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Abstract

The richly developed theory of complex manifolds plays important
roles in our understanding of holomorphic functions in several com-
plex variables. It is natural to consider manifolds that will play similar
roles in the theory of holomorphic functions in several non-commuting
variables. In this paper we introduce the class of nc-manifolds, the
mathematical objects that at each point possess a neighborhood that
has the structure of an nc-domain in the d-dimensional nc-universe
Md. We illustrate the use of such manifolds in free analysis through
the construction of the non-commutative Riemann surface for the ma-
tricial square root function. A second illustration is the construction
of a non-commutative analog of the elementary symmetric functions
in two variables. For any symmetric domain in M2 we construct a 2-
dimensional non-commutative manifold such that the symmetric holo-
morphic functions on the domain are in bijective correspondence with
the holomorphic functions on the manifold. We also derive a ver-
sion of the classical Newton-Girard formulae for power sums of two
non-commuting variables.
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1 Introduction

Free analysis, the study of holomorphic functions in several non-commuting
variables, dates back to 1973 and the seminal paper [22] by J. L. Taylor.
The theory has picked up ever greater momentum in the past decade. The
monograph [17], by D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov contains
a panoramic survey of the field up to the time of its writing. Since then, there
have been further breakthroughs in both geometry (see e.g. [9, 12, 13, 14, 15]
and function theory (see e.g. [7, 8, 16]).

Taylor’s founding idea for non-commutative analysis was that analytic
functions in several non-commuting variables should have the same basic
algebraic properties as free polynomials have when viewed as functions on
tuples of matrices (of indeterminate size). Here a free polynomial means a
polynomial in non-commuting variables over the field C of complex numbers.

Traditionally, free analysis has dealt with functions defined on subsets of
the d-dimensional non-commutative universe Md, which comprises the space
of d-tuples of square matrices, for d ≥ 1. Thus

Md =
∞⋃
n=1

Md
n (1.1)

where Mn denotes the algebra of n× n matrices over C and

Md
n = {(x1, x2, . . . , xd) |xr ∈Mn for r = 1, 2, . . . , d}.

In this paper we introduce the notion of an nc- or non-commutative man-
ifold, which bears the same relation to Md as complex manifolds bear to Cd.
This natural extension is needed even for such a basic notion as the “free
Riemann surface” of the matricial square root function, an object that we
construct in Section 6.

We were led to introduce topological nc-manifolds while seeking a non-
commutative version of the anciently-known1 fact that any symmetric holo-
morphic function of d variables can be expressed as a holomorphic function

1See Section 11.
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of the elementary symmetric functions in d variables on a suitable domain.
In particular, if f(z, w) is a holomorphic function on C2 that is symmetric,
in the sense that f(z, w) = f(w, z) for all z, w ∈ C, then there exists a holo-
morphic function g on C2 such that f(z, w) = g(z + w, zw) for all z, w ∈ C.
We asked whether there is a non-commutative version of this result.

Any non-commutative analog must be consistent with results of M. Wolf
[25], who studied an algebraic version of this question in 1936. She proved
that the algebra of symmetric free polynomials in d non-commuting variables
is not finitely generated when d > 1, and is in fact isomorphic to the algebra
of free polynomials in countably many variables. It follows that there is no
polynomial map π : M2 → Md, for any d ∈ N, with the property that, for
every symmetric free polynomial ϕ in 2 variables, there exists a free polyno-
mial Φ such that ϕ = Φ◦π; otherwise, the components of π would constitute
a finite basis for the algebra of symmetric free polynomials. Nevertheless, we
show that there is a close parallel to the classical result in the context of free
analysis on nc-manifolds. The main results of the paper are Theorem 10.1
and its unbounded analogue, Theorem 10.11.

Before stating a somewhat special case of the theorem, let us informally
describe some key notions (precise definitions are in Sections 2 and 4). A
subset of Md is called an nc set if it is closed with respect to direct sums.
A function f defined on some subset of Md is called graded if f(x) ∈ Mn

whenever x ∈ Md
n. A graded function on an nc set is called an nc function

if it preserves direct sums and joint similarities. A graded function f on an
arbitrary set D ⊆ Md is called conditionally nc if it preserves joint similari-
ties, and, in addition, there is a graded function f̂ such that whenever x and
x⊕ y are in D, then f(x⊕ y) = f(x)⊕ f̂(y).

Theorem 1.2. Let S be a symmetric nc set in M2 that is open in the free
topology. There is subset Soo of S and a polynomial map π : M2 →M3 such
that Goo = π(Soo) is a topological nc-manifold in the Zariski-free topology,
and such that there is a canonical isomorphism between bounded symmetric
nc functions defined on S and bounded holomorphic functions on the manifold
Goo that are conditionally nc.

Soo Goo M1

M1 S

foo

π

⊆

Foo

f

(1.3)
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The map π is given by

π(x1, x2) = (1
2
(x1 + x2), 1

4
(x1 − x2)2, 1

8
(x1 − x2)(x1 + x2)(x1 − x2)). (1.4)

It is generically 2-to-1 on M2, but there is a singular set on which it is many
to one. This set is excluded in Soo, and both Soo and Goo can be given the
structure of topological nc-manifolds with respect to a topology called the
Zariski-free topology, defined in Section 7. There is also an isomorphism be-
tween Zariski-freely holomorphic symmetric functions foo on Soo and Zariski-
freely holomorphic functions on Goo (with no assumption of boundedness
needed)—this is Theorem 9.15.

The bulk of the paper comprises the establishment of a suitable notion of
topological nc-manifold and construction of the manifolds Goo. Topological
nc-manifolds are defined in Section 4. The nc-universe Md defined by equa-
tion (1.1) is unlike Rd and Cd in that it admits numerous natural topologies –
a fact which adds an extra richness to the theory of topological nc-manifolds.

Section 5 describes the basic theory of free holomorphic functions of a
single variable. In one variable such functions are determined by their action
on scalars, and are given by the holomorphic functional calculus for matrices
(Proposition 5.13).

In Section 6 we present a simple example of a one-dimensional free man-
ifold – a non-commutative version of the Riemann surface of the square root
function. This theory is an essential component of the construction of the
manifold G.

In Section 7 we define the Zariski-free topology, which is rather subtle,
but seems necessary in order to avoid certain singularities in the map π.
In Section 8 we construct a Zariski-free manifold G, which is the manifold
which would be Goo in Theorem 1.2 if S were all of M2. Of course bounded
symmetric functions are not of interest when S = M2, but there is a version
of the theorem that does not require boundedness. This is Theorem 8.35.

Theorem 1.5. There is a canonical bijection between
(i) symmetric nc functions f that are freely holomorphic on M2, and
(ii) holomorphic functions Foo defined on the Zariski-free manifold G that

are conditionally nc and have the property that for every w ∈M2, there is a
free neighborhood U of w such that Foo is bounded on π(U) ∩ G.

In Sections 9 and 10 we prove the main results of the paper, Theo-
rems 10.1, 10.11 and 9.15. Finally, in Section 11, we give a non-commutative
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version of the classical Newton-Girard formulae for power sums in terms of
elementary symmetric functions. There is a significant difference in the non-
commutative context, since there is no longer a finite algebraic basis for the
algebra of symmetric polynomials. We can, however, derive explicit iterative
formulae for writing the symmetric sums

pn = xn + yn,

where n ∈ Z, as rational functions composed with the map π of equation
(1.4).

2 Mappings and topologies on Md

2.1 Nc-functions

In this section we describe the basic objects of free analysis. Firstly, the nc-
sets in the nc-universe Md of equation (1.1) are the sets that are closed under
direct sums. They are are the natural domains of definition of nc-functions,
which are the M1-valued functions that are graded, preserve direct sums and
respect similarity transformations. We now explain the precise meaning of
these terms.

Let N denote the set of positive integers and, for n ∈ N, let

In = {M ∈Mn |M is invertible}.

For x1 = (x1
1, . . . , x

d
1) ∈Md

n1
and x2 = (x1

2, . . . , x
d
2) ∈Md

n2
, we define x1⊕x2 ∈

Md
n1+n2

by identifying Cn1 ⊕Cn2 with Cn1+n2 and direct summing x1 and x2

componentwise, that is,

x1 ⊕ x2 =
(
x1

1 ⊕ x1
2, . . . , x

d
1 ⊕ xd2

)
.

Likewise, if x = (x1, . . . , xd) ∈ Md
n and S ∈ Mn is invertible, we define

S−1xS ∈Md
n by

S−1xS = (S−1x1S, . . . , S−1xdS).

Definition 2.1. If D ⊆ Md we say that D is an nc-set if D is closed with
respect to the formation of direct sums, that is:

For all n1, n2 ∈ N and all x1 ∈ D ∩Md
n1
, x2 ∈ D ∩Md

n2
,

x1 ⊕ x2 ∈ D ∩Md
n1+n2

.
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Definition 2.2. An nc-function in d variables is a function f whose domain
is an nc-set D ⊆Md, whose codomain is M1, and which satisfies

(1) for all n ∈ N and all x ∈ D ∩Md
n

f(x) ∈Mn,

(2) for all n1, n2 ∈ N and all x1 ∈ D ∩Md
n1

and x2 ∈ D ∩Md
n2

f(x1 ⊕ x2) = f(x1)⊕ f(x2), and

(3) for all n ∈ N, all x ∈ D ∩Md
n and all s ∈ In, if s−1xs ∈ D then

f(s−1xs) = s−1f(x)s.

A function f that has property (1) is said to be graded.

Definition 2.3. Let D1 ⊆ Md1 and D2 ⊆ Md2 be nc-sets and let F : D1 →
D2. We say that F is an nc-mapping if there exist nc-functions f1, f2, . . . , fd2
on D1 such that

F (x) = (f1(x), f2(x), . . . , fd2(x))

for all x ∈ D1. If, in addition, F is a bijection and both F and F−1 are
nc-mappings then we say that F is an nc-isomorphism.

J. Taylor proved [21] that properties (2) and (3) of Definition 2.2 are
equivalent to the single property that f respects intertwinings, in the follow-
ing sense:

(4) for all n1, n2 ∈ N, for x1 ∈ D∩Md
n1

, for x2 ∈ D∩Md
n2

and all n2-by-n1

matrices L satisfying Lxj1 = xj2L for j = 1, . . . , d,

Lf(x1) = f(x2)L. (2.4)

2.2 Topologies on the nc-universe

For each n, Mn carries the natural topology induced by the n×nmatrix norm.
This topology gives rise to the product topology on Md

n. Using equation (1.1),
we can endow Md with a topology whereby a set D ⊆Md is open if D ∩Md

n

is open in Md
n for each n ∈ N. This topology has been called the finitely open

topology, the disjoint union topology and the coproduct topology. We shall
call it the finitely open topology, abbreviated to f.o.
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Definition 2.5. Let τ be a topology on Md. We say that τ is an nc topology
or equivalently an admissible topology if τ has a basis consisting of finitely
open nc-sets.

As we have mentioned, the nc-universe Md admits several natural topolo-
gies [4]. In this paper we shall consider nc-manifolds based on Md endowed
with three different topologies, the fine, free and Zariski-free topologies. The
fine topology is the topology generated by all finitely open nc-sets.

Definition 2.6. A domain in Md is a finely open set.

Domains do not need to be nc-sets. For example the set

Q = {x ∈M1 : σ(x) ∩ σ(−x) = ∅} (2.7)

is a domain (see Proposition 6.5 below), indeed a free domain (see Definition
2.8), but is not an nc-set.

We now describe the free topology. It was introduced in [1] in the context
of a non-commutative Oka-Weil approximation theorem.

For δ = [δij] an I × J matrix of free polynomials, let Bδ ⊆Md be defined
by

Bδ = {x ∈Md | ‖[δij(x)]‖ < 1}.
Observe that if δ1 and δ2 are matrices of free polynomials, then

Bδ1 ∩Bδ2 = Bδ1⊕δ2 .

As a consequence of this fact, the collection of sets of the form Bδ is closed
with respect to finite intersections and thus forms a basis for a topology.

Definition 2.8. The free topology on Md is the topology for which a basis is
the collection of sets of the form Bδ where δ is a matrix of free polynomials
in d variables. A set that is open in the free topology is a free domain.

Since Bδ is an nc-set and is open in the f.o. topology, the free topology is
admissible.

The free topology is much coarser than the f.o. topology, so much so that
while the f.o. topology is Hausdorff, the topology induced on Md

n by the free
topology is not even T1 for any n ≥ 2 and d ≥ 1. One way to see this is to
observe that free open sets are invariant under unitary conjugation.

Proposition 2.9. Any freely open nc-set is freely path-connected.
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Proof. Let U be a freely open nc-set in Md. Consider x, y ∈ U ; then x⊕ y ∈
U . Define h : [0, 1]→ U by

h(t) =


x if 0 ≤ t < 1

2

x⊕ y if t = 1
2

y if 1
2
< t ≤ 1.

h is constant on the intervals [0, 1
2
) and (1

2
, 1], and so freely continuous on

those intervals. h is also freely continuous at the point 1
2
. For consider any

basic free neighborhood Bγ of the point h(1
2
) = x ⊕ y in U . Then we have

‖γ(x ⊕ y)‖ < 1, and so ‖γ(x)‖ < 1 and ‖γ(y)‖ < 1, which is to say that
h(t) ∈ Bγ for all t in the neighborhood [0, 1] of 1

2
. Thus h is continuous at 1

2
,

and so h is a continuous path in U such that h(0) = x and h(1) = y.

Corollary 2.10. Md is connected and locally connected in the free topology.

Proof. Path-connectedness implies connectedness. To say that Md is locally
connected means that every point in Md has a neighborhood base of con-
nected sets. The sets Bδ comprise such a base.

Remark 2.11. The proof of Proposition 2.9 shows slightly more. For any
freely open set U and any points x, y ∈ U such that x ⊕ y ∈ U , there is a
freely continuous path in U from x to y.

There is another nc-topology that we shall need, the Zariski-free topol-
ogy. It is obtained by adjoining to the free topology sets that are locally
complements of free varieties. Detailed definitions will be given in Section 7.

3 Holomorphy with respect to admissible topolo-

gies

The notion of holomorphy for a function on Md depends on the chosen topol-
ogy of Md.

Definition 3.1. Let τ be an admissible topology on Md. We say that a graded
function f defined on a set D ⊆Md is a τ -holomorphic function if

(1) D is open in the topology τ ;
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(2) f is τ -locally nc, that is, for each x ∈ D there exists an nc set U ∈ τ
such that x ∈ U ⊆ D and f |U is an nc-function;

(3) f is τ -locally bounded, that is, for each x ∈ D, there exists a τ -
neighborhood U of x such that f |U is bounded.

At first sight this is a surprising definition. It is at least partially justified
by its relation to the following notion of analyticity.

Definition 3.2. A graded function f : D →M1, where D ⊆Md, is analytic
if D is finitely open and, for every positive integer n, the restriction of f to
D ∩Md

n is analytic in the usual sense of several complex variables.

Proposition 3.3. For any admissible topology τ on Md, every τ -holomorphic
function f on a domain D in Md is analytic.

Proof. Consider a point x ∈ D ∩ Md
n. Since ϕ is τ -holomorphic we may

choose a τ -neighborhood U of x in D on which ϕ is an nc-function and
another τ -neighborhood V on which ϕ is bounded. Since the topology τ is
admissible, it is an nc-topology and so we may assume that V is an nc-set.
Then U ∩ V is an nc-set and is a τ -neighborhood of x in D on which ϕ is a
bounded nc-function. Theorem 4.6 of [1] asserts that under these hypotheses
ϕ is analytic on U ∩ V ∩Md

n. Thus ϕ is analytic on some neighborhood of
an arbitrary point of D ∩Md

n, and therefore ϕ is analytic on D ∩Md
n.

Proposition 3.4. Let τ be an admissible topology on Md, let D be a τ -open
set and let f be a τ -holomorphic function on D. If D is an nc set then f is
an nc function.

Proof. Consider z, w ∈ D. Since z⊕w ∈ D, f(z⊕w) is defined. By Definition
3.1(2) there is an nc set U ∈ τ such that z ⊕ w ∈ U ⊆ D and f |U is an nc
function. It follows that f(z ⊕ w) = f(z)⊕ f(w).

The following statement is routine to check.

Proposition 3.5. Let τ be an admissible topology on Md and let D be a
τ -open set. The set of τ -holomorphic functions on D is an algebra with
respect to pointwise operations. The set H∞τ (D) of bounded τ -holomorphic
functions on D is a Banach algebra with respect to pointwise operations and
the supremum norm

‖f‖∞ = sup
x∈D
‖f(x)‖.
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The case where τ is the free topology will be of special interest here, and in
this case we refer to τ -holomorphic functions as free (or freely) holomorphic
functions. Such functions are particularly well behaved on account of the
following theorem [1] (it is also proved in [6] and [3]).

Theorem 3.6. Let D ⊆ Md be a free domain. A function f : D ⊆ Md →
M1 is a free holomorphic function if and only if f can be locally uniformly
approximated by free polynomials. That is, f is freely holomorphic if and
only if for each x ∈ D there exists a free domain U satisfying x ∈ U ⊆ D
with the property that for each ε > 0 there exists a free polynomial p such
that

sup
y∈U
‖f(y)− p(y)‖ < ε.

To prove that freely holomorphic functions are freely continuous we need
the following simple observation. In the Lemma and elsewhere the norm ‖ · ‖
on Md

n is given by
‖x‖ = max{‖x1‖, . . . , ‖xd‖}

where ‖xj‖ is the standard C∗ norm on Mn.

Lemma 3.7. A free polynomial is freely locally Lipschitz. That is, if p is a
free polynomial in d variables and z ∈Md then there exist a free neighborhood
G of z and a positive constant K such that

‖p(x)− p(y)‖ ≤ K‖x− y‖

for all x, y ∈ G.

Proof. It is enough to prove the statement in the case that p is the monomial

p(x) = xr1xr2 . . . xrk

for some k ∈ N and r1, . . . , rk ∈ {1, . . . , d}. Let

δ(x) = (1 + ‖z‖)−1 diag{x1, . . . , xd}.

Then x ∈ Bδ if and only if ‖xj‖ < 1 + ‖z‖ for j = 1, . . . , d. Thus z ∈ Bδ. We
have, for any x, y ∈Md,

p(x)− p(y) = (xr1 − yr1)xr2 . . . xrk + yr1(xr2 − yr2)xr3 . . . xrk+
· · ·+ yr1 . . . yrk−1(xrk − yrk).
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Hence, for every x, y ∈ Bδ,

‖p(x)− p(y)‖ ≤ k(1 + ‖z‖)k−1‖x− y‖.

Thus p is freely locally Lipschitz.

Proposition 3.8. Let U be a free domain in Md. A function f : U → M1

is freely holomorphic if and only if f is a freely locally nc-function (as in
Definition 3.1 (2)) and f is continuous when U and M1 are equipped with the
free topologies.

Proof. First assume that U is an nc-set, f is an nc-function and f is contin-
uous when D and M1 are equipped with the free topologies. In the light of
Definition 2.3 it suffices to show that f is locally bounded. Fix z ∈ U . As f
is assumed continuous and U is open in the free topology, there exists a free
matricial polynomial δ such that z ∈ Bδ ⊆ U and such that

f(Bδ) ⊆ {x ∈M1 | ‖x‖ < ‖f(z)‖+ 1}.

This proves that f is locally bounded.
Now assume that U is a free domain in Md and f is a free holomorphic

function on U . The continuity of f will follow if we can show that f−1(Bq)
is freely open in Md whenever q is a square matrix of polynomials in one
variable.

Fix z ∈ f−1(Bq). By Theorem 3.6 there exists a square matrix δ of free
polynomials such that f is bounded on Bδ and a sequence of free polynomials
p1, p2, . . . such that z ∈ Bδ ⊆ U and

lim
k→∞

sup
x∈Bδ
‖f(x)− pk(x)‖ = 0. (3.9)

It follows that the polynomials pk are uniformly bounded on Bδ. By Lemma
3.7 q is locally Lipschitz on U , and hence

lim
k→∞

sup
x∈Bδ
‖q(f(x))− q(pk(x))‖ = 0. (3.10)

Fix a strictly decreasing sequence t1, t2, . . . with tk > 1 for all k and tk → 1
as k → ∞. Use the property (3.10) to construct inductively a sequence
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k1, k2, . . . of positive integers such that

Bt1(q◦f) ∩Bδ ⊆ Bt2(q◦pk1 ) ∩Bδ

⊆ Bt3(q◦f) ∩Bδ

⊆ Bt4(q◦pk2 ) ∩Bδ

⊆ Bt5(q◦f) ∩Bδ

. . .

The construction ensures that

Bq◦f ∩Bδ =
∞⋃
i=1

(Bt2i−1(q◦f) ∩Bδ) =
∞⋃
`=1

(Bt2`(q◦pk` ) ∩Bδ).

The last union in this formula is a union of basic freely open sets and so is a
freely open set in Md. Hence Bq◦f ∩Bδ is freely open. Since Bq◦f = f−1(Bq)
we have z ∈ Bq◦f ∩Bδ ⊆ f−1(Bq) and therefore f−1(Bq) is open in Md.

Similar results on analyticity of nc functions are known in several con-
texts, for example [17, Chapter 7].

Definition 3.11. Let τ be an admissible topology on Md1 and let D ⊆ Md1

be a τ -open set. We say that F : D → Md2 is a τ -holomorphic mapping if
there exist τ -holomorphic functions f1, f2, . . . , fd2 on D such that

F (x) = (f1(x), f2(x), . . . , fd2(x))

for all x ∈ D.
Let D1, D2 be τ -open sets in Md. We say that F : D1 → D2 is a

τ -biholomorphic mapping if F is a bijection and both F and F−1 are τ -
holomorphic mappings.

Proposition 3.12. Let F = (f1, . . . , fd) be a freely locally nc mapping de-
fined on a free open set D ⊆Md. The following statements are equivalent.

(1) F is a freely holomorphic map;

(2) F is freely locally bounded;

(3) F is freely continuous.

In particular, F is a freely biholomorphic map if and only if F is a homeo-
morphism in the free topology.

This result is proved in much the same way as Proposition 3.8.
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4 Nc-manifolds and topological nc-manifolds

4.1 Nc-manifolds

In this section we define nc-manifolds, topological nc-manifolds and free man-
ifolds. The concept of an nc-manifold is the generalization of the concept of
an nc-set as defined in Definition 2.1 and as such is purely algebraic in na-
ture. The notions of charts, atlases and transition functions transfer directly
from the classical theory, only in the new context a chart is a bijective map
from a subset of an nc-manifold to a subset of Md; in the case of a topological
nc-manifold the image of a chart is an open set in Md with respect to some
specified topology.

Definition 4.1. If X is a set, then we say that α is a d-dimensional co-
ordinate patch or chart on X if α is a bijection from a set Uα ⊆ X to a set
Dα ⊆ Md. If α and β are a pair of d-dimensional co-ordinate patches on X
with Uα ∩ Uβ 6= ∅, then we define the transition map Tαβ by

Tαβ : α(Uα ∩ Uβ)→ β(Uα ∩ Uβ), (4.2)

Tαβ(x) = β ◦ α−1(x), x ∈ α(Uα ∩ Uβ). (4.3)

If X is a set then we say that A is a d-dimensional nc-atlas for X if A
is a collection of d-dimensional co-ordinate patches on X,⋃

α∈A

Uα = X (4.4)

and, for all α, β ∈ A,

(1) α(Uα ∩ Uβ) is a union of nc-sets, and

(2) for every nc-subset W of α(Uα ∩Uβ), the restriction of Tαβ to W is an
nc-mapping.

A d-dimensional nc-manifold is an ordered pair (X,A) where X is a set
and A is a d-dimensional nc-atlas for X.

If (X1,A1) and (X2,A2) are nc-manifolds of dimensions d1, d2 respec-
tively, then a map f : X1 → X2 is an nc-map (or nc-mapping) if, for every
α ∈ A1 (with domain Uα and codomain Dα) and β ∈ A2 (with domain Vβ
and codomain Eβ)
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(1′) the set

Wαβ
def
= α(Uα ∩ f−1(Vβ))

is a union of nc-sets, and

(2′) for every nc-subset W of Wαβ

β ◦ f ◦ (α−1|W ) : W → Eβ ⊂Md2

is an nc-map.

If (X1,A1) and (X2,A2) are nc-manifolds then an nc-isomorphism from
X1 to X2 is a bijective map f : X1 → X2 such that both f and f−1 are
nc-maps.

Remark 4.5. 1. If (X,A) is an nc-manifold then, for every α ∈ A, Dα is a
union of nc-sets. This is a consequence of condition (1) in the definition of
an nc-atlas above and the identity

Dα =
⋃
β∈A

α(Uα ∩ Uβ).

2. If (X,A) is an nc-manifold then there is an nc-atlas A∗ on X such that
the identity map idX is an nc-isomorphism from (X,A) to (X,A∗) and, for
every α ∈ A∗, the range of α is an nc-set (not merely a union of nc-sets).
Indeed, we may define A∗ to be the set of all maps α|V for some α ∈ A
and V ⊂ Uα such that α(V ) is an nc-set. It would be possible to develop
the theory of nc-manifolds with the assumption that the ranges of charts are
always nc-sets, but in the topological context it is convenient to allow them
to be merely unions of nc-sets.

To prove that idX : (X,A)→ (X,A∗) is an nc-isomorphism, consider any
α ∈ A and γ ∈ A∗, say γ = β|V where V ⊂ Uβ and β(V ) is an nc-subset of
Dβ. Then Wαγ = α(Uα ∩ V ) ⊂ α(Uα ∩ Uβ) = Tβα(β(V )). Since β(V ) is an
nc-set and Tβα is an nc-map, it follows that Wαγ is an nc-set. Moreover, for
every nc-subset W of Wαγ = α(Uα ∩ V ),

β ◦ idX ◦ (α−1|W ) = Tαβ

is an nc-map. Similarly, reversing the roles of A and A∗, we obtain, for any
nc-subset W of Wγα = β(Uα ∩ V )

α ◦ idX ◦ (γ−1|W ) = Tβα|W

is also an nc-map. Thus idX is an nc-isomorphism with respect to A and A∗.
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4.2 Topological nc-manifolds

We now consider the case where X, in addition to carrying the structure of
an nc-manifold, is a topological space. X will be a topological nc-manifold
if it is locally homeomorphic to an open set in some Md. Since there is no
one “correct” topology to place on Md, we first fix a topology τ on Md. We
assume that τ is an admissible topology in the sense of Definition 2.5.

If X is a set and T is a topology on X, then we say that α is a topological
d-dimensional nc-co-ordinate patch on (X, T ) with respect to τ if α is a d-
dimensional nc-co-ordinate patch on X and, in addition,

α : Uα → Dα is a homeomorphism. (4.6)

Here Uα ⊆ X is a T -open set equipped with the relative topology induced
by T and Dα ⊆ Md is a τ -open nc-set equipped with the relative topology
induced by τ . Since τ is locally nc, Dα is a union of open nc-sets.

If (X, T ) is a topological space then we say that A is a d-dimensional
topological nc-atlas for (X, T ) with respect to τ if A is a collection of topo-
logical d-dimensional nc-co-ordinate patches on (X, T ) and A is an nc-atlas
for X with respect to τ in the sense of Definition 4.1.

Definition 4.7. Let τ be an admissible topology on Md. A topological d-
dimensional nc-manifold with respect to τ is an ordered triple (X, T ,A)
where X is a set, T is a topology on X and A is a d-dimensional topological
nc-atlas for (X, T ) with respect to τ .

In the special case where τ is the free topology we say that X is a free
manifold.

The manifolds studied in analysis usually have some smoothness property,
such as C∞ or analyticity, whereas the topological nc-manifolds introduced
in Definition 4.7 are not assumed smooth. It is simple to extend the notion
of topological nc-manifold further to bring in appropriate notions of smooth-
ness.

Definition 4.8. Let τ be an admissible topology on Md. A d-dimensional
holomorphic nc-manifold with respect to τ is a topological d-dimensional nc-
manifold (X, T ,A) with respect to τ such that, for all α, β ∈ A, the transition
map Tαβ is a τ -holomorphic mapping in the sense of Definitions 3.11 and 3.1.

If (X, T ,A) is a d-dimensional holomorphic nc-manifold with respect to
τ then a function F : X → M1 is said to be holomorphic on X if, for every
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α ∈ A, the map
F ◦ α−1 : α(Uα)→M1

is a τ -holomorphic function on the τ -open set α(Uα).

More generally, we can define the notion of a holomorphic map between
two topological nc-manifolds.

Definition 4.9. Let τ1, τ2 be admissible topologies on Md1 ,Md2 respectively,
and let (Xj, Tj,Aj) be a topological dj-dimensional manifold with respect to
τj for j = 1, 2. A map f : X1 → X2 is said to be holomorphic at a point
x ∈ X1 if there exist α ∈ A1 (with domain Uα and domain Dα) and β ∈ A2

(with domain Vβ and range Eβ) such that x ∈ Uα, f(x) ∈ Vβ and the map

β ◦ f ◦ α−1 : α(Uα ∩ f−1(Vβ))→ Eβ

is τ1-holomorphic. We say that f is holomorphic on X1 if f is holomorphic
at every point of X1.

Note that the definition is independent of τ2, save for the requirement
that τ2 be admissible.

In the case that τ is the free topology, Proposition 3.12 tells us that
continuity implies holomorphy. Accordingly, free manifolds are a precise
noncommutative analog of complex manifolds. Indeed, they are the topo-
logical manifolds that are equipped with an atlas of homeomorphisms onto
free domains in Md with the property that the transition functions are freely
biholomorphic maps. To see this fact, assume that (X, T ,A) is a free man-
ifold, α, β ∈ A, and Uα, Uβ ∈ T with Uα ∩ Uβ 6= ∅ . As Uα ∩ Uβ ∈ T , the
hypothesis (4.6) implies that α(Uα∩Uβ) and β(Uα∩Uβ) are open in the free
topology. The hypothesis (4.6) also implies that

β ◦ α−1 : α(Uα ∩ Uβ)→ β(Uα ∩ Uβ)

is a homeomorphism. Hence, by Proposition 3.12, β◦α−1 is a free biholomor-
phic mapping. Conversely, if the transition functions are assumed to be free
biholomorphic mappings, then Proposition 3.12 implies that the transition
functions are free holomorphic mappings.

If (X, T ,A) is a topological d-dimensional nc-manifold with respect to τ
then the transition function Tαβ is a composition of two homeomorphisms
and hence is a homeomorphism between α(Uα ∩Uβ) and β(Uα ∩Uβ) in their
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respective τ topologies, as well as being an nc-isomorphism between nc-sets
when restricted to any nc-subset of α(Uα ∩ Uβ).

If (X, T ,A) is a topological d-dimensional nc-manifold with respect to τ
and τ ′ is a finer admissible topology on Md then we define the topology T ′
on X to be the one for which a base is

{α−1(V ) : α ∈ A, V ⊂ Dα and V ∈ τ ′}.

Then (X, T ′,A) is a d-dimensional topological nc-manifold with respect to τ ′.
The topology T ′ is finer than T and the map idX : (X, T ′,A) → (X, T ,A)
is a holomorphic map of topological nc-manifolds.

In particular we may take τ ′ to be the fine topology on Md. Then the
topology T ′ is the finest topology for which X is a topological nc-manifold.

5 Free holomorphic functions in one variable

In this section we show that a free holomorphic function in one variable is
determined (via the functional calculus) by its restriction to M1

1.

Let R+ denote the set of positive real numbers. If c ∈ Ck and r ∈ R+k,
we define ∆(c, r) ⊆ C by

∆(c, r) =
k⋃
j=1

{z ∈ C : |z − cj| < rj}

=
k⋃
j=1

(cj + rjD)

and define D(c, r) ⊆M1 by

D(c, r) = {x ∈M1 : σ(x) ⊆ ∆(c, r)}

where σ(x) denotes the spectrum of the matrix x. In the sequel we make
the standing assumption that the radii r1, . . . , rk are so small that the discs
c1 + r1D, . . . , ck + rkD are pairwise disjoint.

Proposition 5.1. D(c, r) is a free domain.

Proof. Assume that M ∈ D(c, r). We construct a polynomial δ satisfying

M ∈ Bδ ⊆ D(c, r).

18



Choose a polynomial q satisfying

σ(M) ⊆ {z | |q(z)| < 1} ⊆ ∆(c, r).

As σ(q(m)) = q(σ(m)) ⊆ D, there exists an integer N such that
‖q(M)N‖ < 1. If we set δ = qN , it follows that M ∈ Bδ.

It remains to show that Bδ ⊆ D(c, r). Fix x ∈ Bδ such that ‖q(x)N‖ < 1.
It follows that

q(σ(x))N = σ(q(x)N) ⊆ D.

This implies that q(σ(x)) ⊆ D. But then,

σ(x) ⊆ {z | |q(z)| < 1} ⊆ ∆(c, r),

which implies that x ∈ D(c, r).

If c ∈ Ck and r ∈ R+k we let [c, r] = {[c, r]1, . . . , [c, r]k} denote the system
of paths where, for j = 1, . . . , k,

[c, r]j(t) = cj + rje
it, 0 ≤ t ≤ 2π.

If f is holomorphic on a neighborhood of ∆(c, r) and x ∈ D(c, r) then we
may employ the Riesz Functional Calculus to define f∧(x) by the formula

f∧(x) =

∫
[c,s]

f(z)(z − x)−1 dz (5.2)

where s ∈ R+k is chosen so that σ(x) ⊆ ∆(c, s) and ∆(c, s)− ⊆ ∆(c, r).

Proposition 5.3. If f is holomorphic on ∆(c, r), then f∧ is freely holomor-
phic on D(c, r).

Proof. It is straightforward to verify that f∧ is an nc-function. The propo-
sition will follow if we can show that f∧ is locally bounded. To that end, fix
M ∈ D(c, r). Chose s ∈ R+k so that σ(M) ⊆ ∆(c, s) and ∆(c, s)− ⊆ ∆(c, r).
Choose C ∈ R+ such that

C > max
z∈[c,s]

‖(z −M)−1‖. (5.4)

Choose a finite set S ⊆ [c, s] such that, for all z ∈ [c, s], there exists w ∈ S
such that

|z − w| < 1

2C
. (5.5)
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Finally, define G ⊆M1 by

G =
⋂
w∈S

{x ∈M1 |w 6∈ σ(x) and ‖(w − x)−1‖ < C}. (5.6)

As M ∈ G ∩D(c, s) ⊆ D(c, r), the proof of Proposition 5.3 will be complete
if we can prove the following two claims.

Claim 1. G ∩D(c, s) is a free domain.

Claim 2. f is bounded on G ∩D(c, s).

To prove Claim 1, first notice that by Proposition 5.1, it suffices to show
that G is a free domain. In the light of equation (5.6) and the fact that S
is finite it will follow that G is a free domain if we can show that for each
w ∈ C and each C > 0,

{x ∈M1 |w 6∈ σ(x) and ‖(w − x)−1‖ < C} is a free domain.

But by Theorem 10.1 in [1] for each fixed w ∈ C, gw(x) = (w − x)−1 is
a free holomorphic function on the free domain {x ∈ M1 |w 6∈ σ(x)}. As
Proposition 3.8 guarantees that gw is freely continuous, it follows that

{x ∈M1 |w 6∈ σ(x) and ‖(w − x)−1‖ < C} = g−1
w ({y ∈M1 | ‖y‖ < C})

is a free domain.
To prove Claim 2, let z ∈ [c, s] and let x ∈ G. As z ∈ [c, s], inequality

(5.5) guarantees that we may choose w ∈ S such that

|w − z| < 1

2C
. (5.7)

As x ∈ G, equation (5.6) guarantees that w 6∈ σ(x) and

‖(w − x)−1‖ < C. (5.8)

Now,

(z − x)−1 =
(
w − x)− (w − z)

)−1

= (w − x)−1
(
1− w − z

w − x
)−1

.
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But as inequalities (5.7) and (5.8) imply that∥∥∥∥w − zw − x

∥∥∥∥ < 1

2C
C =

1

2
,

we can use the inequality ‖(1 − y)−1‖ ≤ (1 − ‖y‖)−1 (valid for ‖y‖ < 1) to
prove that ∥∥∥∥∥

(
1− w − z

w − x

)−1
∥∥∥∥∥ ≤ 1

1− ‖w−z
w−x‖

< 2.

Hence

‖(z − x)−1‖ ≤ ‖(w − x)−1‖

∥∥∥∥∥
(

1− w − z
w − x

)−1
∥∥∥∥∥ < 2C.

To summarize, we have shown that if z ∈ [c, s] and x ∈ G, then ‖(z −
x)−1‖ ≤ 2C. Use the definition (5.2) to estimate f∧(x) to deduce that, if
x ∈ G ∩D(c, s), then

‖f∧(x)‖ ≤ 2C max
z∈[c,s]

|f(z)| length([c, s]).

This completes the proof of both Claim 2 and the theorem.

Definition 5.9. For any free domain in U in M1 we define U1 to be U ∩M1
1.

If f is a free holomorphic function on U we define a function f1 on U1 by

f1(z) = f([z]), z ∈ U1.

In the sequel we make no distinction between z ∈ C and [z] ∈ M1
1, and

in particular, view U1 both as a subset of C and as a subset of M1.

Proposition 5.10. If U ⊆ M1 is a free domain and M ∈ U , then σ(M) ⊆
U1.

Proof. Suppose that M ∈ U and z ∈ σ(M). We wish to show that z ∈ U1 or
equivalently, that z ∈ U .

Choose an I × J matrix of polynomials δ such that M ∈ Bδ ⊆ U and
choose a unit vector v ∈ Cn such that Mv = zv. We view δ(M) as a linear
transformation from CJ ⊗ Cn to CI ⊗ Cn. As M ∈ Bδ, there exists r < 1
such that ‖δ(M)‖ ≤ r.
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With the setup of the previous paragraph, if c ∈ CJ ,

‖δ(z)c‖ = ‖δ(z)c‖ ‖v‖
= ‖(δ(z)c)⊗ v‖
= ‖δ(M)(c⊗ v)‖
≤ r‖c⊗ v‖
= r‖c‖‖v‖
= r‖c‖.

This proves that ‖δ(z)‖ ≤ r < 1. Hence z ∈ Bδ ⊆ U , as was to be proved.

Corollary 5.11. A nonempty freely open set in M1 meets M1
1.

Proposition 5.12. If U ⊆M1 is a free domain and f is a free holomorphic
function on U , then f1 is holomorphic on U1.

Proof. Fix z0 ∈ U1. As f is free holomorphic, by Theorem 3.6 f can be locally
uniformly approximated by polynomials. Choose δ such that z0 ∈ Bδ ⊆ U
and f can be uniformly approximated by polynomials on Bδ. By continuity,
there exists ε > 0 such that {z ∈ C | |z − z0| < ε} ⊆ Bδ. It follows that
f1 can be uniformly approximated on a neighborhood in C by polynomials.
Hence f1 is holomorphic on a neighborhood of z0. As z0 ∈ U1 was chosen
arbitrarily, it follows that f1 is holomorphic on U1.

Proposition 5.13. If U ⊆M1 is a free domain and f is a free holomorphic
function defined on U , then

f(x) = f∧1 (x)

for all x ∈ U . Moreover f(x) belongs to the algebra generated by x and the
identity matrix of appropriate size.

Proof. First observe that the assertion of the proposition makes sense. If
x ∈ U , then Proposition 5.10 implies that σ(x) ⊆ U1. Also, if f is freely
holomorphic on U , then Proposition 5.12 implies that f1 is holomorphic on
U1. Thus, f∧1 (x) is well defined by equation (5.2) for all x ∈ U .

If p is a polynomial, then p∧1 = p1 and p1 = p. Hence, the result holds in
the special case where f = p. The general case then follows by approximation.
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6 The Riemann surface for
√
x

In this section we shall define
√
x as a holomorphic function on a one-

dimensional free nc-manifold. By gluing together locally defined branches
of the inverse of the free holomorphic function f(x) = x2 we construct a
free nc-manifold in much the same way that elementary textbooks construct
the Riemann surface for

√
z by piecing together locally-defined function ele-

ments. We obtain a locally finitely-sheeted one-dimensional free nc-manifold
which has properties analogous to the Riemann surface for

√
z.

The zero matrix in M2 has infinitely many square roots, but only one
of them lies in the algebra generated by the zero and identity matrices. By
Proposition 5.13, for any free holomorphic function f and any x for which
f(x) is defined, f(x) lies in the algebra alg(x) generated by x and the identity.
We shall therefore use the symbol

√
x in the following way.

Definition 6.1. The free square root
√
x is the multivalued function on M1

given by √
x = {y ∈ alg(x)|y2 = x} ⊂M1.

Thus, if x = 0n, the n × n zero matrix then
√
x = {0n} and if x = In,

the n× n identity matrix, then
√
x = {In,−In}, whereas if x =

[
0 1
0 0

]
then

√
x = ∅. We leave the proof of the following proposition to the reader.

Proposition 6.2. The free square root of a matrix x ∈ M1 is empty if and
only if the Jordan canonical form of x contains a nilpotent Jordan cell of type
k × k for some k ≥ 2.

The set
Ξ

def
= {x ∈M1 :

√
x 6= ∅}

is not a freely open set: it contains 02×2, but any basic free neighborhood of

Ξ contains a matrix

[
0 t
0 0

]
for some t 6= 0. For the purpose of constructing a

Riemann surface we consider the restriction of the square root function to Ξo,
the interior of Ξ in the free topology. We shall show (Proposition 6.6) that Ξo

is the set of nonsingular matrices, and that the union of the sets {x} ×
√
x,

as x ranges over all nonsingular matrices, can be given the structure of a free
nc-manifold.

23



Let
I = {x ∈M1 |x is nonsingular} (6.3)

and
Q = {x ∈M1 |σ(x) ∩ σ(−x) = ∅}. (6.4)

Proposition 6.5. The sets I and Q are open and connected in the free
topology.

Proof. Fix M ∈ I. If q is the characteristic polynomial of M , then q(M) = 0
and q(0) 6= 0. If we set δ = q(0)−1q, then clearly, as ‖δ(M)‖ = 0 < 1,
M ∈ Bδ. Also, if x ∈ Bδ, then as ‖δ(x)‖ < 1,

δ(σ(x)) = σ(δ(x)) ⊆ D.

Since δ(0) = 1 6∈ δ(σ(x)), it follows that 0 6∈ σ(x), that is x ∈ I. Sum-
marizing, given M ∈ I, we have constructed a free polynomial δ such that
M ∈ Bδ ⊆ I. Hence I is open in the free topology.
I is clearly closed under direct sums, and so it is freely connected, by

Proposition 2.9.
Now fix M ∈ Q. Let σ(M) = {c1, . . . , ck} and choose r1, . . . , rk ∈ R+

such that ∆(c, r) ∩∆(−c, r) = ∅. Let q be the characteristic polynomial of
M and define δ = ρq where ρ ∈ R+ is chosen so large that

{z ∈ C | |δ(z)| < 1} ⊆ ∆(c, r).

With these choices, M ∈ Bδ and if x ∈ Bδ then σ(x) ⊆ ∆(c, r). Hence,
as then σ(−x) ⊆ ∆(−c, r) as well, σ(x) ∩ σ(−x) = ∅, that is, x ∈ Q.
Summarizing, given M ∈ Q, we have constructed a free polynomial δ such
that M ∈ Bδ ⊆ Q. Hence Q is open in the free topology.

Consider any points x, y ∈ Q. Although Q is not closed under ⊕, since
σ(x) can meet σ(−y), it is nearly so. Choose t ∈ (0, 1] such that σ(tx) is
disjoint from σ(−y); then tx ⊕ y ∈ Q. Remark 2.11 shows that there is a
freely continuous path in Q from tx to y, while there is an obvious freely
continuous path in Q from x to tx.

Proposition 6.6. The interior Ξo of the set Ξ in the free topology is I.

Proof. By Proposition 6.5, I is freely open, and it is clearly contained in Ξ.
Suppose I is a proper subset of Ξo; then there is a singular matrix M ∈ Ξ
and a basic free neighborhood Bδ of M contained in Ξ. Since Bδ is invariant
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under unitary conjugations, we may assume that M is upper triangular, and
since M is singular, we may take M to have zero as its (1, 1) entry. Let
N = M ⊕M ; then N ∈ Bδ, and for a suitable permutation matrix P , the
matrix P ∗NP in Bδ is upper triangular and has 02×2 as a block in the (1, 1)
position. For some complex ζ 6= 0, Bδ contains the upper triangular matrix
T differing from P ∗NP only in that its (1, 2) entry is ζ. If e1, e2, . . . denotes
the standard basis of Cn, for the appropriate n, then a Jordan chain for T
corresponding to the eigenvalue 0 is e2, ζe1. Hence the Jordan form of T has
a nilpotent Jordan cell of type at least 2 × 2, and therefore, by Proposition
6.2,
√
T is empty, contradicting the fact that Bδ ⊂ Ξ. Hence Ξo = I.

We shall construct the Riemann surface for
√
x by piecing together func-

tion elements over I.

Definition 6.7. By a free function element over I is meant a pair (f, U)
where U is a free domain in I and f is a free holomorphic function on U .
We say a function element (f, U) is a branch of

√
x if f(x)2 = x for all

x ∈ U .

Lemma 6.8. Let (f, U) and (g, V ) be free function elements over I, both
assumed to be branches of

√
x. If M ∈ U ∩ V and f(M) = g(M), then there

exists a free domain W such that M ∈ W ⊆ U ∩ V and f |W = g|W .

Proof. Let (f, U) and (g, V ) be branches of
√
x and assume that M ∈ U ∩V

and f(M) = g(M). By Proposition 5.13 there exist holomorphic functions
f1 on U1 and g1 on V1 such that f = f∧1 on U and g = g∧1 on V .

Now, since M ∈ U ∩ V , by Proposition 5.10

σ(M) ⊆ U1 ∩ V1.

Furthermore, since f and g are branches of
√
x on U and V respectively,

f1, g1 are branches of
√
z on U1 ∩ V1. (6.9)

Let σ(M) = {c1, . . . , ck} and choose r ∈ R+k so that ∆(c, r) ⊆ U1 ∩ V1. It
follows from equation (6.9) that

f1, g1 are branches of
√
z on ∆(c, r). (6.10)

But since f(M) = g(M), f1 = g1 on σ(M). Since each component of
∆(c, r) meets σ(M), it follows from equation (6.10) that f1 = g1 on ∆(c, r).
Therefore, by Proposition 5.13,

f(x) = f∧1 (x) = g∧1 (x) = g(x)
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for all x ∈ D(c, r). Since Proposition 5.1 guarantees that D(c, r) is a free
domain, the lemma follows by the choice of W = U ∩ V ∩D(c, r).

The following definition expresses the Riemann surface for
√
x as a union

of graphs of function elements. This approach follows Chapter 8 of [5] quite
closely. An alternative approach, based on cross-sections of a sheaf of germs
of free holomorphic functions over I, is also possible. However, in the simple
special case we are considering, this latter approach would amount to little
more than a change in notation.

Definition 6.11. If (f, U) is a free function element, let

graph(f, U) = {(x, f(x)) |x ∈ U}.

Let S denote the collection of all branches (f, U) of
√
x where U is a basic

free open set Bδ in I for some matricial free polynomial δ. Define R by

R =
⋃

(f,U)∈S

graph (f, U)

and define B by
B = {graph(f, U) | (f, U) ∈ S}.

Lemma 6.12. There exists a unique topology T on R such that B is a basis
for T .

Proof. The statement is that, if (f, U), (g, V ) ∈ S and

(M,N) ∈ graph(f, U) ∩ graph(g, V ),

then there exists (h,W ) ∈ S such that

(M,N) ∈ graph(h,W ) ⊆ graph(f, U) ∩ graph(g, V ).

This assertion follows immediately from Lemma 6.8.

Definition 6.13. Let R be equipped with the topology T of Lemma 6.12. For
(f, U) ∈ S, define

α(f,U) : graph(f, U)→ U

by the formula
α(f,U)(x, f(x)) = x, x ∈ U.

Let
A = {α(f,U) | (f, U) ∈ S}.
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Theorem 6.14. (R, T ,A) is a free manifold.

Proof. The theorem follows from the following four facts each of which is a
simple consequence of the previous constructions:

1. For each (f, U) ∈ S, graph(f, U) ∈ T ,

2. For each (f, U) ∈ S, U is a free domain,

3. For each (f, U) ∈ S, αf,U : graph(f, U)→ U is a homeomorphism from
graph(f, U) equipped with the T topology to U equipped with the free
topology.

4. If (f, U), (g, V ) ∈ S and graph(f, U) ∩ graph(g, V ) 6= ∅, then α(g,V ) ◦
α−1

(f,U) is a free holomorphic function.

1. holds as graph(f, U) ∈ B if (f, U) ∈ S.

According to Definition 6.11, if (f, U) ∈ S then U is a free domain.
So 2. holds.

To see 3., assume that V is a free domain in U . Then

α−1
(f,U)(V ) = graph(f |V, V ) ∈ B ⊆ T .

Conversely, if graph(V, g) is a basic T -open set in graph(f, U), then, as V ⊆ U
and g = f |V ,

α(f,U)(graph(g, V )) = V is a free domain.

4. follows from the fact that if x ∈ α(graph(f, U) ∩ graph(g, V ))
then α(g,V ) ◦ α−1

(f,U)(x) = x.

As in the classical case, the point of the Riemann surface for a multival-
ued function f on a domain D is that f can be regarded as a single-valued
holomorphic function on the Riemann surface, which is a holomorphic man-
ifold lying over D. The following statement makes this notion precise in
the context of the matricial square root. Consider a point w ∈ R: then
w ∈ graph(f, U) for some function element (f, U), which is to say that
w = (x, f(x)) for some x ∈ U . We shall say that w lies over x.
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Theorem 6.15. There is a holomorphic function F on the free holomorphic
manifold (R, T ,A) such that, if w ∈ R lies over x ∈ I, then F (w) is a
square root of x.

Proof. Define F to be the restriction to R of the co-ordinate projection
(M1,M2) 7→ M2. It is easy to check that F is holomorphic on R. If w
lies over x ∈ I then w = (x, f(x)) for some branch f of the square root on a
neighborhood of x; then F (w) = f(x), which is a square root of x.

It is interesting to observe that, in contrast to the commutative case,
where the Riemann surface for

√
z lies over C \ {0} as a 2-sheeted surface,

in the noncommutative case there is no bound on the number of sheets in R
that lie over a given point M ∈ I.

Proposition 6.16. Let M ∈ I and let σ(M) have k elements. There exist
exactly 2k points N ∈M1 such that (M,N) ∈ R.

Proof. The proof uses the simple observation from linear algebra that a ma-
trix M has exactly 2k square roots that lie in alg(M), the algebra generated
by M . Fix M ∈ I and assume that |σ(M)| = k.

If (M,N) ∈ R, then there exists (f, U) ∈ S such that (M,N) ∈ graph(f, U).
Then

N = f(M) = f∧1 (M) ∈ alg(M).

Hence, there exist at most 2k matrices N such that (M,N) ∈ R.
To see that there exist at least 2k matrices N such that (M,N) ∈ R,

let σ = {c1, . . . , ck} and choose r ∈ R+k so that ∆(c, r) has k components
and 0 6∈ ∆(c, r). Each of the 2k distinct choices of square roots b1, . . . , bk
for the points c1, . . . , ck gives rise to a distinct holomorphic branch hb of√
z on ∆(c, r) satisfying hb(ci) = bi, i = 1, . . . , k. In turn each of these

distinct holomorphic branches of hb gives rise to a distinct function element
(h∧b ,∆(c, r)) ∈ S. As σ(h∧b (M)) = {b1, . . . , bk}, this proves that there are at
least 2k matrices N such that (M,N) ∈ R.

Equally interesting is to observe that despite the phenomenon described
in the preceding proposition, R is isomorphic to a free domain in M1.

Proposition 6.17. The map σ : Q → R defined by the formula

σ(y) = (y2, y) for y ∈ Q

is a free biholomorphism from Q onto R.
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Proof. Clearly, σ is injective and onto. If (f, U) ∈ S, then

(α(f,U) ◦ σ) (y) = α(f,U)(y
2, y) = y2

is a free holomorphic function defined on {y | (y2, y) ∈ graph(f, U)} and

(σ−1 ◦ α−1
(f,U)) (x) = σ−1(x, f(x)) = f(x)

is a free holomorphic function defined on {x |x ∈ U}. Therefore σ is a free
biholomorphic mapping.

7 The Zariski-free topology

We come now to a modification of the free topology on Md that will be
needed for the construction of the topological nc-manifold G with properties
described in Theorems 8.33 and 8.35.

7.1 Thin sets

Recall that a set T in a domain U ⊆ Cd is said to be thin if at each point
z ∈ U there exists an open neighborhood V of z in U and a nonconstant
holomorphic function f on V such that f = 0 on V ∩ T . Simple facts are
that thin sets are nowhere dense, closures of thin sets are thin sets and finite
unions of thin sets are thin sets.

A more subtle property of thin sets will be fundamental in later sections:
if T is a thin set in U then every holomorphic function f on U \ T that is
locally bounded on U has a unique holomorphic extension to all of U [20,
Theorem I.3.4]. Here the boundedness hypothesis is defined as follows.

Definition 7.1. Let U be a domain in Cd and let T ⊂ Cd. A function f on
U \ T is said to be locally bounded on U if, for every point z ∈ U there is a
neighborhood V of z in U such that f is bounded on V \ T .

It is false that every holomorphic locally bounded function on U \ T ,
where T is thin and U is a domain in Cd, has a holomorphic extension to U .
An easy counterexample is U = C, T = {0}, f(z) = z−1. It is essential that
f be locally bounded on U for a holomorphic extension to exist.
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7.2 The Zariski-free topology

Let D be a free domain. By a free variety in D we mean a set V ⊆ D that
has the form

V = {x ∈ D | f(x) = 0 for all f ∈ S} (7.2)

for some set S of freely holomorphic functions on D. Note that the zero
symbol in equation (7.2) stands simultaneously for square zero matrices of
all orders. To make matters precise we define

0
def
= {01, 02, 03, . . . , }

where 0n denotes the zero matrix in Mn. Thus the definition (7.2) can equally
be written

V = {x ∈ D | f(x) ∈ 0 for all f ∈ S}.

We shall be loose about distinguishing 0 and 0.
The following statement illustrates just one of the many surprises that

result from the free topology not being Hausdorff. Free varieties in a free
domain D are not necessarily relatively closed in D in the free topology.

Proposition 7.3. For any freely holomorphic function p on a free domain
D ⊂M1, the free closure of the free variety

T = {x ∈ D : p(x) = 0}

in D is the set
{x ∈ D | p(x) is singular}.

Proof. Let x ∈ D ∩Mn be such that p(x) is singular. We claim that x is in
the closure T− of T .

Since p(x) is singular, there is an eigenvalue λ of x such that p(λ) = 0. Let
u ∈ Cn be a corresponding eigenvector. Consider any basic free neighborhood
Bδ of x in D, where δ is an m×m matrix of polynomials in one variable; then
δ(x) ∈Mmn and ‖δ(x)‖Mmn < 1. For any choice of ζ = (ζ1, . . . , ζm) ∈ Cm,

δij(x)ζju = δij(λ)ζju for i, j = 1, . . . ,m.
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Let ζ ⊗ u denote the nm× 1 matrix [ζ1u
T . . . ζmu

T ]T , where the superscript
T denotes transposition. The last equation shows that

δ(x)(ζ ⊗ u) =

 δ11(x) . . . δ1m(x)
· . . . ·

δm1(x) . . . δmm(x)


 ζ1u

...
ζmu


=

 δ11(λ) . . . δ1m(λ)
· . . . ·

δm1(λ) . . . δmm(λ)


 ζ1u

...
ζmu


= (δ(λ)ζ)⊗ u.

Take norms of both sides in Cmn:

‖δ(x)(ζ ⊗ u)‖Cmn = ‖(δ(λ)ζ)⊗ u‖Cmn
= ‖δ(λ)ζ‖Cm ‖u‖Cn . (7.4)

Choose ζ to be a unit maximizing vector for δ(λ), so that

‖ζ‖Cm = 1 and ‖δ(λ)ζ‖Cm = ‖δ(λ)‖Mm . (7.5)

Combining equations (7.4) and (7.5), we find that

‖δ(x)(ζ ⊗ u)‖Cmn = ‖δ(λ)‖Mm ‖u‖Cn .

Since ‖δ(x)‖ < 1,

‖δ(λ)‖Mm ‖u‖Cn ≤ ‖δ(x)‖Mmn ‖ζ ⊗ u‖Cmn
< ‖ζ‖Cm ‖u‖Cn
= ‖u‖Cn ,

and hence
‖δ(λ)‖Mm < 1.

That is, λ ∈ Gδ. Since p(λ) = 0, λ ∈ T . We have shown that every basic
free neighborhood of x in D meets T , and so x is in the free closure of T .

Conversely, suppose that x ∈ D∩Mn and p(x) is nonsingular. Then there
is a basic free neighborhood Bδ of x in M1 that is disjoint from T . Indeed, we
may choose δ to be the 1×1 polynomial c(g ◦p) where g is the characteristic
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polynomial of p(x) and c > 1/| det p(x)|. By the Cayley-Hamilton theorem,
δ(x) = cg(p(x)) = 0, so that x ∈ Bδ. For any m ∈ N and M ∈ T ∩Mm,

δ(M) = cg(p(M)) = cg(0m) = cg(01)1m = c(det p(x))1m,

and therefore

‖δ(M)‖ = ‖c(det p(x))1m‖ = c| det p(x)| > 1,

that is, M /∈ Gδ. Thus D∩Bδ is a free neighborhood of x in D disjoint from
T . Thus x /∈ T−.

Corollary 7.6. If p is a nonconstant free polynomial in one variable then
the free variety p−1(0) is not freely closed in M1.

For we can easily write down a 2× 2 diagonal matrix M such that p(M)
is singular but not 02.

Corollary 7.7. For any free polynomial p in d variables, the free closure of
the free variety

T = {x ∈Md : p(x) = 0}
in Md is contained in the set

{x ∈Md | p(x) is singular}.

Proof. Let Sing denote the set of singular matrices in M1. By Proposition
7.3 and the free continuity of p, p−1(Sing) is a freely closed set in Md. It
clearly contains the set T = p−1(0). Hence it contains the free closure of
T .

Many of the important results about varieties in commutative analysis
depend critically on the fact that varieties are relatively closed. Accordingly
the following modification of the free topology is natural and fruitful in the
nc context, as we shall see in Subsection 8.5.

Definition 7.8. A basic Zariski-free set in Md is a set B that has the form

B = D \ T

where D is a free domain in Md and

T =
k⋃
i=1

Vi

is a finite union of free varieties in D.
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In the definition, the set T is taken to be a finite union of free varieties.
This is because, in contrast to the commutative case, a finite union of free
varieties is not in general a free variety.

Proposition 7.9. The collection of basic Zariski-free sets in Md constitutes
a base for a topology on Md.

Proof. Clearly the collection covers Md. Consider any pair Dj \ Tj, j = 1, 2,
of basic Zariski-free sets in Md. Observe that, for any freely open subset D
of Dj, the intersection D∩Tj is a finite union of free varieties in D, since the
restriction to D of a freely holomorphic function on Dj is freely holomorphic
on D.

The set-theoretic identity

(D1 \ T1) ∩ (D2 \ T2) = (D1 ∩D2) \ ((T1 ∪ T2) ∩D1 ∩D2) , (7.10)

thus implies that the collection of basic Zariski-free sets in Md is closed with
respect to finite intersections and hence forms a base for a topology.

Definition 7.11. The Zariski-free topology on Md is the topology that has
as a base the collection of basic Zariski-free sets. A set that is open in the
Zariski-free topology is a Zariski-free domain.

Note that there is also a smaller base for the Zariski-free topology, con-
sisting of the sets Bδ \ T where δ ranges over all matricial free polynomials
and T ranges over all finite unions of free varieties in Bδ. This base has the
additional feature that it consists of nc-sets. Consequently the topology is an
nc topology. It is clearly coarser than the finitely open topology. We deduce,
in the terminology of Definition 2.5:

Proposition 7.12. The Zariski-free topology is an admissible topology on
Md.

An empty union is conventionally taken to be the empty set. Thus every
freely open set in Md is also Zariski-freely open.

Proposition 7.13. The Zariski-free topology is finer than the free topology
on Md.

Any free variety, like a free open set, is preserved by unitary conjuga-
tions. It follows that Zariski-free open sets are also preserved by unitary
conjugations.

We now explore some important relationships between free and Zariski-
free domains and holomorphic functions.
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Proposition 7.14. If D1 and D2 are free domains and f : D1 → D2 is a
free holomorphic mapping then f is continuous in the Zariski-free topology.

Proof. Let D1 ⊂ Md1 , D2 ⊂ Md2 . Fix a basic Zariski-free set B = D \
T ⊆ Md2 , where D ⊆ D2 is a free domain and T is a finite union of free
varieties in D. Suppose that, as in Definition 7.8, T = V1 ∪ · · · ∪ Vk where
Vi = {x ∈ D | g(x) = 0 for all g ∈ Si} and Si is a set of free holomorphic
functions on D. Then

f−1(Vi) = {x ∈ f−1(D) | g(f(x)) = 0 for all g ∈ Si}.

Therefore, if we let S∼i = {g ◦ f | g ∈ Si}, then

f−1(Vi) = {x ∈ f−1(D) |h(x) = 0 for all h ∈ S∼i }

is a free variety in f−1(D). Consequently

f−1(T ) =
k⋃
i=1

{x ∈ f−1(D) |h(x) = 0 for all h ∈ S∼i }

is a finite union of free varieties in f−1(D). The set

f−1(B) = f−1(D) \ f−1(T )

is therefore Zariski-freely open.

Lemma 7.15. Let ϕ be a Zariski-freely holomorphic function on D\T , where
D is a freely open nc set, T is a finite union of free varieties in D, and D \T
is non-empty. Then ϕ extends to a unique freely holomorphic nc function ϕ̂
on D.

Proof. Let z ∈ D ∩ T . Choose w ∈ D \ T . Then z ⊕ w ∈ D \ T , and so
ϕ(z ⊕ w) is defined. For each component of the d-tuple z ⊕ w[

1 0
]
zj ⊕ wj = zj

[
1 0

]
.

Hence, by the intertwining property (2.4) of nc functions,[
1 0

]
ϕ(z ⊕ w) = ϕ(z)

[
1 0

]
.

Similarly, for each j,

zj ⊕ wj
[
0
1

]
=

[
0
1

]
wj
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and therefore

ϕ(z ⊕ w)

[
0
1

]
=

[
0
1

]
ϕ(w).

Hence

ϕ(z ⊕ w) =

[
a 0
0 ϕ(w)

]
(7.16)

for some matrix a of the same type as the zj. Likewise, if w1 and w2 are
distinct elements of D \ T , then since[

1 0
0 0

] [
z 0
0 w1

]
=

[
z 0
0 w2

] [
1 0
0 0

]
,

the intertwining property (2.4) tells us that the value of a in equation (7.16)
does not depend on the choice of w in D \ T . Hence we may define a graded
function ϕ̂ on D ∩ T by the relation

ϕ(z ⊕ w) =

[
ϕ̂(z) 0

0 ϕ(w)

]
(7.17)

for all z ∈ D ∩ T and w ∈ D \ T .
Extend ϕ̂ to D by defining ϕ̂ to agree with ϕ on D \ T . We claim that ϕ̂

is a freely holomorphic extension of ϕ from D \ T to D. That ϕ̂(z1 ⊕ z2) =
ϕ̂(z1) ⊕ ϕ̂(z2) is immediate if both z1 and z2 are in D \ T , since ϕ is an nc
function by Proposition 3.4. It is also immediate if just one of z1, z2 is in
D \T , by choice of the other as w. Assume therefore that both z1 and z2 are
in D ∩ T , and choose any w ∈ D \ T . The relation

ϕ

([
z1 ⊕ z2 0

0 w

])
=

[
ϕ̂(z1 ⊕ z2) 0

0 ϕ(w)

]
, (7.18)

is true by the definition of ϕ̂ if z1 ⊕ z2 ∈ T , and by the fact that ϕ̂ extends
ϕ together with the nc property of ϕ if z1 ⊕ z2 /∈ T .

Since z2 ⊕ w ∈ D \ T ,

ϕ

([
z1 ⊕ z2 0

0 w

])
= ϕ

([
z1 0
0 z2 ⊕ w

])
=

[
ϕ̂(z1) 0

0 ϕ(z2 ⊕ w)

]

=

ϕ̂(z1) 0 0
0 ϕ̂(z2) 0
0 0 ϕ(w)

 . (7.19)
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Comparison of equations (7.18) and (7.19) reveals that

ϕ̂(z1 ⊕ z2) = ϕ̂(z1)⊕ ϕ̂(z2).

To see that ϕ̂ preserves similarity, consider x ∈ D and s ∈ I such that
s−1xs ∈ D. If x /∈ T then also s−1xs ∈ D \ T , and so

ϕ̂(s−1zs) = ϕ(s−1zs) = s−1ϕ(z)s = s−1ϕ̂(z)s.

Now suppose that x ∈ D ∩ T ; then s−1xs ∈ D ∩ T . Choose any w ∈ D \ T .
We have

ϕ̂(s−1xs)⊕ ϕ(w) = ϕ(s−1xs⊕ w) by definition ofϕ̂

= ϕ
(
(s⊕ 1)−1(x⊕ w)(s⊕ 1)

)
= (s⊕ 1)−1ϕ(x⊕ w)(s⊕ 1) since ϕ is nc

= (s⊕ 1)−1(ϕ̂(x)⊕ ϕ(w))(s⊕ 1)

= s−1ϕ̂(x)s⊕ ϕ(w).

Hence ϕ̂(s−1xs) = s−1ϕ̂(x)s.
It remains to show that ϕ̂ is freely locally bounded, hence freely holomor-

phic. Let z be any point in D, and choose w ∈ D \T . There is a Zariski-free
basic neighborhood Bδ \ S containing z ⊕ w on which ϕ is bounded, by M
say. For every x ∈ Bδ,

ϕ(x⊕ z ⊕ w) = ϕ̂(x)⊕ ϕ̂(z)⊕ ϕ(w)

is bounded by M , so ϕ̂ is bounded on the free neighborhood Bδ of z.
To see that the extension is unique, it is sufficient to prove that if ψ

is a free nc holomorphic function on D that vanishes on D \ T , then it is
identically zero. Suppose not. Then there is some point z ∈ T ∩D such that
ψ(z) 6= 0. There is some point w ∈ D \ T . Then z ⊕ w is in D \ T , but
ψ(z ⊕ w) = ψ(z)⊕ ψ(w) 6= 0, a contradiction.

Lemma 7.20. Let ϕ : Bδ \ T → Bγ \ S be a Zariski-freely holomorphic nc
map. Then ϕ extends to a unique freely holomorphic map ϕ̂ : Bδ → Bγ.
Moreover, if ϕ is a Zariski-free homeomorphism, then ϕ̂ is a free homeomor-
phism.

Proof. Since Bγ is an nc set, we may apply Lemma 7.15 to each component
of ϕ in turn to obtain a freely holomorphic nc map ϕ̂ on Bγ. We must show
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that the range of ϕ̂ is contained in Bγ. This is automatic for points in Bδ \T ,
so consider a point x ∈ T ∩Bδ. Suppose ‖γ(ϕ̂(x))‖ ≥ 1. Then there are unit
vectors u, v such that

|〈γ(ϕ̂(x))u, v〉| ≥ 1. (7.21)

Let w ∈ Bδ \ T . Then

|〈γ(ϕ̂(x))u, v〉| = |〈γ(ϕ(x⊕ w))u⊕ 0, v ⊕ 0〉| < 1,

a contradiction.
The uniqueness of ϕ̂ follows by Lemma 7.15.
Suppose ψ : Bγ \ S → Bδ \ T is the inverse of ϕ. Let w ∈ Bδ \ T . Then

for all z ∈ Bδ, we have z ⊕ w ∈ Bδ \ T , and[
z 0
0 w

]
= ψ ◦ ϕ

([
z 0
0 w

])
= ψ

([
ϕ̂(z) 0

0 ϕ(w)

])
=

[
ψ̂ ◦ ϕ̂(z) 0

0 ψ ◦ ϕ(w)

]
.

Thus ψ̂ is the inverse of ϕ̂.

Lemma 7.22. Let ϕ be a Zariski-freely holomorphic function on a Zariski-
free open set U ⊆Md. Suppose that U can be written as

U =
⋃
α∈A

(Bδα \ Tα),

where Tα is a finite union of free varieties in Bδα such that
(i) whenever Bδα ∩Bδβ is non-empty, so is (Bδα \ Tα) ∩ (Bδβ \ Tβ);
(ii) the function ϕ is bounded and nc on each set Bδα \ Tα for α ∈ A.
Then ϕ extends to a unique freely holomorphic function ϕ̂ on

Û :=
⋃
α∈A

Bδα .

Proof. By Lemma 7.15, ϕ can be extended to a unique free function on each
Bδα . To see that these extensions coincide on each Bδα ∩ Bδβ , we observe
that, by condition (i), if this intersection is non-empty, then there is a point
w in (Bδα \ Tα) ∩ (Bδβ \ Tβ). We can use this point w in equation (7.17) to
construct the extension of ϕ to both Bδα and Bδβ , and so the extension will
agree on the intersection.
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The next result shows how close Zariski-free holomorphy is to free holo-
morphy.

Proposition 7.23. A graded function on a free domain in Md is freely holo-
morphic if and only if it is Zariski-freely holomorphic.

Proof. Let U be a free domain in Md and let ϕ : U → M1 be a graded
function. Suppose that ϕ is freely holomorphic – that is, it is freely locally
nc and freely locally bounded on U . Since the Zariski-free topology is finer
than the free topology, it is immediate that ϕ is Zariski-freely locally nc and
Zariski-freely locally bounded. Thus ϕ is Zariski-freely holomorphic.

Conversely, suppose that ϕ is Zariski-freely holomorphic on U . Let x ∈ U .
There is a Zariski-free open set D \ T containing x on which ϕ is nc and
bounded. Therefore there exists Bδ such that Bδ \ T contains x and ϕ is nc
and bounded on Bδ \ T . By Lemma 7.15, there is a bounded nc extension ϕ̂
of ϕ|Bδ\T to Bδ. If y ∈ Bδ ∩ T , then

ϕ̂(x⊕ y) = ϕ(x⊕ y)

q q
ϕ̂(x)⊕ ϕ̂(y) = ϕ(x)⊕ ϕ(y).

So ϕ̂ agrees with ϕ on all of Bδ, including T . Therefore ϕ is freely locally
bounded.

8 An nc-manifold for symmetrization

In this section we construct a two-dimensional topological nc-manifold G such
that the algebra of holomorphic functions on G is canonically isomorphic (in a
sense to be made precise in Theorem 8.35 below) to the algebra of symmetric
free holomorphic functions in M2.

In the commutative case, if Ω ⊂ C2 is a symmetric domain (that is, if

(z, w) ∈ Ω implies that (w, z) ∈ Ω) then the domain Ω̃
def
= {(z + w, zw) :

(z, w) ∈ Ω} has the property that the symmetric holomorphic functions f
on Ω are in bijective correspondence with the holomorphic functions F on Ω̃
via the relation

f(z, w) = F (z + w, zw) for all (z, w) ∈ Ω.
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We shall construct a topological nc-manifold G with properties analogous to
those of Ω̃ for the symmetric free domain Ω = M2.

In [2] the algebra of symmetric free holomorphic functions on the biball
B2, the noncommutative analog of the bidisc, is analysed by means of operator-
theoretic methods. The authors constructed a set Ω ⊂ M∞ and a map
π : B2 → Ω such that every symmetric free holomorphic function ϕ on B2

can be expressed as Φ ◦ π for some holomorphic nc-function Φ on Ω. Here Ω
is an infinite-dimensional set, but it can nevertheless be described in terms of
only three noncommuting variables, provided that inverses and square roots
are allowed. In this paper we adopt a more topological approach and obtain
a 2-dimensional topological nc-manifold with properties analogous to Ω, but
for symmetric functions on an arbitrary symmetric free domain. The theme
that three variables suffice is reflected in the fact that the manifold we obtain
in this section is presented as a subset of M3. However the topology of the
manifold structure of G is not that induced by any natural topology of M3.

8.1 A geometric lemma

In this and the next two subsections we describe some simple combinatorial
geometry and properties of free square roots, which play an essential part in
the construction of G.

Throughout Section 8 the symbol ∆ will be reserved for sets in the plane
that have the form

∆ =
k⋃
i=1

(ci + rD).

Alternatively, if γ denotes the finite set {c1, c2, . . . ck},

∆ = γ + rD.

We refer to such sets as simple sets with radius r. We define the separation
of a simple set ∆ = γ + rD, denoted by sep ∆, by

sep ∆ = min{|c− d| : c, d ∈ γ, c 6= d}.

Definition 8.1. A simple set ∆ with radius r is t-isolated if r < t sep ∆. If
∆1 and ∆2 are simple sets, then ∆2 is subordinate to ∆1 if each disc in ∆2

meets at most one disc in ∆1.

39



Lemma 8.2. Let ∆1 and ∆2 be simple sets with radii r1 and r2 respectively.
If ∆1 and ∆2 are 1

4
-isolated, then either ∆1 is subordinate to ∆2 or ∆2 is

subordinate to ∆1.

Proof. Suppose not, so that neither ∆j is subordinate to the other. Since ∆1

is not subordinate to ∆2 there is a disc c + r1D in ∆1 that meets two discs
dj + r2D, j = 1, 2 in ∆2, with d1 6= d2. Pick points ζ1, ζ2 such that

ζj ∈ (c+ r1D) ∩ (dj + r2D), j = 1, 2.

Then
|ζj − c| < r1 and |ζj − dj| < r2.

Since ∆1,∆2 are 1
4
-isolated,

r1 <
1
4

sep ∆1 and r2 <
1
4

sep ∆2,

and so
|ζj − c| < 1

4
sep ∆1 and |ζj − dj| < 1

4
sep ∆2.

Therefore,
|c− dj| < 1

4
sep ∆1 + 1

4
sep ∆2, j = 1, 2.

In consequence,

sep ∆2 ≤ |d1 − d2|
≤ |c− d1|+ |c− d2|
< 1

2
sep ∆1 + 1

2
sep ∆2.

Hence,
sep ∆2 < sep ∆1. (8.3)

Since also ∆2 is not subordinate to ∆1, by repeating the above argument
with ∆1 and ∆2 swapped, we deduce that sep ∆1 < sep ∆2, contradicting
inequality (8.3).
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8.2 Holomorphic square roots on the sets ∆γ

Let Γ denote the set of finite subsets of C \ {0}. For each γ ∈ Γ we fix
throughout the remainder of the section a simple set

∆γ =
⋃
c∈γ

(c+ rγD)

where rγ is chosen so that

rγ < min {min
c∈γ
|c|, 1

4
min
c,d∈γ
c 6=d

|c− d| }.

This choice of rγ guarantees that, for all γ ∈ Γ,

0 /∈ ∆γ (8.4)

and
∆γ is 1

4
-isolated. (8.5)

Notice that the statement (8.5) implies that ∆γ is a finite union of open discs
whose closures are pairwise disjoint.

For γ ∈ Γ let |γ| denote the cardinality of γ. Define 2|γ| functions on ∆γ

in the following way. For each τ ∈ {−1, 1}γ, define ιγτ : ∆γ → {−1, 1} by
the formula

ιγτ (z) = τ(c) if z ∈ c+ rγD.

The functions ιγτ are holomorphic on ∆γ, indeed, they precisely consist of
the 2|γ| holomorphic square roots of the constant function 1 on ∆γ.

For each γ ∈ Γ, property (8.4) and the remark following statement (8.5)
imply that there exists a branch of

√
z defined on ∆γ.

Convention 8.6. For every γ ∈ Γ, fix a holomorphic branch sγ of the square
root function on ∆γ.

Once this sγ is chosen, the other branches of
√
z on ∆γ can be described

in terms of sγ with the aid of the functions ιγτ ; we define sγτ to be the
holomorphic square root function sγιγτ on ∆γ.

Lemma 8.7. Assume γ ∈ Γ. A function f on ∆γ is a holomorphic function
satisfying f(z)2 = z for all z ∈ ∆γ if and only if there exists τ ∈ {−1, 1}γ
such that f = sγτ .
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8.3 Free square roots on the sets Dγ

For each γ ∈ Γ define Dγ ⊆M1 by

Dγ = {x ∈M1 |σ(x) ⊆ ∆γ}.

Lemma 8.8. ⋃
γ∈Γ

Dγ = I

Proof. If M ∈ Dγ, then by definition, σ(M) ⊆ ∆γ. Hence property (8.4)
implies that 0 6∈ σ(M), that is, M ∈ I. Conversely, if M ∈ I, then 0 6∈ σ(M).
This implies that σ(M) ∈ Γ. Hence M ∈ Dσ(M) ⊆ ∪γ∈ΓDγ.

With the help of the functions sγ and ιγτ we may define free holomorphic
functions on Dγ by means of the Riesz functional calculus. Since x ∈ Dγ

implies that σ(x) ⊆ ∆γ, we may use the formula (5.2) to define, for every
γ ∈ Γ, every τ ∈ {−1, 1}γ and every x ∈ Dγ,

Sγ(x) = s∧γ (x), (8.9)

Iγτ (x) = ι∧γτ (x), (8.10)

Sγτ (x) = Sγ(x)Iγτ (x). (8.11)

Since sγ(z)2 = z and ιγτ (z)2 = 1 for z ∈ ∆γ,

Sγτ (x)2 = x and Iγτ (x)2 = 1 for all γ ∈ Γ and x ∈ Dγ.

Notice that, by Proposition 5.3, Sγτ and Iγτ are free holomorphic functions
on the free domain Dγ. Moreover, every square root of x ∈ Dγ in the algebra
generated by x has the form Sγτ (x) for some τ ∈ {−1, 1}γ.

8.4 The Zariski-free domain Uγ
For each γ ∈ Γ we shall define a Zariski-free open set in M2 having a certain
genericity property. Let

Wγ = {(u, x) ∈M2 |x ∈ Dγ}. (8.12)

As Dγ is a free domain, so is Wγ. Furthermore, for fixed γ ∈ Γ and τ ∈
{−1, 1}γ, as Iγτ is a free holomorphic function,

fγτ (u, x) = u Iγτ (x)− Iγτ (x) u, (u, x) ∈ Wγ,
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defines a free holomorphic function on Wγ. It follows that

Vγτ = {(u, x) ∈ Wγ |u Iγτ (x) = Iγτ (x) u}

is a free variety in Wγ.
In the constant cases, where either τ = 1 (that is, τ(c) = 1 for all c ∈ γ)

or τ = −1 (that is, τ(c) = −1 for all c ∈ γ), we have either Iγτ = 1 or
Iγτ = −1. Thus, in these two cases where τ is constant, Vγτ is all of Wγ. In
the sequel, we express the condition that τ is not constant by writing τ 6= ±1.

Since, for each τ ∈ {−1, 1}γ, Vγτ is a free variety in Wγ,

Uγ =Wγ \
⋃

τ∈{−1,1}γ
τ 6=±1

Vγτ (8.13)

defines a set that is open in the Zariski-free topology of M2, though not,
generally, in the free topology, since the varieties Vγτ are typically not freely
closed. We shall construct the Zariski-free manifold G by gluing together
sheets in M3 that lie over the domains Uγ ⊂M2. We can express the definition
of Uγ as follows:

Uγ = {(u, x) ∈M2 : x ∈ Dγ and u does not commute with Iγτ (x)

for any nonconstant τ ∈ {−1, 1}γ}. (8.14)

The following statement is easy to see.

Proposition 8.15. For any γ ∈ Γ, if (u1, x1) ∈ Uγ and (u2, x2) ∈ Wγ then
(u1, x1)⊕ (u2, x2) ∈ Uγ.

8.5 The definition of G
To motivate the ensuing definition of the set G we recount some ideas from
[2]. It has long been known [25] that the algebra A of symmetric complex
polynomials in two noncommuting variables w1 and w2 is not finitely gener-
ated. However, it was found in [2] that there is a close substitute for a finite
basis. If we define

u = 1
2
(w1 + w2), v = 1

2
(w1 − w2)

then an algebraic basis of A is

u, v2, vuv, vu2v, . . . , vujv, . . . (8.16)
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Although this is an infinite basis of A, the relation

vujv = (vuv)(v2)−1(vuv)(v2)−1 . . . (v2)−1(vuv)

shows that every symmetric free polynomial in w1, w2 can be written as
a rational expression in terms of the first three terms of the basis (8.16).
Accordingly, it appeared that these three basic polynomials might have the
potential to play the role that the elementary symmetric functions w1 + w2

and w1w2 play in the scalar theory, though some extra complications result
from the fact that rational expressions are required to represent polynomials.

Thus, the underlying idea is to study the image of M2 under the map
(u, v2, vuv). Here, we realise this approach. We write x for the variable
v2 (so that v is a square root of x), and then invoke the structure the-
ory for free holomorphic square roots developed in Section 6. Our strategy
for the construction of a topological nc-manifold with the desired ‘univer-
sal symmetrization’ property will be to apply the maps (u, x,

√
xu
√
x) to

M2. The expectation is that the many branches of the square root lead to
co-ordinate patches on the image set that can be pieced together to yield
the required topological nc-manifold. Implementing this strategy runs into
difficulties caused by singular behavior on certain subvarieties. The notion
of the Zariski-free topology enables us to circumvent these difficulties – see
Remark 8.28 below.

Let us first establish that the polynomials (8.16) do indeed constitute an
algebraic basis for the algebra of free polynomials. We do not know whether
this is a new observation. A closely related result of an analytic flavor is [2,
Theorem 5.1].

Theorem 8.17. Let x, y be non-commuting indeterminates and let

u = 1
2
(x+ y), v = 1

2
(x− y).

For any positive intger d, every free polynomial of total degree d in x, y can
be written as a polynomial in the d elements u, v2, vuv, . . . , vud−2v.

Proof. It suffices to prove the result for homogeneous free polynomials. For
d ≥ 1 let Pd be the complex vector space of homogeneous polynomials of
total degree d in x, y and let Symd be its subspace of symmetric polynomials.
Clearly Pd has dimension 2d, and therefore Symd has dimension 2d−1.

Let Qd be the space of polynomials in u, v2, vuv, . . . , vud−2v that are ho-
mogeneous of degree d in u, v, and hence also in x, y. Then Q1 = Cu and
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Qd ⊆ Symd. We claim that dimQd = 2d−1 = dim Symd, from which it will
follow that Qd = Symd, as required.

The claim is true when d = 1 since dimQ1 = 1. Let d > 1 and suppose
the claim holds for d− 1. We have

Qd = uQd−1 ⊕ v2Qd−2 ⊕ vuvQd−3 ⊕ · · · ⊕ vud−3vQ1 ⊕ vud−2vC.

By the inductive hypothesis,

dimQd = dimQd−1 + dimQd−2 + · · ·+ dimQ1 + 1

= 2d−2 + 2d−3 + · · ·+ 1 + 1

= 2d−1.

Hence Qd = Symd and the theorem follows.

For each γ ∈ Γ and each τ ∈ {−1, 1}γ we define a mapping Φγτ : Uγ →M3

by the formula

Φγτ (u, x) = (u, x, Sγτ (x) u Sγτ (x)), (u, x) ∈ Uγ, (8.18)

where Sγτ is the free holomorphic square root on Dγ defined in equation
(8.11).

Let
Gγτ = ran Φγτ . (8.19)

Trivially, Φγτ is a bijection from Uγ to Gγτ . Define G ⊆M3 by

G =
⋃
γ∈Γ

⋃
τ∈{−1,1}γ

Gγτ . (8.20)

8.6 A Zariski-free atlas for G
The set G defined in the previous subsection is just that, a set. It carries
neither a topology nor an atlas of charts that would endow it with a manifold
structure. In this section we shall topologize G and equip it with a Zariski-free
atlas.

Definition 8.21. Let

B = {Φγτ (U) | γ ∈ Γ, τ ∈ {−1, 1}γ, U is Zariski-freely open in Uγ}.
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Proposition 8.29 will imply that B is a base for a topology on G. The
proof hinges on the following technical statement.

Lemma 8.22. Let (u, x) ∈ Uγ1 ∩ Uγ2 for some γ1, γ2 ∈ Γ. If, for some
τ1 ∈ {−1, 1}γ1 and τ2 ∈ {−1, 1}γ2,

Sγ1τ1(x)uSγ1τ1(x) = Sγ2τ2(x)uSγ2τ2(x) (8.23)

then

either Sγ1τ1(x) = Sγ2τ2(x) or Sγ1τ1(x) = −Sγ2τ2(x). (8.24)

Proof. Since (u, x) ∈ Uγ1 ∩ Uγ2 we have

x ∈ Dγ1 ∩Dγ2 ,

or equivalently,
σ(x) ⊆ ∆γ1 ∩∆γ2 . (8.25)

In the light of property (8.5) and Lemma 8.2 we may assume that ∆γ2 is
subordinate to ∆γ1 , that is, that each component of ∆γ2 meets at most one
component of ∆γ1 . This implies that each component of ∆γ2 contains at most
one component of ∆γ1 ∩ ∆γ2 . As both of the functions sγ1τ1 and sγ2τ2 are
branches of

√
z on ∆γ1∩∆γ2 , they agree up to a factor ±1 on each component

of ∆γ1 ∩∆γ2 . Hence there exists τ ∈ {−1, 1}γ2 such that

sγ1τ1(z) = ιγ2τ (z)sγ2τ2(z), z ∈ ∆γ1 ∩∆γ2 . (8.26)

Equations (8.25) and (8.23) imply that

Sγ1τ1(x) = Iγ2τ (x)Sγ2τ2(x). (8.27)

Substitution of this formula for Sγ1τ1(x) into equation (8.23) yields

u = Iγ2τ (x)uIγ2τ (x).

But Iγ2τ (x) is an involution. Therefore

fγ2τ (u, x) = uIγ2τ (x)− Iγ2τ (x)u = 0,

that is, (u, x) ∈ Vγ2τ . As (u, x) ∈ Uγ2 , this implies that τ is constant on γ2

and either τ = 1 or τ = −1. We deduce that either ιγ2τ ≡ 1 or ιγ2τ ≡ −1 on
∆γ1 ∩ ∆γ2 . In conjunction with equation (8.27), this implies that equation
(8.24) holds.
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Remark 8.28. The foregoing technical lemma explains the introduction of
the Zariski-free topology. It is only because of the exclusion of the varieties
Vγτ , where a non-generic commutation relation holds, in the definition of
the sets Uγ that the collection B of Definition 8.21 constitutes a base for a
topology on G.

Proposition 8.29. If Ω1,Ω2 ∈ B and ω ∈ Ω1 ∩Ω2, then there exists Ω3 ∈ B
such that ω ∈ Ω3 ⊆ Ω1 ∩ Ω2.

Proof. Fix Ω1 = Φγ1τ1(U1), Ω2 = Φγ2τ2(U2) and assume that (u, x, y) ∈
Ω1 ∩ Ω2. As

(u, x) ∈ U1 ∩ U2 ⊆ Uγ1 ∩ Uγ2 ,

and
Sγ1τ1(x)uSγ1τ1(x) = y = Sγ2τ2(x)uSγ2τ2(x) (8.30)

we may apply Lemma 8.22 to deduce that

either Sγ1τ1(x) = Sγ2τ2(x) or Sγ1τ1(x) = −Sγ2τ2(x). (8.31)

Let
Ω3 = Φγ2τ2(U1 ∩ U2).

As (u, x) ∈ U1 ∩ U2, equation (8.30) implies that

(u, x, y) ∈ Ω3.

Clearly
Ω3 = Φγ2τ2(U1 ∩ U2) ⊆ Φγ2τ2(U2) = Ω2.

To see that Ω3 ⊆ Ω1, fix (u, x) ∈ U1∩U2. Then, as σ(x) ⊆ ∆1∩∆2, equation
(8.31) implies that

Φγ2τ2(u, x) = (u, x, Sγ2τ2(x) u Sγ2τ2(x))

= (u, x, Sγ1τ1(x) u Sγ1τ1(x))

= Φγ1τ1(u, x)

∈ Ω1.
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Lemma 8.29 implies that B is a base for a unique topology T on G. The
topology T is defined so that the maps

Φ−1
γτ : Gγτ → Uγ

are homeomorphisms when Gγτ carries the T topology and Uγ carries the
Zariski-free topology. As Uγ is a Zariski-free domain, it follows that

A = {Φ−1
γτ | γ ∈ Γ, τ ∈ {−1, 1}γ} (8.32)

is a collection of topological nc-co-ordinate patches on G (see condition (4.6)).
In fact A is a Zariski-free atlas for (G, T ). Since Definition (8.20) implies

that the sets Gγτ cover G, equation (4.4) holds. To see that the transition
functions are Zariski-freely holomorphic, observe that

(Φ−1
γ2τ2
◦ Φγ1τ1)(u, x) = (u, x)

for all (u, x) ∈ Φ−1
γ1τ1

(Gγ1τ1 ∩ Gγ2τ2), and Φ−1
γ1τ1

(Gγ1τ1 ∩ Gγ2τ2) is Zariski-freely
open by Lemma 8.29.

We summarize the above observations.

Theorem 8.33. If G is the set defined by equation (8.20), T is the topology
on G generated by the set B in Definition 8.21 and A is given by equation
(8.32) then (G, T ,A) is a Zariski-free manifold.

Our original hope when we began this project was to construct a free
nc-manifold G and a surjective free holomorphic map π : M2 → G with
the property that, for every symmetric free holomorphic function ϕ on M2,
there exists a free holomorphic function Φ on G such that ϕ = Φ ◦ π. Our
construction above falls short of this goal on at least two counts. Firstly, G
is not a free manifold, but a Zariski-free manifold. Secondly, if we make the
intended definition

π(w) = (u, v2, vuv)

= (1
2
(w1 + w2), 1

4
(w1 − w2)2, 1

8
(w1 − w2)(w1 + w2)(w1 − w2)) (8.34)

then a necessary condition that π(w) ∈ G is that v2 ∈ I, since we require
(u, v2) to belong to some Uγ; thus π does not map M2 to G. Nonetheless,
there is a correspondence between ϕ and a suitable holomorphic function Φ
on G, but the correspondence is more subtle, as the next statement shows.
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Theorem 8.35. There is a canonical bijection between the classes of
(i) symmetric nc functions f that are freely holomorphic on M2, and
(ii) holomorphic functions Foo defined on the Zariski-free manifold G that

are conditionally nc and have the property that, for every w ∈M2, there is a
free neighborhood U of w such that Foo is bounded on π(U) ∩ G.

Theorem 8.35 will be proved in the next section, in greater generality –
see Theorem 10.11. We define conditionally nc in Definition 9.25.

9 Symmetric free holomorphic functions

In Section 8 we constructed an nc-manifold G for the representation of freely
entire symmetric functions on M2. In this section we shall do likewise for
symmetric free holomorphic functions on an arbitrary symmetric free domain.

Recall that a set S ⊆M2 is symmetric if

w = (w1, w2) ∈ S =⇒ (w2, w1) ∈ S.

In the sequel S is a fixed symmetric free domain in M2. We shall construct
a Zariski-free manifold Goo(S) which is, roughly speaking, the restriction of
G to S.

All the notations and constructions in Section 8 are in effect in this section
as well. For w ∈M2 we shall frequently employ the change of variables

u = 1
2
(w1 + w2), v = 1

2
(w1 − w2), (9.1)

or, equivalently,
w1 = u+ v, w2 = u− v.

The operation of transposition of components will be denoted by (w1, w2)f =
(w2, w1).

To construct G(S) we need to define several sets and mappings, as indi-
cated schematically in the following figure.
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Scheme for the construction of G(S)

9.1 Local inverses of (u, v2)

The purpose of this and the next two subsections is to define a submanifold
of the Zariski-free manifold G corresponding to a symmetric free domain S
in M2. First we introduce maps ωγτ which are local inverses of the map
w → (u, v2), in the notation of equations (9.1).

Recall that, for each γ ∈ Γ, the setWγ defined in equation (8.12) is freely
open in M2. For each γ ∈ Γ and each τ ∈ {−1, 1}γ we define a mapping
ωγτ :Wγ →M2 by the formula

ωγτ (u, x) =
(
u+ Sγτ (x) , u− Sγτ (x)

)
, (u, x) ∈ Wγ (9.2)

where Sγτ is the free holomorphic function on Dγ defined by equation (8.11).
Let w = ωγτ (u, x), so that

u+ Sγτ (x) = w1 and u− Sγτ (x) = w2.

Solution of these equations for u and x gives

u = 1
2
(w1 + w2) and x = Sγτ (x)2 = 1

4
(w1 − w2)2.
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Thus ωγτ is injective and

ω−1
γτ (w) =

(
1
2
(w1 + w2), 1

4
(w1 − w2)2

)
(9.3)

= (u, v2)

for all w ∈ ranωγτ .

Proposition 9.4. For each γ ∈ Γ and τ ∈ {−1, 1}γ, ωγτ is a free biholo-
morphic mapping from Wγ onto its range.

Proof. We first show that ranωγτ is open in the free topology. Equation
(9.3) defines a free polynomial map F on all of M2. Hence, as this map
is continuous in the free topology, ranωγτ = F−1(Wγ) is open in the free
topology.

Once it is known that both the domain and range of ωγτ are freely open
sets, that ωγτ is a free biholomorphic mapping follows immediately from the
formulas (9.2) and (9.3).

9.2 The sets Sγτ and Uγτ(S)

Recall that, for each γ ∈ Γ, the set Uγ defined in equation (8.13) is a Zariski-
free open subset of Wγ. For each τ ∈ {−1, 1}γ, we define Sγτ ⊆ S by

Sγτ = ωγτ (Uγ) ∩ S (9.5)

and define Uγτ (S) ⊆ Uγ by

Uγτ (S) = {(u, x) ∈ Uγ |ωγτ (u, x) ∈ S}
= ω−1

γτ (Sγτ ). (9.6)

Proposition 9.7. Uγτ (S) and Sγτ are Zariski-free open sets and ωγτ is a
Zariski-free biholomorphic mapping from Uγτ (S) onto Sγτ .

Proof. By Proposition 9.4, ωγτ :Wγ → ranωγτ is a free biholomorphic map-
ping. It follows by Proposition 7.14 that ωγτ is a homeomorphism when
Wγ and ranωγτ are equipped with the Zariski-free topology. Hence equation
(9.5) implies that Sγτ is Zariski-freely open and equation (9.6) implies that
Uγτ (S) is Zariski-freely open.

That ωγτ acting on Uγτ (S) and ω−1
γτ acting on Sγτ are Zariski-free holomor-

phic mappings (that is, are Zariski-freely locally bounded) follow from the
facts that ωγτ acting on Wγ and ω−1

γτ acting on ranωγτ are free holomorphic
mappings (and hence are freely locally bounded).
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9.3 The sets Gγτ(S) and G(S)

Recall that for each γ ∈ Γ and each τ ∈ {−1, 1}γ, Φγτ and Gγτ are defined
by equations (8.18) and (8.19). For each γ and τ , we define

Gγτ (S) = Φγτ (Uγτ (S)),

and then, following the definition (8.20), we set

Goo(S) =
⋃
γ∈Γ

⋃
τ∈{−1,1}γ

Gγτ (S). (9.8)

Recall that the topology T on G was chosen so that the maps Φγτ : Uγ → Gγτ
are homeomorphisms when Uγ carries the Zariski-free topology. Therefore
Goo(S) is an open subset of G and as such carries the structure of a Zariski-
free manifold. A Zariski-free atlas for Goo(S), A(S), can be obtained from
the Zariski-free atlas A for G defined in equation (8.32) by simple restriction
of the charts in A to the sets Gγτ (S), that is, by the definition

A(S) = {Φ−1
γτ |Gγτ (S) : γ ∈ Γ, τ ∈ {−1, 1}γ}. (9.9)

We summarize these observations in the following theorem.

Theorem 9.10. Let S be a symmetric free domain in M2. If Goo(S) is
defined by equation (9.8), then Goo(S) is an open subset of G. Furthermore,
if T (S) is the relativization of T to Goo(S) and A(S) is defined by equation
(9.9) then (Goo(S), T (S),A(S)) is a Zariski-free manifold.

9.4 A holomorphic cover of Goo(S)

In this subsection we shall construct a 2-to-1 holomorphic covering map from
a Zariski-free subdomain of S onto Goo(S). For each γ ∈ Γ and each τ ∈
{−1, 1}γ, define πγτ : Sγτ → Gγτ (S) by

πγτ = Φγτ ◦ ω−1
γτ .

Thus, for w ∈ Sγτ ,

πγτ (w) = (u, v2, Sγτ (v
2)uSγτ (v

2).

Lemma 9.11. If w ∈ Sγ1τ1 ∩ Sγ2τ2, then πγ1τ1(w) = πγ2τ2(w).
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Proof. As w ∈ Sγ1τ1 , there exists (u1, x1) ∈ Uγ1τ1 such that w = ωγ1τ1(u1, x1).
Likewise, there exists (u2, x2) ∈ Uγ2τ2 such that w = ωγ2τ2(u2, x2). But

ωγ1τ1(u1, x1) = ωγ2τ2(u2, x2)

implies via equation (9.2) that

u1 + Sγ1τ1(x1) = u2 + Sγ2τ2(x2)

and
u1 − Sγ1τ1(x1) = u2 − Sγ2τ2(x2).

These equations imply that u1 = u2 and Sγ1τ1(x1) = Sγ2τ2(x2). Noting that
both Sγ1τ1 and Sγ2τ2 are branches of

√
x, we also have

x1 = Sγ1τ1(x1)2 = Sγ2τ2(x2)2 = x2.

Hence

πγ1τ1(w) = πγ1τ1(ωγ1τ1(u1, x1))

= Φγ1τ1(u1, x1)

= (u1, x1, Sγ1τ1(x1)u1Sγ1τ1(x1))

= (u2, x2, Sγ2τ2(x2)u2Sγ2τ2(x2))

= Φγ2τ2(u2, x2)

= πγ2τ2(ωγ2τ2(u2, x2))

= πγ2τ2(w).

Armed with Lemma 9.11 we may define Soo ⊆ S by

Soo =
⋃
γ∈Γ

⋃
τ∈{−1,1}γ

Sγτ . (9.12)

It is immediate that there is a globally well-defined mapping π : Soo →
Goo(S), locally defined by the formula,

π(w) = πγτ (w) if w ∈ Sγτ .
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Theorem 9.13. π is a holomorphic covering map from the Zariski-free do-
main Soo onto the Zariski-free manifold Goo(S). Furthermore, π is given by
the formula

π(w) = (1
2
(w1 +w2), 1

4
(w1−w2)2, 1

2
(w1−w2)1

2
(w1 +w2)1

2
(w1−w2)). (9.14)

Finally, π is 2-to-1 and π−1(π(w)) = {w,wf}

Proof. By Proposition 9.7, Uγτ (S) and Sγτ are Zariski-free domains and

ωγτ : Uγτ (S)→ Sγτ

is a Zariski-free homeomorphism. Also, by the comments following equation
(9.8),

Φγτ : Uγτ (S)→ Gγτ (S)

is a Zariski-free homeomorphism. Therefore,

π|Sγτ = Φγτ ◦ ω−1
γτ

is a Zariski-free homeomorphism. This proves that π is a local homeomor-
phism.

If α = Φ−1
γτ : Gγτ (S)→ Uγτ (S) is a co-ordinate patch inA(S) (cf. equation

(9.9)), then
α ◦ (π|Sγτ ) = ω−1

γτ

and
(π|Sγτ )−1 ◦ α−1 = ωγτ

are both holomorphic. Therefore π is biholomorphic on every Sγτ .
As

Gγτ (S) = ran πγτ ⊂ ran π,

for all γ ∈ Γ and τ ∈ {−1, 1}γ, it follows from equation (9.8) that π is
surjective.

If (u, x) ∈ Uγ and w = ωγτ (u, x), then u = 1
2
(w1 + w2), Sγτ (x) = 1

2
(w1 −

w2), and x = 1
4
(w1 − w2)2. Hence,

πγτ (w) = πγτ (ωγτ (u, x))

= Φγτ (u, x)

= (u, x, Sγτ (x)uSγτ (x))

= (1
2
(w1 + w2), 1

4
(w1 − w2)2, 1

2
(w1 − w2)1

2
(w1 + w2)1

2
(w1 − w2)).
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This proves equation (9.14).
Assume that π(w1) = π(w2) for some w1, w2 ∈ Soo. If w1 = ωγ1τ1(u1, x1)

and w2 = ωγ2τ2(u2, x2) then the computation of the previous paragraph gives
u1 = u2, x1 = x2 and

Sγ1τ1(x1)u1Sγ1τ1(x1) = Sγ2τ2(x2)u2Sγ2τ2(x2).

If we set x0 = x1 = x2 and u0 = u1 = u2, then this equation becomes
equation (8.30) in the proof of Proposition 8.29. The argument in that proof
shows that equation (8.31) holds with x = x0, that is, either

Sγ1τ1(x0) = Sγ2τ2(x0) or Sγ1τ1(x0) = −Sγ2τ2(x0).

In the former case w2 = w1 and in the latter case w2 = wf1 .
Finally, to show that π is 2-to-1, observe that w 6= wf for w ∈ Sγτ .

Otherwise, suppose w = ωγτ (u, x) for some (u, x) ∈ Uγτ . Since w = wf we
have u+Sγτ (x) = u−Sγτ (x), and therefore Sγτ (x) = 0. Hence x = Sγτ (x)2 =
0, contrary to the fact that (u, x) ∈ Uγ.

We shall use formula (9.14) to extend π to a polynomial map M2 →M3.

9.5 The representation of symmetric functions on Soo
Theorem 9.15. Let S be a free symmetric domain in M2, Goo(S) the Zariski-
free manifold described in Theorem 9.10 and π : Soo → Goo(S) the covering
map described in Theorem 9.13. If Foo is a holomorphic function on Goo(S),
then foo = Foo ◦ π is a symmetric Zariski-free holomorphic function on Soo.
Conversely, if foo is a symmetric Zariski-free holomorphic function on Soo,
then there exists a unique holomorphic function Foo on Goo(S) such that
foo = Foo ◦ π.

Proof. First assume that Foo is Zariski-freely holomorphic on Goo(S) and let
foo = Foo ◦π. As Foo and π are Zariski-freely holomorphic, so is foo = Foo ◦π.
As π(wf ) = π(w) for all w ∈ Soo, so also foo(w

f ) = foo(w) for all w ∈ Soo.
Thus, foo is a symmetric Zariski-freely holomorphic function.

Now assume that foo is a symmetric Zariski-freely holomorphic function
on Soo. Attempt to define a function Foo on Goo(S) by the formula

Foo(π(w)) = foo(w), w ∈ Soo.
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If π(w1) = π(w2) and w1 6= w2 then as w2 = (wf )1 and foo is assumed
symmetric, Foo(π(w1)) = Foo(π(w2)). This proves that Foo is well defined,
and clearly foo = Foo ◦ π. Also, as π is surjective, Foo is defined on all of
Goo(S). Since locally on the sets Gγτ (S), Foo = foo ◦ π−1, a composition of
Zariski-freely holomorphic functions, Foo is Zariski-freely holomorphic.

We shall extend Theorem 9.15 in Theorems 10.1 and 10.11.

9.6 The representation of symmetric functions on S
For any symmetric free domain S in M2 we define So ⊆ S by

So =
⋃
γ∈Γ

⋃
τ∈{−1,1}γ

ωγτ (Wγ) ∩ S. (9.16)

Proposition 9.4 implies that So is a free domain and equations (9.5) and (9.12)
imply that Soo ⊆ So. An alternative, intrinsic characterization of So in terms
of the set Q defined by equation (6.4) is given in the following proposition.

Proposition 9.17. So = {w ∈ S |w1 − w2 ∈ Q}

Proof. First assume that w = ωγτ (u, x) ∈ So, so that 1
2
(w1 − w2) = Sγτ (x)

and x ∈ Dγ is nonsingular. The spectrum of Sγτ (x) is obtained by the
application of sγτ to σ(x), which process does not produce two eigenvalues λ
and −λ. Hence Sγτ (x) ∈ Q, and therefore w ∈ Q. Conversely, suppose that
w ∈ S and 1

2
(w1 − w2) ∈ Q. If we set x = 1

4
(w1 − w2)2 and γ = σ(x), then

there exists τ ∈ {−1, 1} such that Sγτ (x) = 1
2
(w1 − w2). If u = 1

2
(w1 + w2),

then w = Sγτ (u, x) ∈ So.

Let S be a symmetric free domain in M2, and define So by equation (9.16)
and Soo by equation (9.12), where π is the polynomial map (9.14). Write Goo
for Goo(S), and define Go = π(So) and G = π(S). Consider the following
diagram:

Soo Goo

M1 So Go M1

S G

foo

π

⊆ ⊆
Foo

fo π

⊆ ⊆

Fo

f
π

F

(9.18)
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In Theorem 9.15 we showed that foo : Soo →M1 is a Zariski-free holomorphic
map if and only if there exists a Zariski-free holomorphic map Foo : Goo →M1

such that Foo ◦ π = foo.
Suppose F : G → M1 is a free holomorphic map, by which we mean

that at every point λ of G there is a free neighborhood Bδ of λ in M3 and
a bounded free holomorphic function g on Bδ such that g agrees with F on
Bδ ∩G. Then F ◦ π is a symmetric free holomorphic function on S.

Question 9.19. Is the converse true?

In this generality, the answer to Question 9.19 is no, as the following
example, suggested to us by James Pascoe, shows.

Example 9.20. Let S be the nc-bidisc, that is, the set of pairs of strict
contractions in M2:

S = {w ∈M2 : ‖w1‖, ‖w2‖ < 1}.

Let

f(w) = (w1 − w2)(w1 + w2)2(w1 − w2)

= 16vu2v.

The natural choice for an F such that f = F ◦π is F (z) = 16z3(z2)−1z3, but
this function is not freely holomorphic on a neighborhood of 0.

Indeed, there is no free holomorphic function F defined on a neighborhood
Bδ of 0 in M3 such that F ◦ π = f . For suppose that F is such a function.
Replacing δ(z) by t(δ(z) − δ(0)), where t ≥ 1/(1 − ‖δ(0)‖), we can assume
that δ(0) = 0. By [1], F (z) can be represented by a convergent series on
Bδ whose terms are non-commutative polynomials in the entries δij(z). If
F ◦ π = f , then

F (u, v2, uvu) = 16vu2v. (9.21)

Expand F in a power series in D, and group terms by homogeneity. Then
the left-hand side of equation (9.21) is a linear combination of

u2v2, uv2u, v2u2.

No linear combination of these three elements is equal to vu2v.
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One can show more: there is no function F at all satisfying F ◦ π = f
on S. We shall show this by giving two points w and W in S ∩M2

4 that are
identified by π but not by f . Let

2u = w1 + w2, 2U = W 1 +W 2, 2v = w1 − w2, 2V = W 1 −W 2.

Let r be a small positive number. Let

v =


[
0 r
0 0

]
0

0

[
0 r
0 0

]
 , V =


[
0 −r
0 0

]
0

0

[
0 r
0 0

]


Let u = U have the (2, 3) and (4, 1) entries equal to 0, but the (2, 3) element
of their square not equal to 0. Then π(w) = (u, v2, vuv) = π(W ), but

f(w) = 16vu2v 6= 16V U2V = f(W ),

since the (1, 4) entry in vu2v is r2 times the (2, 3) entry of u2, and in V U2V
it is the negative of this quantity.

The fact that v is not invertible is crucial in the example.

Lemma 9.22. Let S be a symmetric freely open set in M2 and f a symmetric
free holomorphic function on S.

(1) f can be approximated locally uniformly on S in the free topology by a
sequence of symmetric free polynomials;

(2) Suppose that (i) w1, w2 ∈ S (ii) π(w1) = s−1π(w2)s for some s ∈ I (iii)
w1

1 − w2
1 is invertible and (iv) w1 ⊕ w2 ⊕ wf1 ⊕ wf2 ∈ S; then f(w1) =

s−1f(w2)s.

Proof. (i) Consider any point w0 ∈ S. Since f is freely holomorphic on S, by
Theorem 3.6 there is a basic free neighborhood Bδ of w0 in S and a sequence
of free polynomials pn that approximates f uniformly on Bδ. Replacing δ(w)
by δ(w) ⊕ δ(wf ) if necessary, we can assume that Bδ is symmetric, and on
replacing pn(w) by 1

2
(pn(w) + pn(wf )), we can assume that pn is symmetric

on Bδ.
(ii) Let

u1 = 1
2
(w1

1 + w2
1), v1 = 1

2
(w1

1 − w2
1), u2 = 1

2
(w1

2 + w2
2), v2 = 1

2
(w1

2 − w2
2).
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Every pn, being symmetric, can be written as a finite linear combination of
terms 1, u, and vujv for j = 0, 1, 2, . . . .

By hypothesis, π(w1) = s−1π(w2)s, which means that u1 = s−1u2s and
v1u

j
1v1 = s−1v2u

j
2v2s for j = 0, 1. But for j ≥ 2, we have

v1u
j
1v1 = v1u

j−1
1 v1(v1)−2v1u1v1,

and so by induction we deduce that pn(w1) = s−1pn(w2)s. Since pn(w1)
converges to f(w1) and pn(w2) converges to f(w2), it follows that f(w1) =
s−1f(w2)s.

Lemma 9.23. The set of points w ∈M2 such that π−1(π(w)) has cardinality
2 is dense in the finitely open topology.

Proof. Let 2u = w1 + w2 and 2v = w1 − w2. The set of w ∈ M2
n for

which v has n distinct non-zero eigenvalues is dense, and the subset where
furthermore u has no non-zero entries when expressed with respect to the
basis of eigenvectors of v is still dense.

For such a w, if π(w1) = π(w), then u = u1, (v)2 = (v1)2 and vuv =
v1uv1. The second equation says v1 has the same eigenvectors as v, with
each eigenvalue ± the corresponding eigenvalue for v. If the ith is positive
and the jth is negative, then the (i, j) entry of vuv is minus the (i, j) entry
of v1uv1, and is non-zero since uij is non-zero.

Thus v1 = ±v, and hence w1 is either w or wf .

9.7 Conditionally nc functions

We shall call a set D ⊂ Md reductive if, whenever x ⊕ y ∈ D, then x and y
are in D.

Proposition 9.24. Freely open sets are reductive.

Proof. Let D be a freely open set. Consider z, w such that z⊕w ∈ D. Then
there is a matrix δ of free polynomials such that z ⊕ w ∈ Bδ ⊆ D. Since
δ(z ⊕ w) = δ(z)⊕ δ(w), it follows that z, w ∈ Bδ, and hence z, w ∈ D.

Zariski-freely open sets, however, need not be reductive.

Definition 9.25. Let D be a subset of Md and f be a mapping from D to
M. We say that f is conditionally nc if f is a graded function and
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(i) if x, s−1xs ∈ D, then f(s−1xs) = s−1f(x)s;
(ii) there exists a graded function f̂ defined on the set

D̂
def
= {y ∈Md : there exists x ∈ D such that x⊕ y ∈ D} (9.26)

such that, for all x ∈ D such that x⊕ y ∈ D,

f

([
x 0
0 y

])
=

[
f(x) 0

0 f̂(y)

]
. (9.27)

Example 9.28. (1) If D = {3⊕2⊕1} then D̂ is empty and the conditionally
nc functions on D are the functions f on D given by

f(3⊕ 2⊕ 1) = A

for some diagonal matrix A ∈ M1
3. The fact that A is diagonal ensures that

condition (i) of Definition 9.25 is satisfied, while condition (ii) is vacuous.
(2) If D = {3 ⊕ 2 ⊕ 1, 3} then D̂ = {2 ⊕ 1} and the conditionally nc

functions on D are the functions f on D given by

f(3⊕ 2⊕ 1) = a⊕ b⊕ c, f(3) = a

for some a, b, c ∈ C. The unique graded function f̂ on D̂ such that condition
(ii) holds is f̂(2⊕ 1) = b⊕ c.

The following properties of conditionally nc functions are straightforward
to verify.

Proposition 9.29. Let f be a conditionally nc function on D ⊂Md and let
D1 ⊆ D.

(1) There is a unique graded function f̂ on D̂ such that equation (9.27) holds.

(2) If ‖f(x)‖ ≤M for all x ∈ D then ‖f̂(y)‖ ≤M for all y ∈ D̂.

(3) f̂ agrees with f on D ∩ D̂.

(4) D̂1 ⊆ D̂.

(5) If f1 = f |D1 then f1 is conditionally nc and f̂1 = f̂ |D̂1.
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Remark 9.30. A bounded conditionally nc function f on a free domain U
is freely holomorphic. For any x ∈ U we may choose a basic neighborhood
Bδ of x contained in U ; then f is conditionally nc on Bδ, hence is nc on Bδ.
Thus f is freely locally nc.

On the other hand, we do not know if a freely holomorphic function on a
free domain U must be conditionally nc, since being conditionally nc is not a
local property. Such a function does preserve direct sums and similarities on
basic free neighborhoods, but we do not assert that it preserves similarities
on all of U .

On a reductive set D, a function f is conditionally nc if and only if it
preserves similarities and satisfies f(x⊕y) = f(x)⊕f(y) whenever x⊕y ∈ D.
If D is both nc and reductive, then a conditionally nc function on D is the
same as an nc function.

10 Nc Waring-Lagrange theorems

Any polynomial in d commuting variables can be expressed as a polynomial
in the d elementary symmetric functions in the variables. In an interest-
ing historical survey [10, pp. 364-365], H. G. Funkhauser attributes this
fundamental fact about symmetric functions to Edward Waring, Lucasian
Professor at Cambridge [24] in 1770 and independently to Joseph Lagrange
[18] in 1798. Lagrange’s account is later, but is somewhat more explicit, so
we shall call the statement the Waring-Lagrange theorem. It is likely that
Euler had the result around the same time.

We now come to our nc version of the theorem, which asserts (to oversim-
plify somewhat) that symmetric nc functions in two variables can be factored
through the map π given by the definition (8.34). The precise statement is
as follows.

In the theorem we do not assume that S is an nc set.

Theorem 10.1. Let S be a symmetric free domain in M2. Assume that, for
all w1, w2 ∈ S,

if π(w1) is similar to π(w2) then w1 ⊕ w2 ∈ S. (10.2)

Define So by equation (9.16) and Soo by equation (9.12), and let Goo be the
Zariski-free manifold Goo(S) defined in equation (9.8). Let Go = π(So).
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There are canonical bijections between the following five sets of graded func-
tions.

(i) Bounded symmetric conditionally nc functions f defined on S.
(ii) Bounded symmetric conditionally nc functions fo defined on So.
(iii) Bounded symmetric Zariski-freely holomorphic functions foo defined

on Soo that are conditionally nc.
(iv) Bounded holomorphic functions Foo defined on the Zariski-free man-

ifold Goo that are conditionally nc (when Goo is viewed as a subset of M3).
(v) Bounded functions Fo defined on Go that are conditionally nc.
Moreover, if functions f, fo, foo, Fo and Foo correspond under these canon-

ical bijections, then the following diagram commutes when the two copies of
M1 are identified.

Soo Goo

M1 So Go M1

S

foo

π

⊆ ⊆
Foo

fo π

⊆

Fo

f

(10.3)

Proof. Starting with f , one can define fo and foo by restriction. By Propo-
sition 9.29, fo and foo are conditionally nc. By Remark 9.30, f is freely
holomorphic, and so foo is Zariski-freely holomorphic, being the restriction
of the freely holomorphic function f to a Zariski-freely open set.

(fo → f) First note that at each level n, the set S \So is thin, in the sense
of Subsection 7.1. Indeed, to be in S \So, by Proposition 9.17, we must have
w1−w2 /∈ Q. A matrix M is not in Q if and only if p1(λ) = det(λ−M) and
p2(λ) = det(λ + M) have a common zero. This happens if and only if their
resultant, which is a polynomial in the entries of M , vanishes. So S \ So is
the intersection of S with the zero set of a non-constant polynomial, hence
is thin.

Since fo is bounded and S \ So is thin, the function fo has an extension
by continuity at each level n to a bounded function f on S. By continuity,
the function f is symmetric and preserves direct sums, in the sense that if
w⊕y ∈ S then w, y ∈ S (since S is a free domain) and f(w⊕y) = f(w)⊕f(y).

Suppose w = s−1ys for some w, y ∈ S and s ∈ I. Let wn ∈ So converge
to w, and let yn := swns

−1. For n large enough, yn ∈ S, and since wn is in
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So, so is yn by Proposition 9.17. Then fo(wn) = s−1fo(yn)s, and so in the
limit we obtain f(w) = s−1f(y)s.

(foo → fo) Starting with foo, construct fo as follows.

First show that So ⊆ Ŝoo. Consider w ∈ So and let

u = 1
2
(w1 + w2), v = 1

2
(w1 − w2),

so that v is nonsingular, by Proposition 9.17. Let γ be the spectrum of v2;
then 0 /∈ γ and (u, v2) ∈ Wγ by equation (8.12). Since v is a square root of
v2, by Subsection 8.3 there exists τ ∈ {−1, 1}γ such that v = Sγτ (v

2). By
the definition (9.2) of ωγτ ,

ωγτ (u, v
2) = (u+ Sγτ (v

2), u− Sγτ (v2) = (u+ v, u− v) = (w1, w2) = w.

Thus w ∈ ωγτ (Wγ).
Choose λ ∈ ωγτ (Uγ). Then by Proposition 8.15, λ ⊕ w ∈ ωγτ (Uγ) ⊆ Soo.

Thus λ, λ⊕ w ∈ Soo, which is to say that w ∈ Ŝoo. Thus

Soo ⊆ So ⊆ Ŝoo.

We claim that
Ŝo = Ŝoo. (10.4)

The inclusion Ŝo ⊇ Ŝoo is immediate. Consider any y ∈ Ŝo. Then there exists
w ∈ So such that w ⊕ y ∈ So. By the above construction there exists γ ∈ Γ
and τ ∈ {−1, 1}γ such that w ⊕ y ∈ ωγτ (Wγ). Let λ ∈ ωγτ (Uγ); then, again

by Proposition 8.15, λ⊕ w and λ⊕ w ⊕ y belong to Soo. Hence y ∈ Ŝoo.
Define fo to be the restriction of f̂oo to So. By Proposition 9.29(3), fo is

an extension of foo.
Since foo is conditionally nc, there is a function f̂oo on Ŝoo such that

foo

([
λ 0
0 w

])
=

[
foo(λ) 0

0 f̂oo(w)

]
. (10.5)

As foo is bounded, so is fo, by Proposition 9.29(2) and, since foo is symmetric,
so is fo.

To show that fo is conditionally nc we must exhibit a function f̂o on Ŝo
such that, for all y ∈ Ŝo and all w ∈ So such that w ⊕ y ∈ So,

fo

([
w 0
0 y

])
=

[
fo(w) 0

0 f̂o(y)

]
. (10.6)
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In view of equation (10.4), we may define f̂o to be f̂oo. Then we must show
that

f̂oo

([
w 0
0 y

])
=

[
f̂oo(w) 0

0 f̂oo(y)

]
(10.7)

whenever w,w⊕y ∈ So. As above there exists λ ∈ Soo such that λ⊕w⊕y ∈
Soo, which means that λ⊕ w is also in Soo. Thusfoo(λ) 0

0 f̂oo

([
w 0
0 y

]) = foo

λ 0 0
0 w 0
0 0 y


=

foo
([
λ 0
0 w

])
0

0 f̂oo(y)


=

foo(λ) 0 0

0 f̂oo(w) 0

0 0 f̂oo(y)

 .
It follows that equation (10.7) holds, as required.

To see that fo preserves similarities, we argue as follows. Let w, s−1ws =
y ∈ So. By assumption (10.2) we have w⊕ y ∈ S. As w and y have the same
spectrum, By Proposition 9.17, w ⊕ y ∈ So. Hence there exists λ ∈ Soo
such that λ ⊕ w ⊕ y is in Soo, as are λ ⊕ w and λ ⊕ y. Since foo preserves
similarities and [

1 0
0 s−1

] [
λ 0
0 w

] [
1 0
0 s

]
=

[
λ 0
0 s−1ws

]
,

we find that fo(s
−1ws) = s−1fo(w)s. Thus fo is conditionally nc.

(fo → Fo) Consider any bounded symmetric conditionally nc function fo
on So. By the previous construction, fo has a bounded symmetric condition-
ally nc extension f to S. By Remark 9.30, f is freely holomorphic.

We claim that if π(w1) = π(w2) for some pair w1, w2 in So, then f(w1) =
f(w2). Indeed, by assumption (10.2), w1 ⊕ w2 ∈ S. By the symmetry of S,
(w1 ⊕ w2)f ∈ S, which is to say that wf1 ⊕ wf2 ∈ S. By the symmetry of
π, π(w1⊕w2) = π((w1⊕w2)f ). Again by assumption (10.2), w1⊕w2⊕wf1 ⊕
wf2 ∈ S. Furthermore, since w1 ∈ So, it follows from Proposition 9.17 that
w1

1 −w2
1 is invertible. We may therefore apply Lemma 9.22 to conclude that

f(w1) = f(w2). Hence fo(w1) = fo(w2).
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Thus, at the level of set theory, we can define Fo by fo = Fo ◦ π. To see
that Fo is conditionally nc, suppose first that π(w) and π(w) ⊕ π(y) are in
Go, for some w,w ⊕ y ∈ So. Then y ∈ So also, by Proposition 9.17. Thus

Fo

([
π(w) 0

0 π(y)

])
= fo

([
w 0
0 y

])
=

([
fo(w) 0

0 fo(y)

])
=

([
Fo(π(w)) 0

0 Fo(π(y))

])
.

To show that Fo preserves similarities, consider similar triples z1 and z2 =
sz1s

−1 in Go. Then there exist w1, w2 ∈ So such that z1 = π(w1), z2 = π(w2).
We have

z2 = sz1s
−1 (10.8)

= sπ(w1)s−1 = π(sw1s
−1).

If it happens that sw1s
−1 is in So, then

Fo(z2) = Fo ◦ π(sw1s
−1)

= fo(sw1s
−1)

= sfo(w1)s−1 since fo is conditionally nc

= sFo ◦ π(w1)s−1

= sFo(z1)s−1. (10.9)

Not knowing that sw1s
−1 ∈ So, we use Lemma 9.22. By Assumption (10.2),

w1 ⊕w2 ⊕wf1 ⊕w
f
2 ∈ S, and since w1 ∈ So, the lemma tells us that f(w2) =

s−1f(w1)s, and so Fo(z2) = s−1Fo(z1)s, as required.
(Fo → fo) Define fo to be Fo ◦ π. Then fo is bounded, symmetric, and

conditionally nc.
(Fo → Foo) By restriction.
(Foo → foo) Define foo to be Foo ◦ π.
(Foo → Fo) By the composition Foo → foo → fo → Fo.

The set So is not closed with respect to direct sums, that is, it is not an
nc set. If S in Theorem 10.1 is assumed to be a symmetric freely open nc
set, then assumption (10.2) is automatically satisfied, and the conditionally
nc functions on S are the same as the nc functions. This yields the following
corollary.
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Corollary 10.10. Let S be a symmetric freely open nc set in M2. Define
So by equation (9.16), and let Go = π(So). Then there is a canonical bijec-
tion between the bounded symmetric nc functions f on S and the bounded
conditionally nc functions Fo defined on Go such that Fo = (f |So) ◦ π.

If we drop the assumption that f be bounded, and require only that f
be freely locally bounded, then there are corresponding changes made to the
requirements of the other functions. Recall that in Definition 7.1 we defined
a function ϕ defined on U \ T to be locally bounded on U if, for every point
z in U , there is a neighborhood V of z such that ϕ is bounded on V \T . The
theorem becomes:

Theorem 10.11. Let S be a symmetric free domain in M2. Assume condi-
tion (10.2).

There are canonical bijections between the following five sets of graded
functions.

(i) Symmetric conditionally nc functions f that are freely holomorphic on
S.

(ii) Symmetric conditionally nc functions fo defined on So that are freely
locally bounded on S.

(iii) Symmetric Zariski-freely holomorphic functions foo defined on Soo
that are conditionally nc and freely locally bounded on S.

(iv) Holomorphic functions Foo defined on the Zariski-free manifold Goo
that are conditionally nc and have the property that for all w in S, there is
a free neighborhood U of w such that Foo is bounded on π(U) ∩Goo.

(v) Bounded graded functions Fo defined on Go that are conditionally nc
and have the property that for all w in S, there is a free neighborhood U of
w such that Fo is bounded on π(U) ∩Go.

Moreover, if functions f, fo, foo, Fo and Foo correspond under these canon-
ical bijections, then the diagram (10.3) commutes when the two copies of M1

are identified.

11 Nc Newton-Girard formulae

Instances of the Waring-Lagrange theorem are furnished by a series of formu-
lae for power sums in terms of elementary symmetric functions. Classically
such formulae were first given in 1629 by Albert Girard [11], though they
were subsequently often attributed to Newton [19]. We are only concerned
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with polynomials in two variables x and y. When these variables commute,

the Newton-Girard formulae express the power sums pn(x, y)
def
= xn + yn in

terms of the elementary symmetric functions

e1(x, y) = x+ y, e2(x, y) = xy.

The first four formulae are

p1 = e1

p2 = e2
1 − 2e2

p3 = e3
1 − 3e1e2

p4 = e4
1 − 4e2

1e2 + 2e2
2.

Further formulae are obtained from the recursion pn+2 = e1pn+1 − e2pn.
In the case of non-commuting indeterminates x, y we retain the nota-

tion pn for the nth power sum, but now there is no finite set of ‘elementary
symmetric functions’ in terms of which all pn can be written as polynomi-
als. However, the foregoing nc Waring-Lagrange theorems tell us that it is
possible to express pn as a rational expression in the variables

α = u, β = v2, γ = vuv (11.1)

where
u = 1

2
(x+ y), v = 1

2
(x− y).

In this section we shall show how to construct such expressions explicitly, in
the spirit of Girard and Newton. Since we are obliged to work with rational
expressions, it is natural to allow the n in pn to be an arbitrary integer,
positive, negative or zero. We first express pn and the antisymmetric rational
function

qn
def
= xn − yn

in terms of u and v. We have p0 = 2, q0 = 0. For any integer n,

pn = xxn−1 + yyn−1 = (u+ v)xn−1 + (u− v)yn−1

= u(xn−1 + yn−1) + v(xn−1 − yn−1)

= upn−1 + vqn−1. (11.2)

Similarly,
qn = vpn−1 + uqn−1. (11.3)
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We may write equations (11.2) and (11.3) in the matrix form(
pn
qn

)
= T

(
pn−1

qn−1

)
for all n ∈ Z (11.4)

where

T =

[
u v
v u

]
. (11.5)

Define the free polynomial sneven in u, v for n ≥ 0 to be the sum of all mono-
mials in u, v of total degree n and of even degree in v. When regarded as a
polynomial in x, y, sneven is symmetric. Likewise, snodd is defined to be the sum
of all monomials in u, v of total degree n and odd degree in v. Thus snodd is
antisymmetric as a polynomial in x, y.

By induction, for n ≥ 1,

T n =

[
sneven snodd

snodd sneven

]
. (11.6)

By iteration of equation (11.4),(
pn
qn

)
= T n

(
p0

q0

)
= T n

(
2
0

)
. (11.7)

From equation (11.6) we obtain, for n ≥ 0,

pn = 2sneven (11.8)

qn = 2snodd. (11.9)

Thus

p1 = 2s1
even = 2u = 2α

p2 = 2s2
even = 2(u2 + v2) = 2(α2 + β)

p3 = 2s3
even = 2(u3 + uv2 + vuv + v2u) = 2(α3 + αβ + γ + βα)

p4 = 2s4
even = 2(u4 + u2v2 + uvuv + vu2v + uv2u+ vuvu+ v2u2 + v4)

= 2(α4 + α2β + αγ + γβ−1γ + αβα + γα + βα2 + β2).

In general, any monomial in which v occurs with even degree can be written as
a monomial in α, β, γ and β−1. Indeed, starting at one end of the monomial,
replace all the initial u’s by α’s. The first v must be followed by another
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(since the number of v’s is even). If it is immediately following, replace v2

by β. If there are k u’s between the first and second v’s, replace vukv by
(γβ−1)k−1γ. Continue in this way until all u’s and v’s have been replaced.

We have shown the following.

Theorem 11.10. (An nc Newton-Girard theorem) For every positive
integer n there exists a rational function Pn in three nc variables such that
pn = Pn ◦ π. Moreover Pn(α, β, γ) can be expressed as a free polynomial in
α, β, γ and β−1. The functions Pn can be calculated from the equation (11.7)
or recursively from the relations

P0(α, β, γ) = 2, Q0(α, β, γ) = 0

and, for n ≥ 0,

Pn+1(α, β, γ) = βPn +Qn

Qn+1(α, β, γ) = βPn + γβ−1Qn.

The first four Pn are given by

P1 = 2α

P2 = 2(α2 + β)

P3 = 2(α3 + αβ + γ + βα)

P4 = 2(α4 + α2β + αγ + γβ−1γ + αβα + γα + βα2 + β2). (11.11)

Now consider sums of negative powers. By equation (11.8),(
p−1

q−1

)
= T−1

(
p0

q0

)
. (11.12)

Take inverses of both sides of the identity

T =

[
1 0

vu−1 1

] [
u 0
0 u− vu−1v

] [
1 u−1v
0 1

]
,

to get

T−1 =

[
1 −u−1v
0 1

] [
u−1 0
0 (u− vu−1v)−1

] [
1 0

−vu−1 1

]
=

[
u−1 + u−1v(u− vu−1v)−1vu−1 −u−1v(u− vu−1v)−1

−(u− vu−1v)−1vu−1 (u− vu−1v)−1

]
.
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This expression can be simplified, using the identities

u−1v(u− vu−1v)−1 = (u− vu−1v)−1vu−1

u−1 + u−1v(u− vu−1v)−1vu−1 = (u− vu−1v)−1

−u−1v(u− vu−1v)−1 = (v − uv−1u)−1,

to obtain the formula

T−1 =

[
(u− vu−1v)−1 (v − uv−1u)−1

(v − uv−1u)−1 (u− vu−1v)−1

]
. (11.13)

From this formula and equation (11.12) we deduce that(
p−1

q−1

)
= T−1

(
2
0

)
= 2

(
(u− vu−1v)−1

(v − uv−1u)−1

)
.

Hence
p−1 = 2(u− vu−1v)−1 = 2(α− βγ−1β)−1. (11.14)

Although q−1 is not expressible as a rational function of α, β, γ the product
vq−1 is.

vq−1 = −βγ−1β(α− βγ−1β)−1 (11.15)

This suggests the following statement.

Lemma 11.16. For every positive integer n

T−n =

[
fn(u, v) gn(u, v)
gn(u, v) fn(u, v)

]
where fn, gn are rational functions such that fn(u, v) and vgn(u, v) are ex-
pressible as rational functions of α, β, γ.

Proof. The statement is true when n = 1, as is easily seen from equations
(11.14) and (11.15).

Suppose it true for some n ≥ 1. From the relation T−(n+1) = T−1T−n we
have the equations

fn+1(u, v) = (u− vu−1v)−1fn(u, v) + (v − uv−1u)−1gn(u, v),

gn+1(u, v) = (v − uv−1u)−1gn(u, v) + (u− vu−1v)−1fn(u, v). (11.17)
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The assertion follows by induction and the relations

fn+1 = (u− vu−1v)−1fn + (v − uv−1u)−1v−1vgn

= (α− βγ−1β)−1fn + (β − γβ−1α)−1vgn,

vgn+1 = v(u− vu−1v)−1gn + v(v − uv−1u)−1fn

= (vuv−1 − v2u−1)−1vgn + (1− uv−1uv−1)−1fn

= (γβ−1 − βα−1)−1vgn + (1− αβ−1γβ−1)−1fn.

Theorem 11.18. (A Newton-Girard theorem for negative powers)
For every non-negative integer n there exists a rational function P−n in three
non-commuting variables such that p−n = P−n ◦ π. The functions P−n are
given recursively by the formulae

P0(α, β, γ) = 2, Q0(α, β, γ) = 0

and

P−(n+1)(α, β, γ) = (α− βγ−1β)−1P−n + (β − γβ−1α)−1Q−n

Q−(n+1)(α, β, γ) = β(β − αβ−1γ)−1P−n + β(γ − βα−1β)−1Q−n (11.19)

for n ≥ 0.

Proof. Replace n by −n in equation (11.7) to obtain(
p−n
q−n

)
= 2T−n

(
1
0

)
.

Thus
p−n = 2fn(u, v)

in the notation of Lemma 11.16. By that lemma, p−n is expressible as a
rational function of the variables α, β, γ.

One can readily calculate the first two P−n from these formulae; we expect
that P−2 can be further simplified.

P−1(α, β, γ) = 2(α− βγ−1β)−1 (11.20)

P−2(α, β, γ) = 2
(
α2 + β − αβ(β−1γ + γ−1β2)−1

− γ(γ−1βγ + β2)−1γ − αβ(γβ−1γ + β2)−1βα

−(β−1γβ−1 + βγ−1)−1α
)−1

. (11.21)
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There are some minor subtleties concerning the interpretation of the fore-
going Newton-Girard formulae for pn. When n ≥ 0, since Pn is a free poly-
nomial in α, β, γ, β−1, the statement

xn + yn = Pn(α, β, γ)

is meaningful and valid whenever x and y are matrices of the same order such
that x− y is nonsingular. It can also be interpreted as an identity in the free
field, which is the smallest universal division ring containing the ring of free
polynomials in x, y. When n < 0 the issue is less immediate, since then the
structure of Pn is more complicated. In this paper we are concerned with
functions of tuples of matrices. In this context, a noncommutative rational
expression is called non-degenerate if its domain in Md is non-empty. The do-
main will always be Zariski open at every level n (restrictions on the domain
come about when there is an inverse in the expression, as whatever needs
to be inverted must be non-singular), but this does not imply Zariski-freely
open in our sense. Different nondegenerate noncommutative rational expres-
sions may have different domains where they can be evaluated, but agree
on the intersection of these domains. Such expressions are called equivalent,
and a noncommutative rational function is formally an equivalence class of
nondegenerate noncommutative rational expressions. See for example [23]
for a discussion. For the expressions P−n it is easy to see that they are non-
degenerate; from equation (11.19) we see that the functions can be evaluated
as long as all four of the expressions

α− βγ−1β, β − γβ−1α, β − αβ−1γ, γ − βα−1β

are invertible. In particular, choosing x, y to be the scalar matrices 4 and 2
respectively gives the values α = 3, β = 1, γ = 3, and one finds that the
above four expressions do evaluate to invertible matrices.

It is interesting to compare the identities in Theorems 11.10 and 11.18,
thought of as equations in the algebra of rational functions in x and y, with
the statements about nc functions contained in our main theorems in Sections
8 and 9. When n ≥ 0 the symmetric free polynomial pn is freely holomorphic
on M2. Theorem 8.35 applies to yield a holomorphic function Pn on the
Zariski-free manifold G, having a certain local boundedness property and
satisfying pn = Pn ◦ π on a suitable subset of M2. When n < 0 we must take
the domain S of pn to be the set {(x, y) ∈ M2 : x ∈ I, y ∈ I}. Theorem
8.35 no longer applies, so we appeal to Theorem 10.1. Notice that here S
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is an nc set, so that Assumption (10.2) is automatically satisfied. We again
deduce that there is a holomorphic function Pn, this time on the Zariski-free
manifold Goo(S), satisfying a version of the relation pn = Pn ◦ π.
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