Lecture 01/I7/20

Dr. Syring

Multivariate Normal and linear transformations

Theorem 3.5.2: the family of multivariate normal distributions is closed under linear transformations.

Let $X \sim N_{p}(\mu, \Sigma)$. Let $Y=A X+b, A$ is an $m \times p$ matrix and b is an $m \times 1$ vector.

Then,

$$
\begin{gathered}
M_{Y}(t)=E\left(e^{t^{\top} Y}\right)=E\left(e^{t^{\top}(A X+b)}\right) \\
=e^{t^{\top} b} E\left(e^{\left(A^{\top} t\right)^{\top} X}\right) \\
=e^{t^{\top} b} e^{\left(A^{\top} t\right)^{\top} \mu+\frac{1}{2}\left(A^{\top} t\right)^{\top} \Sigma\left(A^{\top} t\right)} \\
=e^{t^{\top}(A \mu+b)+(1 / 2) t^{\top} A \Sigma A^{\top} t}
\end{gathered}
$$

which is the MGF of $N_{m}\left(A \mu+b, A \Sigma A^{\top}\right)$.

Independence of multivariate normal r.v.'s

Theorem 3.5.3: Let $X \sim N_{n}(\mu, \Sigma)$ and partition $X=\left(X_{1}, X_{2}\right)$, $\mu=\left(\mu_{1}, \mu_{2}\right)$ and

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

If $\Sigma_{12}=0$ then $X_{1} \perp X_{2}$.

Using the partition the MGF of X can be writted

$$
M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)=e^{t_{1}^{\top} \mu_{1}+t_{2}^{\top} \mu_{2}+\frac{1}{2}\left[t_{1}^{\top} \Sigma_{11} t_{1}+t_{2}^{\top} \Sigma_{21} t_{1}+t_{1}^{\top} \Sigma_{12} t_{2}+t_{2}^{\top} \Sigma_{22} t_{2}\right]}
$$

Then, putting $\Sigma_{12}=0_{p \times q}$ which implies $\Sigma_{21}=0_{q \times p}$ we have

$$
\begin{gathered}
M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)=e^{t_{1}^{\top} \mu_{1} \frac{1}{2} t_{1}^{\top} \Sigma_{11} t_{1}} e^{t_{2}^{\top} \mu_{2} \frac{1}{2} t_{2}^{\top} \Sigma_{22} t_{2}} \\
=M_{X_{1}}\left(t_{1}\right) M_{X_{2}}\left(t_{2}\right)
\end{gathered}
$$

proving independence.

Student t Distribution

Let $U \sim N\left(\mu, \sigma^{2}\right)$ and $V \sim \chi 2(k)$ and $U \perp V$. Then, $T=U / \sqrt{V / k}$ has a Student t distribution with k degrees of freedom. The density function is

$$
f(t)=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k \pi} \Gamma\left(\frac{k}{2}\right)}\left(1+\frac{t^{2}}{k}\right)^{-\frac{k+1}{2}} .
$$

Statistics application

Student's Theorem: Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right), \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. Then,
a) $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$
b) $\bar{X}_{n} \perp S^{2}$
c) $(n-1) S^{2} / \sigma^{2} \sim \chi^{2}(n-1)$
d) $T=\frac{X-\mu}{S / \sqrt{n}} \sim t(n-1)$

Part a) $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$

$$
\begin{gathered}
E\left(e^{t \bar{X}}\right)=\prod_{i=1}^{n} \int_{\mathbb{R}} e^{\frac{1}{n} x_{i} t} \phi\left(x_{i} ; \mu, \sigma^{2}\right) d x_{i} \\
=\prod_{i=1}^{n} e^{\frac{t}{n} \mu+\frac{1}{2} \frac{t^{2}}{n^{2}} \sigma^{2}} \\
=e^{t \mu+\frac{1}{2} t \sigma^{2} / n}
\end{gathered}
$$

which is the MGF of $N\left(\mu, \sigma^{2} / n\right)$
Theorem 3.5.2 similarly shows that linear transformations of normal r.v.'s are normally distributed.

Part b) $\bar{X}_{n} \perp S^{2}$

Let $v^{\top}=(1 / n, 1 / n, \ldots, 1 / n)_{1 \times n}, I_{n}$ be the $n \times n$ identity matrix and 1_{n} be an n-vector of I's. Then,

$$
W:=\left(\bar{X}_{n}, X-\bar{X}_{n}\right)=\left(v^{\top} X,\left(I_{n}-1_{n} v^{\top}\right) X\right)
$$

The covariance of W is

$$
\operatorname{Cov}(W)=\sigma^{2}\left[\begin{array}{cc}
1 / n & 0_{n}^{\top} \\
0_{n} & I_{n}-1_{n} v^{\top}
\end{array}\right]
$$

Since the covariance of \bar{X}_{n} and $X-\bar{X}_{n}$ is zero, they are independent (Theorem 3.5.3).

Part c) $(n-1) S^{2} / \sigma^{2} \sim \chi^{2}(n-1)$
Let $V=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$. Then $V \sim \chi^{2}(n)$ because the summands are independent $\chi^{2}(1)$.

Next, decompose V as

$$
\begin{aligned}
V & =\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}_{n}+\bar{X}_{n}-\mu}{\sigma}\right)^{2} \\
= & \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}_{n}}{\sigma}\right)^{2}+\left(\frac{X_{i}-\mu}{\sigma / \sqrt{n}}\right)^{2} \\
& =\frac{(n-1) S^{2}}{\sigma^{2}}+\left(\frac{X_{i}-\mu}{\sigma / \sqrt{n}}\right)^{2}
\end{aligned}
$$

The LHS is $\chi^{2}(n)$ as we said previously. The second term on the RHS is $\chi^{2}(1)$ and the two terms on the RHS are independent. Therefore, the first term on the RHS must be $\chi^{2}(n-1)$.

Part d) $T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$
The conclusion is now immediate by expressing T as

$$
\begin{aligned}
& T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \\
& =\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{(n-1) \sigma^{2}}}}
\end{aligned}
$$

is the ratio of a standard normal r.v. and independent chi-squared r.v. divided by its df.

