1. Assume $\lim_{x \to a} f(x)$ exists. Prove that if $c \in \mathbb{R}$, then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$.

2. Assume $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, and $M \neq 0$. Prove that
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}.$$

3. Assume f is an even function on $[-b, b]$ and that f is integrable. Prove that
$$\int_{-b}^{b} f(x)dx = 2 \int_{0}^{b} f(x)dx.$$

4. Assume g is an odd function on $[-b, b]$ and that g is integrable. Prove that
$$\int_{-b}^{b} g(x)dx = 0.$$

5. We proved in class that the Fibonacci numbers are given by the formula
$$F_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}}.$$

Evaluate
$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n}.$$

6. How large must n be to ensure that $\frac{F_{n+1}}{F_n}$ is within 10^{-1} of its limit? Within 10^{-2}? Within 10^{-k}?