Let
\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} \, dp.
\]
You may use without proof that
\[
\lim_{x \to \infty} \text{erf}(x) = 1.
\]

Question 1. Solve the diffusion equation \(u_t = u_{xx} \) on the whole line with initial condition \(u(x,0) = e^{2x} \).

Question 2. Solve the diffusion equation \(u_t = u_{xx} \) on the half line \(x > 0 \) with boundary condition \(u(0,t) = 0 \) and initial condition \(u(x,0) = e^{-x} \). Express your solution in terms of erf.

Question 3. A wave \(f(x+ct) \) travels along a semi-infinite string \((0 < x < \infty) \) for \(t < 0 \). Find the vibrations \(u(x,t) \) of the string for \(t > 0 \) if the end \(x = 0 \) is fixed.

Question 4. Let \(u \) be a solution of the diffusion equation \(u_t = ku_{xx} \) for \(0 < x < 1 \) and \(0 < t < 1 \) with \(u(0,t) = u(1,t) = 0 \) and \(u(x,0) = x(1-x) \). Show that \(u(x,t) \leq \frac{1}{2} \) for all \(0 < x < 1 \) and \(0 < t < 1 \).

Question 5. Let \(u \) be a solution of the diffusion equation \(u_t = ku_{xx} \) for \(-1 < x < 1 \) and \(0 < t < 1 \) with boundary condition \(u(-1,t) = u(1,t) = g(t) \) and initial condition \(u(x,0) = \varphi(x) \). Show that if \(\varphi \) is an even function, then \(u(x,t) \) is an even function in \(x \) for every \(t \).

Hint: Consider \(v(x,t) = u(x,t) - u(-x,t) \) and use uniqueness of solutions.