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Moment Generating 
Function (MGF)

Let be a continuous random variable (r.v.) 
with density function and define 

Then, is the “moment-generating function” 
of where it exists, that is, for all such that the 
above integral is finite.
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MGF Examples

1. Bernoulli: 

2. Binomial: 

3. Poisson: 

4. Exponential: 

5. Normal: 

6. Multivariate Normal: 
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Derivation of Bernoulli 
MGF

Recall that and 
, then 

P(X = 1) := p

P(X = 0) = 1 − p

E( ) = p + (1 − p) = 1 − p+ petX et e0 et



Derivation of Binomial 
MGF

Let and be iid Bernoulli r.v.’s. Then 

And, therefore, the MGF of a Binomial 
r.v. is .
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Uses of MGFs

To compute (generate) moments! 
If has MGF that exists in a 
neighborhood of , i.e. it exists for all 

for some constant , then 
, that is, the moment of 

is the derivative of the MGF, evaluated at 
. 

Example: The mean and variance of a normal 
r.v.: 

Then, .
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Uses of MGFs

Theorem: For two r.v.’s and , if 
and exist and are equal for all 

for some , then and 
have the same distribution. This can be proved 
by showing the uniqueness of the characteristic 
function (Fourier Transform) which would be 
appropriate for a graduate course in probability 
or analysis. 
Theorem: For a sequence of r.v.’s 

, if the MGFs have a limit 
(that exists) then the r.v.’s converge in 

distribution to the r.v. with the distribution 
implied by . This is Levy’s Continuity 
Theorem.

Example: Poisson approximation to Binomial.
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Poisson approximation 
to Binomial

Recall that if then the Poisson 
with mean is a good approximation to 

. Justification?

Lemma: If then 
.

Easiest Proof: Rewrite the limit as 

where . This “separating” of limits is 
allowed because both limits exist and do not admit 
an indeterminate form. Clearly, the exponent limit is 

, and such that for every there is 
an with . Then, the base limit is 
and the whole limit expression is .

Then, working from MGF of Binomial: 
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which is MGF of !
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Nonexistence?

Cauchy distribution. 

A Cauchy r.v. has density . 

Then, 

is infinite!
Let : 
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for all . Hence, the MGF does not exist in a 
neighborhood of . Note, in the above we use the 
fact that for all .

A generalization of the MGF, the characteristic 
function, always exists 

but its study is the subject of a graduate course in 
measure-theoretic probability.
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