1. Prove that \(f(x) = 2x \) is uniformly continuous on \(\mathbb{R} \), and \(g(x) = x^2 \) is not.

2. Prove that if \(I \) is an interval and \(f : I \rightarrow \mathbb{R} \) satisfies:
\[
\exists M \in \mathbb{R} \text{ such that } |f'(x)| \leq M \forall x \in I,
\]
then \(f \) is uniformly continuous on \(I \).

3. Give an example to show that the condition in (1.1) is not necessary for \(f \) to be uniformly continuous.

4. Let \(a = (1, 1, 1), \ b = (0, 1, 1), \ c = (1, 1, 0) \) be three vectors in \(\mathbb{R}^3 \). Let \(d = xa + yb + zc \).
 (i) Determine the components of \(d \).
 (ii) If \(d = 0 \), prove that \(x = y = z = 0 \).
 (iii) Find \(x, y, z \) so that \(d = (1, 2, 4) \).
 (iv) Calculate \(a \cdot b \) and \(a \cdot (b - c) \).

5. Let \(a = (2, 1, 1, 1), \ b = (0, 1, 1, -1), \ c = (1, -1/2, -1/2, 3/2) \) be three vectors in \(\mathbb{R}^4 \). Let \(d = xa + yb + zc \).
 (i) Determine the components of \(d \).
 (ii) If \(d = 0 \), must \(x = y = z = 0 \)?
 (iii) Find \(x, y, z \) so that \(d = (6, 1, 1, 5) \).
 (iv) Calculate \(a \cdot b \) and \(a \cdot (b - c) \).

6. Let \(a = (1, 2, 3, 4) \) and \(b = (1, 1, 1, 1) \). Calculate the orthogonal projection of \(a \) along \(b \), the orthogonal projection of \(b \) along \(a \), and the angle between \(a \) and \(b \).

7. Three vectors \(a, b, c \) in \(\mathbb{R}^5 \) satisfy
\[
\|a\| = \|c\| = 5, \quad \|b\| = 1, \quad \|a - b + c\| = \|a + b + c\|.
\]
 If the angle between \(a \) and \(b \) is \(\pi/8 \), what is the angle between \(b \) and \(c \)?