Lecture 01/I5/20
Dr. Syring

Multivariate Normal Distributions

Multivariate normal.

$$
f(x)=\left(\frac{1}{2 \pi}\right)^{-k / 2} \operatorname{det}(\Sigma)^{-1 / 2} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}
$$

This is a generalization of a univariate normal distribution. The random variable X is a k-dimensional vector with mean μ, a k-dimensional vector, and covariance matrix Σ a $k \times k$ matrix. The diagonal of Σ gives the marginal variance of each element of X and the off-diagonals are the covariances of X_{i} and X_{j} for $1 \leq i, j \leq k$.

file:///E:/Teaching/WashU/Spring20_494/Notes/Syring011520.html\#(1)

Multivariate Normal Distribution

Multivariate normal.
Linear family: If $X \sim N_{k}(\mu, \Sigma)$ then
$Y=A X+b \sim N_{p}\left(A \mu+b, A \Sigma A^{\top}\right)$ where A is $p \times k$ matrix and b is $p \times 1$ vector.

MGF: $M_{X}(t)=e^{t^{\top} \mu+\frac{1}{2} t^{\top} \Sigma t}$. I'll just show the univariate case...

$$
\begin{gathered}
\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{t x} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} d x \\
=\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x-\left(\mu+\sigma^{2} t\right)^{2}\right.} e^{\mu t+\frac{1}{2} t^{2} \sigma^{2}} d x \\
=e^{\mu t+\frac{1}{2} t^{2} \sigma^{2}}
\end{gathered}
$$

"Complete the square" in the numerator for the second line. Then, recognize the integral of a normal density with mean $\mu+t \sigma^{2}$. Similar algebra can be done for multivariate normal.

Chi-Squared distribution

Chi-Squared.
If $X \sim \chi^{2}(k)$ then $f(x)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2-1} e^{-x / 2}$ for $x>0$.
MGF: $M_{X}(t)=(1-2 t)^{-k / 2}$ for $t<1 / 2$.

Chi-Squared Distribution

If $X \sim N(0,1)$ then $Y=X^{2} \sim \chi^{2}(1)$. Let
$Y_{1}, \ldots, Y_{k} \stackrel{\text { ind. }}{\sim} \chi^{2}\left(r_{i}\right)$, then $S=\sum_{i} Y_{i} \sim \chi^{2}\left(\sum_{i} r_{i}\right)$.
Proof: Let $Z \sim N(0,1)$ and let $Y=Z^{2}$ and $t<1 / 2$. Then

$$
\begin{gathered}
M_{Y}(t)=\int_{\mathbb{R}} e^{t z^{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z \\
=\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}(1-2 t)} d z \\
=(1-2 t)^{-1 / 2} \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sqrt{\frac{1}{1-2 t}}} e^{-\frac{1}{2 \frac{1}{1-2 t}} z^{2}} d z \\
=(1-2 t)^{-1 / 2},
\end{gathered}
$$

which is the MGF of $\chi^{2}(1)$.
Similar arguments show that if $X \sim N_{p}(\mu, \Sigma)$ (meaning X is multivariate normal with p-dimensional mean vector μ and covariance matrix Σ), then
$Y=(X-\mu)^{\top} \Sigma^{-1}(X-\mu) \sim \chi^{2}(p)$.

Familiar application

You are already familiar with the chi-squared distribution due to its role in defining the Student t distribution. Recall that if $Z \sim N(0,1)$ and $V \sim \chi^{2}(k)$ then $T=Z / \sqrt{V / k}$ has a Student t distribution with df k. You encounter this in t-tests in which the test statistic has a t distribution under the null.

Unfamiliar application: ChiSquared (Pearson's) Test for Independence

Suppose a population consists of four categories of individuals, $Y_{1} \in\{1,0\}$ denoting education level and $Y_{2} \in\{0,1\}$ denoting urban or rural place of residence. If individuals are sampled randomly, then the probability a sample has a certain number in each category is a "multinomial". Let X_{i} be a vector of length 4 with three zeroes and one I denoting the category of the $i^{t h}$ individual. So, $X_{i j}=0$ if the $i^{\text {th }}$ individual is not incategory j and $X_{i j}=1$ if the $i^{t h}$ individual is in category j. The data can be summarized in the table:

$$
\begin{array}{lll}
& Y_{2}=1 & Y_{2}=0 \\
Y_{1}=1 & \sum_{i} X_{i 1} & \sum_{i} X_{i 2} \\
Y_{1}=0 & \sum_{i} X_{i 3} & \sum_{i} X_{i 4}
\end{array}
$$

Then, the vector $\left(\sum_{i} X_{i 1}, \sum_{i} X_{i 2}, \sum_{i} X_{i 3}\right)$ has a Multinomial distribution with parameters n, the number of observations, and (p_{1}, p_{2}, p_{3}) the probabilities of each category. This is a generalization of the Binomial.

Unfamiliar application: ChiSquared (Pearson's) Test for Independence

We usually are interested in testing independence of Y_{1} and Y_{2}.

If Y_{1} and Y_{2} are independent then
$P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)=P\left(Y_{1}=y_{2}\right) P\left(Y_{2}=y_{2}\right)$ for every value of y_{1}, y_{2}. This means
$\frac{1}{n} \sum_{i} x_{i 1} \approx \frac{1}{n}\left(\sum_{i} x_{i 1}+x_{i 2}\right) \times \frac{1}{n}\left(\sum_{i} x_{i 1}+x_{i 3}\right)$ because $\hat{p}_{x, y}=\frac{1}{n} \sum_{i} x_{i 1}$ is the estimate of $P\left(Y_{1}=1, Y_{2}=1\right)$ and $\hat{p}_{x} \hat{p}_{y}=\frac{1}{n}\left(\sum_{i} x_{i 1}+x_{i 2}\right) \times \frac{1}{n}\left(\sum_{i} x_{i 1}+x_{i 3}\right)$ is the estimate of $P\left(Y_{1}=1\right) P\left(Y_{2}=1\right)$. Then, a reasonable test statistic is

$$
S:=\sum_{y_{1}, y_{2}} \frac{\left(n \hat{p}_{x, y}-n \hat{p}_{x} \hat{p}_{y}\right)^{2}}{n \hat{p}_{x} \hat{p}_{y}}
$$

because S should be close to zero when the hypothesis of independence is true.

Distribution of test statistic \mathbf{S}

It's not easy to prove that $S \sim \chi^{2}(3)$, approximately, but l'll give a short sketch.

Rewrite S as

$$
S:=\sum_{x, y}\left(\frac{\hat{p}_{x, y}-\hat{p}_{x} \hat{p}_{y}}{\sqrt{\hat{p}_{x} \hat{p}_{y} / n}}\right)^{2}
$$

Recall that only 3 out of the 4 summands above are actually random variables; since we know the sample size n, we know the last term is fixed given the first three. And, since the terms are multinomial,
$\operatorname{Cov}\left(\sum_{i} X_{i j}, \sum_{i} X_{i k}\right)=-p_{j} p_{k}$. I will skip the explanation but this fact allows us to write the test statistic as

$$
S=n\left(\hat{p}_{x, y}-\hat{p}_{x} \hat{p}_{y}\right)^{\top} \hat{\Sigma}^{-1}\left(\hat{p}_{x, y}-\hat{p}_{x} \hat{p}_{y}\right)
$$

where in the above $\hat{\Sigma}$ is the sample covariance matrix and । am referring to the vector of three estimated joint probabilites as $\hat{p}_{x, y}$ and the vectors of three estimated marginal probabilites as \hat{p}_{x} and \hat{p}_{y} and take $\hat{p}_{x} \hat{p}_{y}$ to be a vector of elementwise products. Finally, the CLT says that $\hat{p}_{x, y}$ converges to $N\left(p_{x, y}, p_{x, y}\left(1-p_{x, y}\right) / n\right)$ so that

$$
n\left(\hat{p}_{x, y}-p_{x} p_{y}\right)^{\top} \Sigma^{-1}\left(\hat{p}_{x, y}-p_{x} p_{y}\right)
$$

converges to $\chi^{2}(3)$. But, in S we have "hats", meaning we have estimates (random variables). There is another result, Slutsky's Theorem whicha llows us to use the LLN along with the CLT so that we may conclude S converges in distirbution to $\chi^{2}(3)$.

