## Solution for HW1

## Q1. 3.5.8(3.5.10)

$$
\begin{align*}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y  \tag{0.1}\\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2} x^{2}\right\}\left(\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} y^{2}\right\} d y+\int_{-\infty}^{\infty} x y \exp \left(-\frac{1}{2}\left(x^{2}+2 y^{2}-2\right)\right) d y\right)  \tag{0.2}\\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2} x^{2}\right\}\left(\sqrt{2 \pi}+x \exp \left(-\frac{1}{2}\left(x^{2}-2\right)\right) \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{2} y^{2}\right) d y\right)  \tag{0.3}\\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2} x^{2}\right\}(\sqrt{2 \pi}+0)  \tag{0.4}\\
& =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\} . \tag{0.5}
\end{align*}
$$

where (0.3) is because $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} y^{2}\right\} d y=1$, so $\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} y^{2}\right\} d y=\sqrt{2 \pi}$. And (0.4) is because for $h(y)=y \exp \left(-\frac{1}{2} y^{2}\right), h(y)=-h(-y)$, therefore $\int_{-\infty}^{\infty} h(y) d y=0$ (or one can use change of variable by letting $z=y^{2}$ to get the same result). So

$$
\int_{\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\}=1 .
$$

To show it is a joint density we also need to show $f(x, y) \geq 0$. Since

$$
e^{x} \geq 1+x, \quad x \geq 0
$$

we have $e^{|x y|-1} \geq 1+|x y|-1=|x y|$, that is

$$
|x y| e^{-|x y|+1} \leq 1 .
$$

Note $x^{2}+y^{2} \geq 2|x y|$. Hence

$$
1+x y e^{-\left(x^{2}+y^{2}-2\right) / 2} \geq 1-|x y| e^{-\left(x^{2}+y^{2}-2\right) / 2} \geq 1-|x y| e^{-|x y|+1} \geq 0 .
$$

Same argument as (0.4) deals the $f_{Y}(y)$ part. Thus the marginals are both normal distributions. However the joint distribution is not bivariate normal.
a) Since $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$, where $Y \sim \mathcal{N}\left(X \beta, \sigma^{2} I\right)$, then

$$
\begin{aligned}
E(\hat{\beta}) & =E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} Y\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} E(Y) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta=\beta \\
V(\hat{\beta}) & =\operatorname{var}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} Y\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Var}(Y)\left[\left(X^{\prime} X\right)^{-1} X^{\prime}\right]^{\prime} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\sigma^{2} I\right) X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

$$
\Rightarrow \hat{\beta} \sim \mathcal{N}_{p}\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) \text {. This follows from Thm 3.5.2. }
$$

b) the same way as we do part a)

$$
\begin{aligned}
E(\hat{Y}) & =E(X \hat{\beta}) \\
& =X E(\hat{\beta})=X \beta \\
\operatorname{Var}(\hat{Y}) & =\operatorname{Var}(X \hat{\beta}) \\
& =X \operatorname{Var}(\hat{\beta}) X^{\prime}=\left(\sigma^{2}\right)\left[X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]
\end{aligned}
$$

$\Rightarrow \hat{Y} \sim \mathcal{N}_{n}\left(X \beta,\left(\sigma^{2}\right)\left[X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]\right)$. This follows from Thm 3.5.2.
c) Since $\hat{e}=Y-\hat{Y}$, then

$$
\begin{aligned}
E(\hat{e}) & =E(Y-\hat{Y})=E(Y)-E(\hat{Y}) \\
& =X \beta-X \beta=0 \\
\operatorname{Var}(\hat{e}) & =\operatorname{Var}(Y-\hat{Y}) \\
& =\left(\sigma^{2}\right)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)
\end{aligned}
$$

$\Rightarrow \hat{e} \sim \mathcal{N}_{n}\left(0,\left(\sigma^{2}\right)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)$. This follows from Thm 3.5.2.
d) Since $\hat{Y}=X \hat{\beta}, \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y, \hat{e}=Y-\hat{Y}$, then we have
$\left[\begin{array}{l}\hat{Y} \\ \hat{e}\end{array}\right]=\left[\begin{array}{c}X\left(X^{\prime} X\right)^{-1} X^{\prime} \\ I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\end{array}\right] Y$
then the covariance matrix of $\left[\begin{array}{l}\hat{Y} \\ \hat{e}\end{array}\right]$ is
$\left[\begin{array}{c}X\left(X^{\prime} X\right)^{-1} X^{\prime} \\ I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\end{array}\right] \sigma^{2} I\left[\begin{array}{c}X\left(X^{\prime} X\right)^{-1} X^{\prime} \\ I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\end{array}\right]^{\prime}=\sigma^{2}\left[\begin{array}{cc}X\left(X^{\prime} X\right)^{-1} X^{\prime} & 0 \\ 0 & I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\end{array}\right]$
$\Rightarrow$ Since the variance-covariance matrix only has diagonal entries, the random vectors $\hat{Y}$ and $\hat{e}$ are independent. This follows from Thm 3.5.3.
e) To get the $\beta$ that minimizes $\|Y-X \beta\|^{2}$, we take the derivative w.r.t $\beta$, and get

$$
\begin{aligned}
& \frac{\partial}{\partial \beta}\|Y-X \beta\|^{2}=(-2) X^{\prime}(Y-X \beta) \text {, then set the derivative to zero and get } \\
& \Rightarrow 2 X^{\prime} Y=2 X^{\prime} X \beta \\
& \Rightarrow X^{\prime} X \beta=X^{\prime} Y \\
& \Rightarrow \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \text { if }\left(X^{\prime} X\right) \text { is invertible } \\
& \Rightarrow \text { Thus, } \hat{\beta} \text { minimizes }\|Y-X \beta\|^{2} .
\end{aligned}
$$

Q5. 3.6.10 (3.6.11)

Since $T=\frac{W}{\sqrt{V / r}}$, where $W \sim \mathcal{N}(0,1)$ and $V \sim \chi_{r}^{2}$,
then $W^{2} \sim \chi_{1}^{2}$.
Then we have $T^{2}=\frac{W^{2} / 1}{V / r}$.
Since $W^{2} \sim \chi_{1}^{2}, V \sim \chi_{r}^{2}$ and $W$ and $V$ are independent variables, based on the definition(3.6.7) on page 192 of the textbook, $T^{2} \sim F_{1, r}$.

Q4. 3.6.5

```
## theoretical value of prob + simulations
#a) standard normal
pnorm(2, mean=0, sd=1, lower.tail=FALSE)*2
## [1] 0.04550026
set.seed(1)
n=100000
x1=rnorm(n,0,1)
(prop1=2*(1ength(which(x1>=2)))/n)
## [1] 0.04702
#b) t-dist with 1 d.f.
pt(2, df=1, lower.tail=FALSE)*2
## [1] 0.2951672
x2=rt(n,1)
(prop2=2*(1ength (which(x2>=2)))/n)
## [1] 0.29692
#c) t-dist with 3 d.f.
pt(2, df=3, lower.tail=FALSE)*2
## [1] 0.139326
x3=rt (n,3)
(prop3=2*(length(which(x3>=2)))/n)
## [1] 0.13988
#d) t-dist with 10 d.f.
pt(2, df=10, lower.tail=FALSE)*2
## [1] 0.07338803
x4=rt (n,10)
(prop4=2*(length(which(x4>=2)))/n)
## [1] 0.07328
#e) t-dist with 30 d.f.
pt(2, df=30, lower.tail=FALSE)*2
## [1] 0.05462504
x5=rt (n,30)
(prop5=2*(length(which(x5>=2)))/n)
## [1] 0.0554
```

We can see that the theoretical values are close to the simulated values. This should be the case because of the law of large numbers.

$$
\begin{aligned}
M_{X}(t) & =\int_{\mathbb{R}} e^{t x} \frac{1}{2} e^{-|x|} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-x(1-t)} d x+\frac{1}{2} \int_{-\infty}^{0} e^{t x-x} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-x(1-t)} d x+\frac{1}{2} \int_{0}^{\infty} e^{-x(1+t)} d x \\
& =\frac{1}{2(1-t)} \int_{0}^{\infty}(1-t) e^{-x(1-t)} d x+\frac{1}{2(1+t)} \int_{0}^{\infty}(1+t) e^{-x(1+t)} d x \\
& =\frac{1}{2(1-t)}+\frac{1}{2(1+t)} \\
& =\frac{1}{1-t^{2}}
\end{aligned}
$$

Note 1: We must have $|t|<1$ in order for the integral in the first line to exist. Note 2: $\int_{0}^{\infty} \theta e^{-x \theta} d x=1$ because the integrand is an exponential density.

For the second part, note that a commonly-used Maclaurin series from your first course in calculus is the following:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

for $x \in(-1,1)$. Then, use the fact that

$$
\frac{1}{1-x^{2}}=\frac{1 / 2}{1-x}+\frac{1 / 2}{1+x}
$$

to express the Maclaurin series of $\left(1-x^{2}\right)^{-1}$ as a sum of half of the Maclaurin series' of $(1-x)^{-1}$ and $(1+x)^{-1}$ :

$$
\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+x^{6}+\cdots
$$

But, since $\left(1-x^{2}\right)^{-1}$ is a MGF we also know that

$$
\frac{1}{1-x^{2}}=1+\frac{M^{(1)}(0)}{1!} x^{1}+\frac{M^{(2)}(0)}{2!} x^{2}+\frac{M^{(3)}(0)}{3!} x^{3}+\cdots
$$

which shows that

$$
E\left(X^{k}\right)=0 \text { for } \mathrm{k} \text { odd and } k!\text { for } \mathrm{k} \text { even. }
$$

