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Multivariate Normal
Distributions

Multivariate normal. 

This is a generalization of a univariate normal distribution.
The random variable  is a dimensional vector with
mean , a dimensional vector, and covariance matrix  a

 matrix. The diagonal of  gives the marginal variance
of each element of  and the off-diagonals are the
covariances of  and  for .

f(x) = ( det(Σ
1

2π
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Multivariate Normal
Distribution

Multivariate normal. 

Linear family: If  then 
 where  is 

matrix and  is  vector. 

MGF: . I’ll just show the univariate
case…

“Complete the square” in the numerator for the second
line. Then, recognize the integral of a normal density with
mean . Similar algebra can be done for multivariate
normal.

X ∼ (μ, Σ)Nk

Y = AX + b ∼ (Aμ + b,AΣ )Np A⊤ A p × k

b p × 1

(t) =MX e μ+ Σtt⊤ 1
2 t
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Chi-Squared distribution

Chi-Squared. 
If  then  for .

MGF:  for .

X ∼ (k)χ2 f(x) = 1

Γ(k/2)2k/2
xk/2−1e−x/2 x > 0

(t) = (1 − 2tMX )−k/2 t < 1/2
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Chi-Squared Distribution

If  then . Let 

, then .

Proof: Let  and let  and . Then

which is the MGF of .

Similar arguments show that if  (meaning 
is multivariate normal with dimensional mean vector 
and covariance matrix ), then 

.

X ∼ N(0, 1) Y = ∼ (1)X2 χ2

, . . . , ( )Y1 Yk ∼
ind.

χ2 ri S = ∼ ( )∑i Yi χ2 ∑i ri

Z ∼ N(0, 1) Y = Z2 t < 1/2

(t) = dzMY ∫
R
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X ∼ (μ, Σ)Np X

p− μ
Σ

Y = (X − μ (X − μ) ∼ (p))⊤Σ−1 χ2
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Familiar application

You are already familiar with the chi-squared distribution
due to its role in defining the Student t distribution. Recall
that if  and  then 
has a Student t distribution with df . You encounter this in
t-tests in which the test statistic has a t distribution under
the null.

Z ∼ N(0, 1) V ∼ (k)χ2 T = Z/ V /k
− −−−√

k
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Unfamiliar application: Chi-
Squared (Pearson’s) Test for
Independence

Suppose a population consists of four categories of
individuals,  denoting education level and 

 denoting urban or rural place of residence. If
individuals are sampled randomly, then the probability a
sample has a certain number in each category is a
“multinomial”. Let  be a vector of length  with three
zeroes and one 1 denoting the category of the 
individual. So,  if the  individual is not incategory 
 and  if the  individual is in category . The data

can be summarized in the table:

Then, the vector  has a
Multinomial distribution with parameters , the number of
observations, and  the probabilities of each
category. This is a generalization of the Binomial.

∈ {1, 0}Y1

∈ {0, 1}Y2

Xi 4
ith

= 0Xij ith

j = 1Xij ith j

= 1 = 0Y2 Y2

= 1Y1 ∑
i

Xi1 ∑
i

Xi2

= 0Y1 ∑
i

Xi3 ∑
i

Xi4

( , , )∑i Xi1 ∑i Xi2 ∑i Xi3

n

( , , )p1 p2 p3
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Unfamiliar application: Chi-
Squared (Pearson’s) Test for
Independence

We usually are interested in testing independence of  and
.

If  and  are independent then 
 for every

value of . This means 
 because

 is the estimate of  and 
 is the

estimate of . Then, a reasonable test
statistic is

because  should be close to zero when the hypothesis of
independence is true.

Y1

Y2

Y1 Y2

P( = , = ) = P( = )P( = )Y1 y1 Y2 y2 Y1 y2 Y2 y2

,y1 y2

≈ ( + ) × ( + )1
n
∑i xi1

1
n
∑i xi1 xi2

1
n
∑i xi1 xi3

=p̂x,y
1
n
∑i xi1 P( = 1, = 1)Y1 Y2

= ( + ) × ( + )p̂xp̂y
1
n
∑i xi1 xi2

1
n
∑i xi1 xi3

P( = 1)P( = 1)Y1 Y2

S := ∑
,y1 y2

(n − np̂x,y p̂xp̂y)2

np̂xp̂y

S
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Distribution of test statistic S

It’s not easy to prove that , approximately, but I’ll
give a short sketch.

Rewrite  as

Recall that only 3 out of the 4 summands above are actually
random variables; since we know the sample size , we
know the last term is fixed given the first three. And, since
the terms are multinomial, 

. I will skip the explanation
but this fact allows us to write the test statistic as

where in the above  is the sample covariance matrix and I
am referring to the vector of three estimated joint
probabilites as  and the vectors of three estimated
marginal probabilites as  and  and take  to be a
vector of elementwise products. Finally, the CLT says that 

 converges to  so that

S ∼ (3)χ2

S

S :=∑
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⎛

⎝
⎜
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− −−−−−
√
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⎠
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2

n
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−1
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p̂x p̂y p̂xp̂y

p̂x,y N( , (1 − )/n)px,y px,y px,y

n( − ( − )p̂x,y pxpy)⊤Σ−1 p̂x,y pxpy
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converges to . But, in  we have “hats”, meaning we
have estimates (random variables). There is another result,
Slutsky’s Theorem whicha llows us to use the LLN along
with the CLT so that we may conclude  converges in
distirbution to .

(3)χ2 S

S

(3)χ2


