1. Let $A = (1, 2, 3)$, $B = (2, 3, 4)$, $C = (5, 7, 9)$. Find $x, y \in \mathbb{R}$ so that $C = xA + yB$.

2. Find all real t so that $(1 + t, 1 - t)$ and $(1 - t, 1 + t)$ are linearly independent.

3. Let i, j, k and $i + j + k$ be four vectors in \mathbb{R}^3. Show that any three are linearly independent, but all 4 are linearly dependent.

4. Find two bases for \mathbb{R}^3 containing the vectors $(1, 1, 2)$ and $(1, 0, 1)$.

5. Let L be the line in \mathbb{R}^3 through the points $(-3, 1, 1)$ and $(1, 2, 7)$. Determine which of the following points are on the line:
 a) $(-7, 0, 5)$
 b) $(-7, 0, -5)$
 c) $(-11, 1, 11)$

6. Let L be the line in \mathbb{R}^2 given by
 $$\{X \in \mathbb{R}^2 : X \cdot N = P \cdot N\},$$
 where P is on the line and N is a non-zero vector normal to the line. Let Q be a point in \mathbb{R}^2. Prove that the distance of Q to L is
 $$\frac{|(P - Q) \cdot N|}{\|N\|}.$$