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Statistical Inference

Collect data . Want to infer something 
about . Cases: 
a) Know nothing about and wish to infer the 
precise distribution. (This is very challenging).
b) Know very little about and wish to infer 
some “small” thing about , such as its mean. 
(This is not so hard as a)). 
c) Know a parametric family to which 
belongs and wish to infer the parameter, thus 
identifying (This is also not so hard as a)). 

We will mostly be concerned with c) but today 
we talk about a).
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Histogram Estimates

Section 4.1.2

Histograms are not just statistical graphics; they 
are also estimators of probability mass/density 
functions. 

Sometimes you actually want to estimate the 
whole distribution of a r.v. But, even if you 
want to estimate something simpler like a mean 
or variance, you can estimate the whole 
distribution and then derive an estimate of a 
simpler quantity by using its relationship with 
the distribution. For example, suppose we 
estimate a pdf of a continuous r.v. by . 
Then, we can estimate the mean of by 

. This is called “plug-in” 
estimation.
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Histogram Estimates, 
Finite Discrete Case

Suppose has, essentially, a multinomial 
distribution, meaning that takes one of a 
finite number of values, e.g. 

. 

By the LLN, 

(And, since is finite, this convergence can be made 
uniform.)

So, the histogram with bars at of 
heights converges to the graph of the pmf 

for .
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Histogram Estimates, 
Continuous Case

Supose our observed data is and 
denote and . Then, 
for some “small” and 

For 
approximate the pdf by 

So, there is a different histogram/density estimate 
for each used! Much more difficult to show that 
this “works” than in the discrete case (Glivenko-
Cantelli Thm).
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But, these histogram estimates are all valid densities 
since
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Glivenko-Cantelli 
Theorem

Slightly different than histogram, we actually 
estimate the CDF . Suppose 
iid with CDF defined on the real line. Let 

. 

Clear that for a fixed converges to 
i.p. and is binomial so the CLT 

says that for every fixed 

.

Glivenko-Cantelli makes the LLN “uniform”. 

Theorem: in 
probability. The difficulty (why this isn’t 
immediate) is because we are taking the 
maximum over an uncountable set.
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Proof: Let such 
that 

As a result, for any 

and 

For any fixed and there exists an 
and s.t. for all larger than both 

these we have both 
and 
. Take 

and these 
probability statements hold uniformly (that is for 
every ). Therefore, 

for every and hence the limit is zero.
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