Lecture 0 I/22/20

Dr. Syring

Statistical Inference

Collect data $X \sim P$. Want to infer something about P. Cases:
a) Know nothing about P and wish to infer the precise distribution. (This is very challenging). b) Know very little about P and wish to infer some "small" thing about P, such as its mean.
(This is not so hard as a)).
c) Know a parametric family to which P belongs and wish to infer the parameter, thus identifying P (This is also not so hard as a)).

We will mostly be concerned with c) but today we talk about a).

Histogram Estimates

Section 4.I. 2

Histograms are not just statistical graphics; they are also estimators of probability mass/density functions.

Sometimes you actually want to estimate the whole distribution of a r.v. But, even if you want to estimate something simpler like a mean or variance, you can estimate the whole distribution and then derive an estimate of a simpler quantity by using its relationship with the distribution. For example, suppose we estimate a pdf of a continuous r.v. by $\hat{f}(x)$. Then, we can estimate the mean of X by $\hat{\mu}=\int x \hat{f}(x) d x$. This is called "plug-in" estimation.

Histogram Estimates, Finite Discrete Case

Suppose X has, essentially, a multinomial distribution, meaning that X takes one of a finite number of values, e.g.
$X \in\{1,2,3, \ldots, k\}$.
By the LLN,

$$
\hat{p}_{j}:=\frac{1}{n} \sum_{i} 1\left\{X_{i}=j\right\} \xrightarrow{i . p .} p_{j} .
$$

(And, since k is finite, this convergence can be made uniform.)

So, the histogram with bars at $1,2,3, \ldots, k$ of heights \hat{p}_{j} converges to the graph of the pmf $p(x)=p_{j}$ for $x=j$.

Histogram Estimates, Continuous Case

Supose our observed data is $x_{1}, x_{2}, \ldots, x_{n}$ and denote $a:=\min x_{i}$ and $b:=\max x_{i}$. Then, for some "small" $h>0$ and $m=(b-a+2 h) / 2 h$

$$
(a-h, b+h)=\bigcup_{j=1}^{m}(a+(2 j-3) h, a+(2 j-1) h) .
$$

For $x \in A_{j}:=(a+(2 j-3) h, a+(2 j-1) h)$ approximate the pdf by

$$
\hat{f}(x)=\frac{1}{2 h n} \sum_{i} \#\left(x_{i} \in A_{j}\right)
$$

So, there is a different histogram/density estimate for each h used! Much more difficult to show that this "works" than in the discrete case (GlivenkoCantelli Thm).

But, these histogram estimates are all valid densities since

$$
\begin{gathered}
\int \hat{f}(x) d x=\sum_{j=1}^{m} \int_{a+(2 j-3) h}^{a+(2 j-1) h)} \frac{\#\left(x \in A_{j}\right)}{2 h n} d x \\
\quad=\sum_{j=1}^{m} \#\left(x \in A_{j}\right) \frac{2 h}{2 h n}=\frac{2 h n}{2 h n}=1 .
\end{gathered}
$$

Glivenko-Cantelli

Theorem

Slightly different than histogram, we actually estimate the CDF $F(x)$. Suppose X_{1}, \ldots, X_{n} iid with CDF $F(x)$ defined on the real line. Let $\hat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} 1\left\{X_{i} \leq x\right\}$.

Clear that for a fixed $x \hat{F}(x)$ converges to $F(x)$ i.p. and $n \hat{F}(x)$ is binomial so the CLT says that for every fixed x

$$
\sqrt{n}(\hat{F}(x)-F(x)) \sim N(0, F(x)(1-F(x)))
$$

Glivenko-Cantelli makes the LLN "uniform".

Theorem: $\lim \sup _{x}|\hat{F}(x)-F(x)|=0$ in probability. The difficulty (why this isn't immediate) is because we are taking the maximum over an uncountable set.

Proof: Let $-\infty=t_{0}<t_{1}<\ldots<t_{k}=\infty$ such that

$$
F\left(t_{i}-\right)-F\left(t_{i-1}\right)<\epsilon
$$

As a result, for any $t \in\left(t_{i-1}, t_{i}\right)$

$$
\hat{F}(t)-F(t) \leq \hat{F}\left(t_{i}-\right)-F\left(t_{i}-\right)+\epsilon
$$

and

$$
\hat{F}(t)-F(t) \geq \hat{F}\left(t_{i-1}\right)-F\left(t_{i-1}\right)-\epsilon .
$$

For any fixed $p>0$ and $\epsilon>0$ there exists an $n\left(t_{i}-\right)$ and $n\left(t_{i-1}\right)$ s.t. for all n larger than both these we have both
$P\left(\left|\hat{F}\left(t_{i}-\right)-F\left(t_{i}-\right)\right|>\epsilon\right)<p$ and
$P\left(\left|\hat{F}\left(t_{i-1}\right)-F\left(t_{i-1}\right)\right|>\epsilon\right)<p$. Take
$N>\max \left\{\max _{i} n\left(t_{i}-\right), \max _{i} n\left(t_{i-1}\right)\right\}$ and these probability statements hold uniformly (that is for every i). Therefore,

$$
\lim _{n \rightarrow \infty} \sup _{x}|\hat{F}(x)-F(x)|<\epsilon
$$

for every ϵ and hence the limit is zero.

