1. Prove the squeeze theorem: Let I be an open interval in \mathbb{R}, and $a \in I$. Assume that
\[f(x) \leq g(x) \leq h(x) \quad \forall x \in I \setminus \{a\}, \]
and
\[\lim_{x \to a} f(x) = \lim_{x \to a} h(x). \quad (1.1) \]
Prove that $\lim_{x \to a} g(x)$ exists and equals the limit in (1.1).

2. Suppose (a_n) and (b_n) are convergent sequences. Prove that
\[\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n \right) \left(\lim_{n \to \infty} b_n \right). \]

3. Prove or disprove: if the sequence $(a_n + b_n)$ converges, then both (a_n) and (b_n) converge.

4. Suppose I is an interval in \mathbb{R}, (x_n) is a sequence in I that converges to $c \in I$. Suppose $f : I \to \mathbb{R}$. Prove that if f is continuous at c, then
\[\lim_{n \to \infty} f(x_n) = f(c). \]

5. Give an example to show that the converse to the assertion in (4.) is not true.

6. Give an example of a continuous bounded function on a closed interval that does not attain its maximum.