1. An ant moves along a helical path

\[\mathbf{r}(t) = \begin{pmatrix} 2 \cos t \\ 2 \sin t \\ 3t \end{pmatrix}. \]

(a) At what rate is her distance from the origin changing when \(t = 0 \)? When \(t = 2\pi \)?

(b) If the temperature is given by \(T(x, y, z) = xy + z + z^2 \), at what rate is the temperature changing for the ant when \(t = \pi/4 \)?

2. Let \(U \) be open in \(\mathbb{R}^n \), and \(f: U \to \mathbb{R} \) be differentiable. Let \(a \in U \), and assume \(f(a) \neq 0 \). Prove that \(1/f \) is differentiable at \(a \), and find a formula for its derivative.

3. Find the equation of the tangent plane to the surface \(x^2 + y^2 + z^2 = 14 \) at the point \((1, 2, 3)\).

4. Let

\[f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}, \quad (x, y) \neq 0 \]

and \(f(0, 0) = 0 \). Calculate its second order partial derivatives everywhere. Is the function \(C^2 \)?

5. Suppose \(f: \mathbb{R}^2 \to \mathbb{R} \) is a differentiable function whose gradient is never 0 and satisfies

\[\frac{\partial f}{\partial x} = 2 \frac{\partial f}{\partial y} \]

everywhere. Find the level curves of \(f \).