1. Does \(\log |z(z - 1)| \) have a harmonic conjugate in \(\mathbb{C} \setminus [0, 1] \)? What about \(\log |(z - 1)/z| \)?

2. Prove that a positive harmonic function on \(\mathbb{C} \) is constant.

3. Locate and classify the isolated singularities of the following functions (do not ignore \(\infty \)).

\[
\frac{z^4}{z^2 - 4z + 3} \quad \frac{1}{\sin^3 z} \quad \sin \frac{1}{z}.
\]

4. Prove that a rational function can be decomposed into a sum of rational functions each of which has only one pole.

5. Prove that a function \(f \) is rational if and only if it is holomorphic on \(\mathbb{C} \setminus F \), where \(F \) is a finite set, and none of the singularities of \(f \) are essential (including the point at infinity).

6. Suppose that the holomorphic functions \(f \) and \(g \) both have poles of the same order at \(z_0 \). Prove

\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}.
\]