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Here we will discuss testing from the point of view of chapter 4 in the Hogg 
textbook. Further study of tests using likelihood ratios will be covered later.



What is hypothesis testing?

Hypothesis testing can be thought of as a part of the scientific method. Roughly, 
scientists make hypotheses about how the universe works. Then, they design 
experiments that test those hypotheses, collect data, and try to gauge to what extent 
the observations tend to support or refute the original hypothesis.



Statistical hypothesis testing

Statisticians, with the help of the practitioners/subject matter experts, seek to 
translate those scientific hypotheses into statistical hypotheses in which the 
parameter of a probability model of a population is hypothesized to take its value in a 
certain set.

For example, the discovery of the Higgs Boson hinged, in part, on a statistical 
hypothesis test that could be viewed (in an oversimplification) as testing whether or 
not the mean of a Poisson distribution of particle counts was more or less than a 
given known value. We write this as 

where is the true unknown mean, is a known value, and and are called the 
“null” and “alternative” hypotheses. You may think of the null hypothesis as the status 
quo, the current accepted theory, and the alternative as the negation (or complement) of 
the null.
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Outcomes of hypothesis tests

In a hypothesis testing problem we make a decision to either “reject” or “retain” the 
null hypothesis. These words are actually rather important and we’ll describe why 
below.

Because we do not actually know whether the null hypothesis is true or false, four 
outcomes are possible:
1. We reject the null when it is true. This is referred to as a Type 1 error.
2. We reject the null when it is false. 
3. We do not reject the null (we retain it) when it is true.
4. We do not reject the null (we retain it) when it is false. A Type 2 error.

The data we collect is random and constitutes an incomplete picture of the entire 
population. In essentially all interesting problems we will never observe the whole 
population, so we can never know the value of the population parameter about 
which we are testing. Therefore, we will never know precisely which of the four 
outcomes happens; we can control the decision but not whether or not we make the 
correct decision. So, what we do in practice is try to understand the probability that 
we make each type of error and design testing procedures so as to avoid making the 
errors we deem most undesirable.



Illustration of a basic test

Consider a normal population with known vairance and unknown mean. We 
hypothesize 

Suppose we can collect data , a random sample from this population. How 
should we decide whether to reject or retain ?

We already know , the sample mean, is a reasonable point estimate of . 
Naturally, we would consider rejecting if the data seemed to suggest , and 
this happens when is something larger than zero. So, let’s say we reject when 

for some we have not yet specified. We want to avoid errors, so let’s 
consider computing the chance of making an error. The probability of rejecting 
corresponds to 

We do not know so we cannot actually compute this probability. However, it is clear 
that when is true 

since under . Therefore, if where 
then the Type 1 error is bounded above by . 

Rather than the Type 2 error, we often analyze the Power, defined as one minus the 
probability of a type 2 error, or, in other words, the power is the probability of rejecting 

when it is false. Then, this test that power function 

When is false, so the power function can be written 

which increases in .
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Power curves for the one-sample test of a 
normal mean, variance known

alpha<-0.05

mu0<-0

sigma<-1

n<-10

pwr.mytest <- function(mu) 1-pnorm(qnorm(1-alpha)+((mu0-mu)/(sigma/sqrt(n)))) 

curve(pwr.mytest, from = 0, to = 2, xlab = expression(mu), ylab = "Power") 

alpha<-0.10

pwr.mytest <- function(mu) 1-pnorm(qnorm(1-alpha)+((mu0-mu)/(sigma/sqrt(n)))) 

curve(pwr.mytest, from = 0, to = 2, xlab = expression(mu), ylab = "Power", col = 'red', add=TRUE) 

alpha<-0.01

pwr.mytest <- function(mu) 1-pnorm(qnorm(1-alpha)+((mu0-mu)/(sigma/sqrt(n)))) 

curve(pwr.mytest, from = 0, to = 2, xlab = expression(mu), ylab = "Power", col = 'blue', add=TRUE) 

legend(1.5, .9, legend=c("alpha=0.01", "alpha=0.05", "alpha=0.10"),col=c("blue","black", "red"), lty=1)



Cost and Expected Cost

A Z-test for a normal mean.

In this case we look at the curves of Type 1 and 2 error probabilities for given tests 
(given values). Note that a given test criteria implies a relative cost difference 
between type 1 and 2 errors. The relative costs are equal precisely when .

alpha<-0.025 # change to customize

mu0<-0

sigma<-1

n<-10

C <- qnorm(1-alpha) 

pwr.mytest <- function(mu) 1-pnorm(C+((mu0-mu)/(sigma/sqrt(n)))) 

expected.cost <- function(mu) { 

  p.reject <- pwr.mytest(mu) 

  p.retain <- 1-p.reject 

  cost.type1 <- 1 # change to customize

  cost.type2 <- 1 # max(0,mu-mu0-0.1)  # change to customize

  exp.cost <- ifelse(mu<=mu0, p.reject*cost.type1, p.retain*cost.type2) 

return(exp.cost) 

} 

apply.exp.cost <- function(mu.vec) apply(matrix(mu.vec,length(mu.vec),1), 1, expected.cost) 

curve(apply.exp.cost, from = -2, to = 2, xlab = expression(mu), ylab = 'Expected Cost') 

alpha<-.10

C <- qnorm(1-alpha) 

curve(apply.exp.cost, add=TRUE, col = 'blue') 

alpha<-.20

C <- qnorm(1-alpha) 

curve(apply.exp.cost, add=TRUE, col = 'red') 

alpha<-.50

C <- qnorm(1-alpha) 

curve(apply.exp.cost, add=TRUE, col = 'green') 

legend(1.0, .9, legend=c("alpha=0.025", "alpha=0.10", "alpha=0.20"),col=c("black","blue", "red"), lty=1)

α
α = 0.5





Choice of test criteria and error rates

It is clear that the testing rule determines the probabilities of Type 1 and 2 errors. It 
can also be seen that a more conservative choice of test that reduces type 1 error 
probability will increase type 2 error probability. So, how should the test be chosen? 

It is partially a convention that small values are targeted for tests, which implies a 
low type 1 error probability, and a high cost of type 1 error relative to type 2 error. 
This sort of makes sense practically. If we think of the null hypothesis as the best 
current theory of the universe (or whatever we are studying) then we should not 
want to reject this theory unless we have strong evidence against it. However, in 
many situations the null hypothesis is “weak” in the sense that we actually have very 
little expectation of its being true. So, in practice the statistician and 
practicioners/scientists should discuss the construction of the test to reflect the 
actual relative costs for the specific situation. This is often not easy to do.

α



Normal mean, unknown variance

In this case we know 

so that, similarly to the above case with known variance, the test that rejects 
in favor of when has Type 1 error probability 
no more than .

Power function:
The power can be written 

A random variable 

that is a ratio of a standard normal r.v. plus a constant and the root of a chi-squared r.v. 
divided by its df (numerator and denominator independent) has a non-central Student t 
distribution with df. 
The power of a t-test can be written using a non-central t distribution since 
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In R, pwr.t.test

library(pwr)

## Warning: package 'pwr' was built under R version 3.4.4

d = 1 #(mu-mu0)/sigma, called the "effect size"

pwr.t.test(n=10, d = d, sig.level = 0.05, power = NULL, type = "one.sample", alternative = "greater")

##  
##      One-sample t test power calculation  
##  
##               n = 10 
##               d = 1 
##       sig.level = 0.05 
##           power = 0.897517 
##     alternative = greater



Two-sided tests

A two-sided or “point null” test has hypotheses like 

For the normal population problem with either known or unknown variance we will 
reject whenever or for some . 

Make the choices and and find that 

Note, there is no upper bounding necessary, the type 1 error probability is exactly 
. 

Power computations are slightly more complicated due to the fact that there are two 
criteria for rejection: 

but if then one would expect the first statment on the RHS to be nearly zero, 
and vice versa.
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P-values

The way we have been describing the criterion used for deciding whther to reject or 
retain is often called the “critical-value” or “test-statistic value” method. We use 
the desired level to determine a cutoff value involving a quantile of the distribution 
of a statistic. 

The p-value method is essentially the reverse. We compute the Type 1 error 
probability implied by the value of the test statistic and compare this value (called the 
p-value) to the previously chosen .

For example, consider a one-sample test for a normal mean with known variance 
versus . Suppose , , , and suppose 

that we observe . Then, the test statistic is . For 

we will not reject the null hypothesis because and . But, 
if we had chosen then would be the cutoff for the test. So, any 
value of or larger would result in us rejecting for this data.

The p-value is the smallest value that would cause us to reject for the given 
data. In this case, the p-value is Therefore, we can perform the test by 
computing the p-value corresponding to the observed data and comparing it to . If 
pvalue , reject , otherwise retain .

Caution! In practice we must always choose before we do the test! If we choose 
based on the data, then we are cheating and our test will not preserve Type 1 error 
probability at .
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P-values are uniform under the null 
hypothesis

This is pretty generally true. Here’s an example for the simple test of a normal mean:

Based on the previous example it’s not hard to see that the p-value is defined as 

when and as twice the lower tail: 

when . Then, compute 

Since then must be a uniform random variable.
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Tests for difference of normal population 
means

Suppose we are studying two populations, e.g. individuals taking a medication and 
individuals taking a placebo, and we are interested in comparing the population 
means. Consider testing 

for some chosen constant . There are two varieties of this test depending on whether 

or not we assume the two population variances are equal. If and 

for and then . 
And if then . 

In the first case of unequal variances 

does NOT have a distribution. But, as showed by Welch (1947) has a distribution that 
can be approximated by a with a complicated df given by 

Pooled t-test:
If we assume then 

where .
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T =
− − ( − )X̄ Ȳ μX μY
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Pooled versus unpooled? F-test?

If and for and then we 
have seen that 

One strategy:
1. Use F-test to decide if variances can be assumed equal
2. Use version of t-test suggested by above F-test. 

Is this actually a good idea?

N( , )Xi ∼iid μX σ2
X N( , )Yi ∼iid μX σ2
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Simulations

mu_x = 0

mu_y = 0

sigma_x = 2

sigma_y = 1

n = 10

m = 20

p.value = rep(0,100000) 

p.value.tup = rep(0,100000) 

for( i in 1:100000){ 

  X <- rnorm(n,mu_x,sigma_x) 

  Y <- rnorm(m,mu_y,sigma_y) 

  vx <- var(X) 

  vy <- var(Y) 

  sp2 <- (vx*(n-1)+vy*(m-1))/(n+m-2) 

  tp <- (mean(X)-mean(Y))/sqrt(sp2*(1/n+1/m)) 

  tup <- (mean(X)-mean(Y))/sqrt(var(X)/n+var(Y)/m) 

  sw.df <- ((vx/n+vy/m)^2)/(((vx/n)^2)/(n-1)+((vy/m)^2)/(m-1)) 

  F <- ifelse((vx/vy >qf(.95,n-1,m-1)) || (vx/vy <qf(.05,n-1,m-1)), 1,0) 

  t.pv <- ifelse(F==1,2*min(pt(tup,sw.df),1-pt(tup,sw.df)),2*min(pt(tp,n+m-2),1-pt(tp,n+m-2))) 

  p.value[i] <- t.pv 

  p.value.tup[i] <- 2*min(pt(tup,sw.df),1-pt(tup,sw.df)) 

} 

hist(p.value)

hist(p.value.tup)





Simulations

mu_x = 0

mu_y = 0

sigma_x = 1

sigma_y = 1

n = 20

m = 20

p.value = rep(0,100000) 

p.value.tup = rep(0,100000) 

for( i in 1:100000){ 

  X <- rnorm(n,mu_x,sigma_x) 

  Y <- rnorm(m,mu_y,sigma_y) 

  vx <- var(X) 

  vy <- var(Y) 

  sp2 <- (vx*(n-1)+vy*(m-1))/(n+m-2) 

  tp <- (mean(X)-mean(Y))/sqrt(sp2*(1/n+1/m)) 

  tup <- (mean(X)-mean(Y))/sqrt(var(X)/n+var(Y)/m) 

  sw.df <- ((vx/n+vy/m)^2)/(((vx/n)^2)/(n-1)+((vy/m)^2)/(m-1)) 

  F <- ifelse((vx/vy >qf(.95,n-1,m-1)) || (vx/vy <qf(.05,n-1,m-1)), 1,0) 

  t.pv <- ifelse(F==1,2*min(pt(tup,sw.df),1-pt(tup,sw.df)),2*min(pt(tp,n+m-2),1-pt(tp,n+m-2))) 

  p.value[i] <- t.pv 

  p.value.tup[i] <- 2*min(pt(tup,sw.df),1-pt(tup,sw.df)) 

} 

hist(p.value)

hist(p.value.tup)




