1. (i) Prove that the Laplacian can be written as
\[\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}}. \]
(ii) Suppose \(f \) is holomorphic. What is \(\Delta |f(z)|^2 \)?

2. Suppose \(u \) is a real-valued harmonic function on an open disk \(D \), and \(v \) is a harmonic conjugate of \(u \). Prove that \(uv \) and \(u^2 - v^2 \) are harmonic.

3. Prove that if \(u \) is a real-valued harmonic function, then \(\frac{\partial u}{\partial z} \) is holomorphic.

4. Suppose \(u \) is real-valued harmonic on an open disk \(D \), and so is \(u^2 \). Prove that \(u \) is constant.

5. Prove that if \(z_1, z_2, z_3 \) and \(w_1, w_2, w_3 \) are both triples of distinct points in \(\mathbb{C} \), then there exists a linear fractional transformation \(\phi \) such that \(\phi(z_j) = w_j \) for \(j = 1, 2, 3 \). Prove that \(\phi \) is unique.