 0 1



Figure 4. A bar-joint framework in R2 (left) and rigidity matrix (right).

Let θ : Z2 → Aut(G) be the group homomorphism described in Example 3.4. Let
τ : Z2 → Isom(R2) be the group homomorphism for which τ(1) is the orthogonal reflection
in the line y = 1

2
. Then G = (G,ϕ, θ, τ) is a Z2-symmetric framework. With the notation

of Example 3.9, the symbol function for G satisfies,

Φ(χ0) =

[ ([v1],1) ([v1],2) ([v2],1) ([v2],2)

[e1] −1 0 1 0
[e2] −1 −1 1 −1

]
,

Φ(χ1) =

[ ([v1],1) ([v1],2) ([v2],1) ([v2],2)

[e1] −1 0 1 0
[e2] −1 −1 −1 1

]
.

The multiplication operator MΦ takes the form

MΦ : C4 ⊕ C4 → C2 ⊕ C2,

[
x
y

]
7→
[
Φ(χ0) 0

0 Φ(χ1)

] [
x
y

]
.
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In particular, we obtain the block diagonalisation of the rigidity matrix R(G, p) noted in
Corollary 3.8,

R(G, p) ∼
[
Φ(χ0) 0

0 Φ(χ1)

]
.

Note that Ω(G) = {χ0, χ1}. The χ0-symmetric infinitesimal flexes derive from fully sym-
metric motions of the framework and take the form,

zv1 = ( ab ) , zv2 = ( a
−b ) , zv3 = ( a

−b ) , zv4 = ( ab ) ,

where a, b ∈ C. The χ1-symmetric infinitesimal flexes take the form,

zv1 = ( ab ) , zv2 = ( a
−b ) , zv3 = ( −ab ) , zv4 =

( −a
−b
)
.

v1,0v0,0

v1,1v0,1

v1,2v0,2

v1,3v0,3

v1,4v0,4

v1,−1v0,−1

v1,−2v0,−2

p0,0

(1, 0, 0)

p1,0

(−1, 0, 0)

p0,1

(
√

2
2
,
√

2
2
, 1)

p1,1

p0,−1

p1,−1

p(1,2)

p0,2

e1,0

e2,0
e3,0 0

1 1

[v0,0] [v1,0]

Figure 5. The double helix framework Gdh (center), underlying graph (left)
and gain graph (right).

We now present our first main example.

Example 5.2. (Double helix framework) Consider the bar-joint framework (Gdh, p) in
R3, illustrated in Figure 5. The graph Gdh has vertex set V = {vj,k : j ∈ {0, 1}, k ∈ Z}
and edge set E = {ej,k : j ∈ {1, 2, 3}, k ∈ Z} where e1,k = v0,kv1,k, e2,k = v0,kv0,k+1 and
e3,k = v1,kv1,k+1. The placement p : V → R3 is defined by setting,

pj,k := p(vj,k) =

(
(−1)j cos( kπ4 )
(−1)j sin( kπ4 )

k

)
, ∀ j ∈ {0, 1}, k ∈ Z.

Let θ : Z→ Aut(Gdh) be the group homomorphism with,

θ(n)(vj,k) = vj,k+n, ∀ j ∈ {0, 1}, k ∈ Z.
The quotient graph for the Z-symmetric graph (Gdh, θ) is the multigraph G0 = (V0, E0),
where V0 = {[v0,0], [v1,0]} is the set of vertex orbits and E0 = {[e1,0], [e2,0], [e3,0]} is the set
of edge orbits. Choosing v0,0 and v1,0 as our vertex orbit representatives and fixing an
orientation on the edges of G0 we obtain a gain graph, such as the one shown in Figure 5.
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Let τ : Z→ Isom(R3) be the group homomorphism which assigns to each n ∈ Z the affine
isometry τ(n) with linear part,

dτ(n) =

(
cos(nπ4 ) − sin(nπ4 ) 0

sin(nπ4 ) cos(nπ4 ) 0

0 0 1

)
and translation vector (0, 0, n) ∈ R3. Note that, for each n ∈ Z, τ(n) is a screw rotation
about the z-axis by the angle πn

4
and satisfies,

τ(n)(pj,k) = p(θ(n)(vj,k)) = p(vj,k+n) = pj,k+n, ∀ j ∈ {0, 1}, k ∈ Z.
Consider the Z-symmetric framework Gdh = (Gdh, ϕ, θ, τ). To formulate the symbol

function for Gdh we first compute,

p0,0 − p1,0 =
(

2
0
0

)
, p0,0 − p0,1 =

(
1−
√

2
2

−
√

2
2
−1

)
, p1,0 − p1,1 =

( √
2

2
−1
√

2
2
−1

)
.

Recall that the dual group of Z consists of characters of the form χω : Z → T, k 7→ ωk,
where ω ∈ T. Thus, by Theorem 3.7, the symbol function Φ : T→M3×6(C) is given by,

Φ(ω) =


([v0,0],1) ([v0,0],2) ([v0,0],3) ([v1,0],1) ([v1,0],2) ([v1,0],3)

([v0,0],[v1,0]) 2 0 0 −2 0 0

([v0,0],[v0,0]) 1−
√

2
2

(1 + ω) ω −
√

2
2

(1 + ω) ω − 1 0 0 0

([v1,0],[v1,0]) 0 0 0
√

2
2

(1 + ω)− 1
√

2
2

(1 + ω)− ω ω − 1


Note that Φ(ω) has a 3-dimensional kernel for all ω ∈ T and so Ω(Gdh) = T.

Calculating now the Fourier transform of Φ, we obtain Φ̂ : Z→M3×6(C) where,

Φ̂(k) =

∫
T
ω−kΦ(ω) dω =



(
2 0 0 −2 0 0

1−
√

2
2

−
√

2
2

−1 0 0 0

0 0 0
√

2
2
− 1

√
2

2
−1

)
, if k = 0(

0 0 0 0 0 0

−
√

2
2

1−
√

2
2

1 0 0 0

0 0 0
√

2
2

√
2

2
− 1 1

)
, if k = 1

03×6, otherwise.

Then Φ(ω) = Φ̂(0) + Φ̂(1)ω, as expected by Corollary 3.10.
Given any ω ∈ T, it is easily checked that the vector a = (1,−1, 1, 1,−1,−1)T lies in

the kernel of Φ(ω). Thus, by Theorem 4.1, the function

z(χω, a) : V → C3, vj,k 7→ ωk

cos(kπ
4

) + sin(kπ
4

)

sin(kπ
4

)− cos(kπ
4

)

(−1)j

 , j ∈ {0, 1}, k ∈ Z.

is a χω-symmetric infinitesimal flex of the double helix framework.

5.2. Direction-length frameworks. A direction-length framework in Rd is a pair (G, p)
consisting of a simple undirected graph G = (V,E), a partition of the edge set E into
two subsets D and L, and a point p = (pv)v∈V ∈ (Rd)V with the property that pv 6= pw
whenever vw ∈ E. For each pair v, w ∈ V , set ϕv,w : Cd → Cd−1 to be,

(i) a linear map with rank d− 1 and kernel spanned by pv − pw, if vw ∈ D,
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(ii) the linear map x 7→ ((pv − pw) · x)Id−1, if vw ∈ L, and,
(iii) 0, if vw /∈ E.

Note that the pair (G,ϕ) is a framework (for the Hilbert spaces Cd and Cd−1) in the sense
of Section 3. The edges in D represent direction constraints and the edges in L represent
length constraints. Mixed constraint systems of this type arise naturally in CAD and
network localisation for example (see [24, 11]).

Example 5.3. (Diamond lattice framework) Consider the diamond lattice direction-length
framework illustrated in Figure 6. The graph Gdl has vertex set V = {vn,j : n ∈ Z, j ∈
{0, 1}} and edge set E = D ∪ L where D = {vn,jvn+1,j : n ∈ Z, j ∈ {0, 1}} and L =
{vn,0vn+1,1, vn,0vn−1,1 : n ∈ Z, j ∈ {0, 1}}. The placement p of Gdl in R2 satisfies pn,j :=
p(vn,j) = (n, (−1)j+1) for all n ∈ Z and j ∈ Z2.

Given v, w ∈ V , define ϕv,w : C2 → C by setting,

(i) ϕv,w(x1, x2) = x2 if vw ∈ D is an edge with v = vn,0 and w = vn+1,0, or, v = vn+1,1

and w = vn,1,
(ii) ϕv,w(x1, x2) = −x2 if vw ∈ D is an edge with v = vn,1 and w = vn+1,1, or, v = vn+1,0

and w = vn,0,
(iii) ϕv,w(x) = (pv − pw) · x if vw ∈ L, and,
(iv) ϕv,w = 0 if vw /∈ E.

Then (G,ϕ) is a framework (for the Hilbert spaces C2 and C) in the sense of Section 3.
Define a group homomorphism θ : Z× Z2 → Aut(Gdl) with,

θ(m, j)(vn,k) = vm+n,j+k, m, n ∈ Z, j, k ∈ Z2.

Then the pair (Gdl, θ) is a Z× Z2-symmetric graph. The accompanying gain graph G0 =
(V0, E0) has vertex set V0 = {[v0,0]} and edge set E0 = {[e1,(0,0)], [e2,(0,0)]}, where e1,(0,0) =
v0,0v1,0 and e2,(0,0) = v0,0v1,1.

(0,−1) (1,−1)

(1, 1)

p0,0 p1,0

e1,(0,0)

e2,(0,0)

p1,1

(1, 0)

(1, 1)

[v0,0]

Figure 6. The diamond lattice direction-length framework Gdl (left) and
its gain graph (right).

Define a group homomorphism τ : Z× Z2 → Isom(R2) with linear part,

dτ(m, j) =
(

1 0
0 (−1)j

)
, m ∈ Z, j ∈ Z2.
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and translation vector ( 1
0 ). Note that θ and τ satisfy,

ϕ(m,j)v,(m,j)w = ϕv,w ◦ τ(−m,−j), ∀m ∈ Z, j ∈ Z2, v, w ∈ V.
Thus Gdl = (Gdl, ϕ, θ, τ) is a Z× Z2-symmetric framework.

Recall that the dual group of Z×Z2 consists of characters of the form χω,ι : Z×Z2 → T,

(n, j) 7→ ωnιj, where ω ∈ T and ι ∈ Ẑ2 = {−1, 1}. Applying again Theorem 3.7, we obtain
the symbol function,

Φ(ω, ι) =

[ ([v0,0],1) ([v0,0],2)

[e1,(0,0)] 0 1− ω
[e2,(0,0)] −1 + ωι −2(1 + ωι)

]
where ω ∈ T and ι ∈ Ẑ2. Note that Ω(Gdl) = {(1, 1), (1,−1), (−1,−1)}. We now apply
Theorem 4.1 to construct the associated χ-symmetric infinitesimal flexes of Gdl.

• Let ω = 1 and ι = 1. Check that a := ( 1
0 ) ∈ ker Φ(1, 1). Hence we obtain a

χ1,1-symmetric infinitesimal flex z(χ1,1, a) = (zv)v∈V where,

zvm,j = dτ(m, j)a = ( 1
0 ) , m ∈ Z, j ∈ Z2.

Note that this is a trivial infinitesimal flex of Gdl describing translation along the
x-axis.
• Let ω = 1 and ι = −1. Check that a := ( 0

1 ) ∈ ker Φ(1,−1). Hence we obtain a
χ1,−1-symmetric infinitesimal flex z(χ1,−1, a) = (zv)v∈V where,

zvm,j = (−1)jdτ(m, j)a = ( 0
1 ) , m ∈ Z, j ∈ Z2.

Note that this is a trivial infinitesimal flex of Gdl describing translation along the
y-axis.
• Let ω = −1 and ι = −1. Check that a := ( 1

0 ) ∈ ker Φ(−1,−1). Hence we obtain
a χ−1,−1-symmetric infinitesimal flex z(χ−1,−1, a) = (zv)v∈V where,

zvm,j = (−1)m(−1)jdτ(m, j)a =
(

(−1)m+j

0

)
, m ∈ Z, j ∈ Z2.

Note that this is a non-trivial infinitesimal flex of Gdl.

5.3. Norm distance constraints. Let X be a finite dimensional real normed linear space
with unit ball B. There exists a unique ellipsoid in X of minimal volume which contains
B, known as the Löwner ellipsoid for B (see [25, p. 82]). The Löwner ellipsoid is the unit
ball for a norm which is derived from an inner product on X. Let X ′ denote the real linear
space X together with this inner product and let X ′C denote the complexification of this
real Hilbert space.

A bar-joint framework in X is a pair (G, p) consisting of a simple undirected graph
G = (V,E) and a point p = (pv)v∈V ∈ XV with the property that pv − pw is a non-zero
smooth point in X whenever vw ∈ E. For each pair v, w ∈ V , set ϕv,w : X → R where,

(2) ϕv,w(x) = lim
t→0

1

t
(‖pv − pw + tx‖ − ‖pv − pw‖) ,

if vw ∈ E and ϕv,w = 0 if vw /∈ E. Each linear map ϕv,w extends in the natural way to a
linear map from X ′C to C. Thus the pair (G,ϕ) is a framework (for the Hilbert spaces X ′C
and C) in the sense of Section 3.
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Note that if θ : Γ → Aut(G) and τ : Γ → Isom(X) are group homomorphisms which
satisfy pγv = τ(γ)pv, for all v ∈ V and all γ ∈ Γ, then it is straightforward to check that,

ϕγv,γw = ϕv,w ◦ τ(−γ), ∀ v, w ∈ V, γ ∈ Γ.

The isometry group Isom(X) is a subgroup of Isom(X ′) (see [25, Corollary 3.3.4]) and
each isometry of X ′ has a natural extension to an isometry of X ′C. Thus, regarding τ as
a homomorphism into Isom(X ′C), we see that G = (G,ϕ, θ, τ) is a Γ-symmetric framework
in the sense of Section 3.

Example 5.4. (`3
2,q distance constraints) Let `3

2,q, where q ∈ (1,∞), denote the vector

space R3 equipped with the smooth mixed (2, q)-norm in R3 given by,

‖(x, y, z)‖2,q = ((x2 + y2)
q
2 + |z|q)

1
q .

Infinitesimal rigidity for non-symmetric bar-joint frameworks in these spaces has recently
been studied in [3]. In particular, it is shown there that the Lowner ellipsoid for the unit
ball in `3

2,q is the Euclidean unit ball in R3. Thus the associated complex Hilbert space is

C3.
Consider the box kite bar-joint framework in `3

2,q, illustrated in Figure 7. The un-
derlying graph Gbk has vertex set V = {vn,j : n ∈ Z4, j ∈ Z2 } and edge set E =
{vn,0vn+1,1, vn,0vn−1,1, vn,jvn+1,j : n ∈ Z4, j ∈ Z2 }. The placement p : V → R3 satisfies,
for j ∈ {0, 1},

p0,j :=

 −2

−2

(−1)j+1

, p1,j :=

 2

−2

(−1)j+1

, p2,j :=

 2

2

(−1)j+1

, p3,j :=

 −2

2

(−1)j+1

.

v0,0 v1,0 v2,0 v3,0

v0,1

v1,1 v2,1

v3,1

e1,(0,0)

e2,(0,0)

p0,0

(−2,−2,−1) p1,0

(2, 2,−1)

(2, 2, 1)

(2,−2,−1)

p2,0
e1,(0,0)

e2,(0,0)

p2,1p3,1

(1, 0)

(1, 1)

[v0,0]

Figure 7. The box kite bar-joint framework Gbk (center), underlying graph
(left) and gain graph (right).

Define a group homomorphism θ : Z4 × Z2 → Aut(Gbk) with,

θ(m, j)(vn,k) = vm+n,j+k, ∀m,n ∈ Z4, j, k ∈ Z2.
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Then the pair (Gbk, θ) is a Z4 × Z2-symmetric graph. The accompanying gain graph
G0 = (V0, E0) has vertex set V0 = {[v0,0]} and edge set E0 = {[e1,(0,0)], [e2,(0,0)]}, where
e1,(0,0) = v0,0v1,0 and e2,(0,0) = v0,0v1,1.

Define a group homomorphism τ : Z4 × Z2 → Isom(`3
2,q) with,

τ(m, j) = dτ(m, j) =

(
cos(mπ/2) − sin(mπ/2) 0
sin(mπ/2) cos(mπ/2) 0

0 0 (−1)j

)
, ∀m ∈ Z4, j ∈ Z2.

Note that,

pvm+n,j+k
= τ(m, j)pn,k, ∀m,n ∈ Z4, j, k ∈ Z2.

Thus the tuple Gbk = (Gbk, ϕ, θ, τ) is a Z4 × Z2-symmetric framework (for the Hilbert
spaces (`3

2,q)
′
C and C).

Let now vw ∈ E. Write pv − pw = (x, y, z) ∈ `3
2,q and d =

√
x2 + y2. Using the formula

(2) we calculate directly,

ϕv,w(a, b, c) = (dq + |z|q)
1
q
−1(dq−2(xa+ yb) + sgn(z)|z|q−1c), ∀ (a, b, c) ∈ `3

2,q.

Hence the functional ϕv,w can be identified with the row vector

ϕv,w = (dq + |z|q)
1
q
−1dq−2

[
x y sgn(z)|z|q−1

dq−2

]
.

The non-zero entries of the associated coboundary matrix are given by,

ϕv0,0,v1,0 =
[
−1 0 0

]
, ϕv0,0,v1,1 = α

[
−2q−1 0 −1

]
,

ϕv0,0,v3,0 =
[
0 −1 0

]
, ϕv0,0,v3,1 = α

[
0 −2q−1 −1

]
,

where α = (2q + 1)
1
q
−1.

Recall that the dual group of Z4×Z2 consists of characters of the form χη,ι : Z4×Z2 → T,

(m, j) 7→ ηmιj, where η ∈ Ẑ4 = {1, i,−1,−i} and ι ∈ Ẑ2 = {−1, 1}. Thus, by Theorem

3.7, the symbol function Φ : Ẑ4 × Ẑ2 →M2×3(C) of Gbk takes the form,

Φ(η, ι) =

[ ([v0,0],1) ([v0,0],2) ([v0,0],3)

[e1,(0,0)] −1 −η 0

[e2,(0,0)] −2q−1α −2q−1αηι −α(1 + ηι)

]
.

Evidently we have RUM spectrum Ω(Gbk) = Ẑ4 × Ẑ2.
First we will construct a χ1,1-symmetric infinitesimal flex of Gbk. Note that such flexes

represent a fully symmetric motion of the bar-joint framework which preserves the edge-

lengths induced by the (2, q)-norm. The kernel of Φ(1, 1) is spanned by a =
(

1
−1
0

)
. Thus,

by Theorem 4.1, z(χ1,1, a) is a fully symmetric χ1,1-symmetric infinitesimal flex of Gbk
where, for j ∈ Z2,

zv0,j
=
(

1
−1
0

)
, zv1,j

=
(

1
1
0

)
, zv2,j

=
(
−1
1
0

)
, zv3,j

=
( −1
−1
0

)
.

Note that the above fully symmetric infinitesimal flex is independent of q. By way of
constrast we now construct a χ−1,−1-symmetric infinitesimal flex for Gbk which varies with
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q. Note that ker Φ(−1,−1) is spanned by a =
(

1
1

−2q−1

)
. By Theorem 4.1, z(χ−1,−1, a) is a

χ−1,−1-symmetric infinitesimal flex of Gbk where, for j ∈ Z2,

zv0,j
=
(

1
1

(−1)j+12q−1

)
, zv1,j

=
( 1

−1
(−1)j2q−1

)
, zv2,j

=

(
−1
−1

(−1)j+12q−1

)
, zv3,j

=
( −1

1
(−1)j2q−1

)
.
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