HW5 Solutions

Dr. Nick

3/4/2020

4.4.6

a. The median \tilde{x} can be computed

$$
F(x)=\int_{0}^{x} 2 t d t=x^{2}, \quad \tilde{x}=\sqrt{2} / 2
$$

Then,

$$
P\left(X_{(1)}>\sqrt{2} / 2\right)=\left(1-F\left(\frac{\sqrt{2}}{2}\right)\right)^{3}=(1-(1 / 2))^{3}=1 / 8
$$

b. The joint density is given by (see textbook)

$$
g\left(y_{1}, y_{2}, y_{3}\right)=48 y_{1} y_{2} y_{3}
$$

Then, the joint of $\left(Y_{1}, Y_{2}\right)$ can be found by integrating over y_{1} to get

$$
g\left(y_{2}, y_{3}\right)=24 y_{2}^{3} y_{3}
$$

Next, compute several expectations:

$$
\begin{gathered}
E\left(Y_{2} Y_{3}\right)=\int_{0}^{1} \int_{0}^{y_{3}} 24 y_{2}^{4} y_{3}^{2} d y_{2} d y_{3}=3 / 5 \\
g\left(y_{2}\right)=\int_{y_{2}}^{1} 24 y_{2}^{3} y_{3} d y_{3}=12 y_{2}^{3}\left(1-y_{2}^{2}\right) \\
E\left(Y_{2}\right)=24 / 35 \\
E\left(Y_{3}\right)=6 / 7 \\
\sigma_{Y_{2}}=0.1726149 \\
\sigma_{Y_{3}}=0.123718 \\
\operatorname{Corr}\left(Y_{2}, Y_{3}\right)=0.5733819
\end{gathered}
$$

4.4.7

The formulas in the text for continuous distributions make use of differentiation of CDFs and use the fact that $P(X<c)=P(X \leq c)$ when X is continuous. For discrete r.v.'s we have to be more careful about inequalities, and pmfs are not exactly analogous to pdfs so the formulas have a different interpretation.

We can use a counting argument to argue that the given function is the pmf of Y_{1}. First,

$$
P\left(Y_{1}=1\right)=P(\text { not all are bigger than } 1)=1-(5 / 6)^{5}
$$

Next,

$$
P\left(Y_{1}=2\right)=P(\text { not all are bigger than } 2 \text { and none are } 1)
$$

$=P($ none are 1$)-P($ none are 1 and all are bigger than 2$)$

$$
=(5 / 6)^{5}-(4 / 6)^{5}
$$

This argument can be repeated for $P\left(Y_{1}=3\right)$ and so on... and these probabilities match the pmf given.

4.4.8

Use Formula 4.4.3:

$$
5!\left(1-e^{-y_{2}}\right)\left(e^{-y_{2}}-e^{-y_{4}}\right) e^{-y_{4}} e^{-y_{2}} e^{-y_{4}}
$$

Put $y_{2}=z_{1}$ and $y_{4}=z_{1}+z_{2}$ and note the absolute value of the determinant of the Jacobian is simply 1 :

$$
=5!\left(1-e^{-z_{1}}\right) e^{-4 z_{1}} e^{-2 z_{2}}\left(1-e^{-z_{2}}\right)
$$

which factors into a function of z_{1} and a function of z_{2}. Therefore, the two are independent.

4.7.6

```
data<-matrix(c(15, 25,32,17,11,9,18, 29, 28,16),5,2)
chisq.test(data)
```

```
##
## Pearson's Chi-squared test
##
## data: data
## X-squared = 6.4019, df = 4, p-value = 0.1711
```

```
expected.counts<-t(outer(colSums(data), rowSums(data))/sum(data))
test.stat<-sum(((data-expected.counts)^2)/expected.counts)
test.stat
```

\#\# [1] 6.401891

```
qchisq(.95,4)
```

\#\# [1] 9.487729

```
pchisq(test.stat,4)
```

```
## [1] 0.828922
```

Do not reject the null hypothesis of homogeneity.

4.8.2

```
U <- runif(10000)
mc.est <- mean(1/(1+U))
est.se <- sd(1/(1+U))/sqrt(10000)
abs.error<-abs(mc.est - log(2))
abs.error
```

```
## [1] 0.001581317
```

```
perc.error <- abs.error/log(2)
perc.error
```

\#\# [1] 0.002281358
$c(m c . e s t-\log (2)-1.96 * e s t . s e, m c . e s t-\log (2)+1.96 * e s t . s e)$

```
## [1] -0.001150324 0.004312958
```


4.8.18

a. To use the inverse CDF method first find the CDF

$$
F(x)=\int_{0}^{x} \beta t^{\beta-1} d t=x^{\beta}
$$

Then, we find the inverse:

$$
y=x^{\beta} \Rightarrow x=y^{1 / \beta}
$$

Therefore, to general X we generate $U \sim \operatorname{Unif}(0,1)$ and assign $X=U^{1 / \beta}$. For a simulation of this see the R code below (this was optional):

```
beta<- rexp(1)+1
beta
```

\#\# [1] 1.556455

```
U <- runif(10000)
X<- U^{1/beta}
hist(X, freq = FALSE)
lines(density(X))
curve(beta*x^(beta-1), 0,1,add = TRUE, col = 'red')
```


Histogram of \mathbf{X}

b) Notice that $\beta \exp (-(-x+1))$ dominates $\beta x^{\beta-1}$ when $\beta \geq 2$. This first function is a constant multiple of a shifted, reflected, and restricted exponential distribution with $\operatorname{CDF} \frac{e^{x-1}-e^{-1}}{1-e^{-1}}$ for $x \in(0,1)$ so we can obtain samples from the inverse CDF method.

For $1<\beta \leq 2$ use a uniform distribution for the proposal distribution g.

```
beta<- rexp(1)+1 # just picking a beta at random, it has to be at least 1
beta
```

\#\# [1] 3.353966

```
desired.samps <- }1000
num.samps <- 0
num.tries<-0
samps<-rep(NA, desired.samps)
if(beta>2){
while(num.samps < 10000){
    x <- log(runif(1)*(1-exp(-1))+exp(-1))+1 #reflected and shifted exponential
        u <- runif(1)
        if(u<=((beta*(x^(beta-1)))/(beta*(exp(x-1)/(1-\operatorname{exp(-1))))))) {}
        num.samps <- num.samps+1
        samps[num.samps]<-x
    }
    num.tries <- num.tries+1
}
hist(samps, freq=FALSE, ylim = c(0,beta))
lines(density(samps))
curve(beta*exp(-(1-x)), add=TRUE, col='blue')
curve(beta*x^(beta-1), 0,1,add = TRUE, col = 'red')
print(num.samps/num.tries)
print(1/beta)
} else {
while(num.samps < 10000){
    x <- runif(1) #reflected and shifted exponential
        u <- runif(1)
        if(u<=((beta*(x^(beta-1)))/(beta))) {
            num.samps <- num.samps+1
            samps[num.samps]<-x
    }
    num.tries <- num.tries+1
}
hist(samps, freq=FALSE, ylim = c(0,beta))
lines(density(samps))
abline(a=beta, b=0, col="blue")
curve(beta*x^(beta-1), 0,1,add = TRUE, col = 'red')
print(num.samps/num.tries)
print(1/beta)
}
```


Histogram of samps


```
## [1] 0.3019324
## [1] 0.2981545
```


4.8.21

This problem requires a good deal of geometry. Consider the joint distribution of (U, V). Since each is independent $\operatorname{Unif}(-1,1)$ they are jointly independent coordinates on the square in the Euclidean plane with vertices $(\pm 1, \pm 1)$. And, $W=U^{2}+V^{2}$ is the square of the hypotenuse of the triangle formed by $(0,0)$, $(U, 0)$, and (U, V). If we consider only points (U, V) with $W<1$ then we have the circle of radius 1 which is inscribed in the above square. Points (U, V) such that $W<1$ must be uniformly distributed on the circle of radius 1 with center at the origin. Next turn your attention to X_{1} and X_{2}. We have

$$
X_{1}=\frac{U}{\sqrt{W}} \sqrt{-2 \log W}, \text { and } X_{2}=\frac{V}{\sqrt{W}} \sqrt{-2 \log W}
$$

Thinking back to the triangle formed by $(0,0),(U, 0)$, and (U, V) notice that $\frac{U}{\sqrt{\bar{W}}}=\cos \theta$ and $\frac{V}{\sqrt{W}}=\sin \theta$ where θ is the angle btween the hypotense and the x -axis. Given W which is the square of the radius (hypotenuse) we actually do not know anything about θ. Hence, θ is independent from W which means $\frac{V}{\sqrt{W}}$ and $\frac{U}{\sqrt{W}}$ are independent of W. What is the distribution of W, the square of the radius? Well, the probability $W<w$ is simply the area of the circle with radius $\sqrt{\bar{w}}$ divided by the area of the circle of radius 1 , which is $\frac{\pi w}{\pi}=w$.

Therefore, W is uniformly distributed on $(0,1)$ because its CDF matches that of a Uniform $(0,1)$ CDF. What is the distribution of θ ? Since the points (U, V) are uniform on the disk, it's clear that the angle θ is uniformly distributed on $(0,2 \pi)$ with density $1 /(2 \pi)$. Then, write X_{1} and X_{2} as

$$
X_{1}=\cos \theta \sqrt{-2 \log W}, \quad \text { and } \quad X_{2}=\sin \theta \sqrt{-2 \log W}
$$

We can solve these equations for θ and W noting that $\cos \arctan x=\frac{1}{\sqrt{1+x^{2}}}$ so that

$$
\theta=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \text { and } W=e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

Then, use the transformation method:

$$
\begin{gathered}
\frac{\partial W}{\partial x_{1}}=-x_{1} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}, \quad \text { and } \frac{\partial W}{\partial x_{2}}=-x_{2} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)} \\
\frac{\partial \theta}{\partial x_{1}}=-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}, \quad \text { and } \frac{\partial \theta}{\partial x_{2}}=\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}
\end{gathered}
$$

using the fact that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$. The determinant of the Jacobian (in absolute value) is $e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}$ and the density of θ is $\frac{1}{2 \pi}$ so the joint density of $\left(X_{1}, X_{2}\right)$ is the product of standard normal densities, as claimed.

