MATH 494 Lecture 01/13/20

Dr. Syring

Moment Generating Function (MGF)

Let X be a continuous random variable (r.v.) with density function f and define

$$M_X(t) = \int_{\mathbb{R}} e^{tx} f(x) dx.$$

Then, $M_X(t)$ is the "moment-generating function" of X where it exists, that is, for all t such that the above integral is finite.

MGF Examples

- I. Bernoulli: $1-p+pe^t$
- 2. Binomial: $(1 p + pe^t)^n$
- 3. Poisson: $e^{\lambda(e^t-1)}$
- 4. Exponential: $(1-t/\lambda)^{-1}$
- 5. Normal: $e^{t\mu + \frac{1}{2}\sigma^2 t^2}$
- 6. Multivariate Normal: $e^{t^{\top}\mu + \frac{1}{2}t^{\top}\Sigma t}$

Derivation of Bernoulli MGF

Recall that P(X=1):=p and P(X=0)=1-p , then

 $E(e^{tX}) = pe^{t} + (1-p)e^{0} = 1 - p + pe^{t}$

Derivation of Binomial MGF

Let $X \mbox{ and } Y \mbox{ be iid Bernoulli } p \mbox{ r.v.'s. Then}$

$$egin{aligned} M_{X+Y}(t) &= E(e^{t(X+Y)}) = \sum_{x,y} e^{t(x+y)} p(x,y) \ &= \sum_{x,y} e^{tx} e^{ty} p(x,y) \ &= \sum_{x,y} e^{tx} e^{ty} p(x) p(y) \ &= \sum_{x} e^{tx} p(x) \sum_{y} e^{ty} p(y) \ &= (1-p+pe^t)(1-p+pe^t) \ &= (1-p+pe^t)^2 \end{aligned}$$

And, therefore, the MGF of a Binomial (n,p) r.v. is $(1-p+pe^t)^n$.

Uses of MGFs

To compute (generate) moments! If X has MGF $M_X(t)$ that exists in a neighborhood of 0, i.e. it exists for all $t \in (-h, h)$ for some constant h > 0, then $E(X^k) = M_X^{(k)}(0)$, that is, the k^{th} moment of X is the k^{th} derivative of the MGF, evaluated at t = 0.

Example: The mean and variance of a normal r.v.:

$$\begin{split} E(X) &= \frac{d}{dt} e^{t\mu + \frac{1}{2}\sigma^2 t^2} |_{t=0} = (\mu + t\sigma_2) e^{t\mu + \frac{1}{2}\sigma^2 t^2} |_{t=0} \\ &= (\mu + 0) e^0 = \mu \\ E(X^2) &= \frac{d^2}{dt^2} e^{t\mu + \frac{1}{2}\sigma^2 t^2} |_{t=0} \\ &= (\mu + t\sigma_2)^2 e^{t\mu + \frac{1}{2}\sigma^2 t^2} + \sigma^2 e^{t\mu + \frac{1}{2}\sigma^2 t^2} |_{t=0} \\ &= \mu^2 + \sigma^2. \end{split}$$

Then, $V(X) = M''(0) - [M'(0)]^2$.

Uses of MGFs

Theorem: For two r.v.'s X and Y, if $M_X(t)$ and $M_Y(t)$ exist and are equal for all $t \in (-h, h)$ for some h > 0, then X and Yhave the same distribution. This can be proved by showing the uniqueness of the characteristic function (Fourier Transform) which would be appropriate for a graduate course in probability or analysis.

Theorem: For a sequence of r.v.'s X_1, \ldots, X_n $n \to \infty$, if the MGFs $M_{X_n}(t)$ have a limit $M_X(t)$ (that exists) then the r.v.'s converge in distribution to the r.v. with the distribution implied by $M_X(t)$. This is Levy's Continuity Theorem.

Example: Poisson approximation to Binomial.

Poisson approximation to Binomial

Recall that if $lim_{n\to\infty}np = \lambda$ then the Poisson with mean λ is a good approximation to Bin(n,p). Justification?

Lemma: If $a_n o a$ then $\lim_{n o \infty} (1 + rac{a_n}{n})^n = e^a$. Easiest Proof: Rewrite the limit as

$$[\lim_{n o\infty}(1+rac{1}{s_n})^{s_n}]^{\lim_{n o\infty}a_n}$$

where $s_n = n/a_n$. This "separating" of limits is allowed because both limits exist and do not admit an indeterminate form. Clearly, the exponent limit is a, and $s_n \to \infty$ such that for every M > 0 there is an N > 0 with $s_n > N$. Then, the base limit is eand the whole limit expression is e^a .

Then, working from MGF of Binomial:

$$\lim_{n
ightarrow\infty}(1-p+pe^t)^n$$

$$egin{aligned} &= \lim_{n o \infty} (1 - rac{np_n}{n} + rac{np_n}{n} \ &= \lim_{n o \infty} [1 + rac{np_n}{n} (e^t - 1)]^n \ &= e^{\lambda(e^t - 1)} \end{aligned}$$

which is MGF of $Pois(\lambda)$!

Nonexistence?

Cauchy distribution.

A Cauchy r.v. X has density $f(x) = rac{1}{\pi(1+x^2)}$. Then,

$$\int rac{e^{tx}}{\pi(1+x^2)} dx$$

is infinite! Let t>0 :

$$egin{aligned} &\int_{\mathbb{R}}e^{tx}rac{1}{\pi(1+x^2)}dx\geq \int_{0}^{\infty}e^{tx}rac{1}{\pi(1+x^2)}dx\ &\geq\int_{0}^{\infty}rac{tx}{\pi(1+x^2)}dx\ &=rac{t}{\pi}\int_{0}^{\infty}rac{1}{\pi(1+x^2)}dx\ &\geqrac{t}{\pi}\int_{0}^{\infty}rac{1}{x+rac{1}{x}}dx\ &\geqrac{t}{\pi}\int_{1}^{\infty}rac{1}{x+1}dx \end{aligned}$$

$$=rac{t}{\pi} {
m log}(1+x)ert_1^\infty \ =\infty$$

for all t > 0. Hence, the MGF does not exist in a neighborhood of 0. Note, in the above we use the fact that $e^y \ge y$ for all $y \ge 0$.

A generalization of the MGF, the characteristic function, always exists

$$\phi(x) = \int e^{itx} F(dx)$$

but its study is the subject of a graduate course in measure-theoretic probability.