
Lecture 01/24/20

Dr. Syring 



Point Estimation

Last time we discussed histogram estimates for the distribution of a 
random variable . Today we are interested in learning about some 
aspect of such as the mean or the median, not necessarily itself. 

From MATH 3200 you learned that certain estimators are usually 
“good” for estimating certain charactersitics of a distribution 
(population).

For example, the sample mean of iid data is good for estimating the 
population mean whenever exists (is finite). By “good” we might 
mean, for example, unbiased.

since the are identically distributed (they have the same mean.)

But, how, in general, do we come up with “good” point estimators?
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Estimating equations and likelihood

Often times we can derive point estimators as the minimizer (or 
maximizer, or root) of a function that depends on data and a 
parameter. Sometimes we can use intuition to come up with or 
we define it by considering a family of possible probability models.

One way to find estimating equations is to choose a particular class of 
probability models for . For example, we might assume that 

, that is, we assume is a normal 
distribution. Denote the pdf of by which depends on some 
parameter . Then, the likelihood is ; it is simply the 
density function, but while the density is viewed as a funciton of for 
fixed the likelihood is viewed as a function of the parameter for fixed 
data. Often times we would rather work with the loglikelihood 

. It is important to note that since the logarithm is 
a monotonic and one-to-one transformation the loglikelihood and 
likelihood are maximized at the same point.
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Maximum likelihood estimation

Suppose is the pdf of a r.v. and denote 
for a generic . The “maximum likelihood” estimation technique says to 
use 

for observed (non-random) . Typically, is differentiable so thatt he 
maximizer can be found by solving 

in . This is called the “estimating equation” in your textbook. 
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Some support for MLE

So, why would this technique work?

Since we have 

Therefore, is maximized at which implies that 

estimates 

are sensible for estimating .
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MLE Examples

Poisson distribution.

We want to maximize the loglikelihood 

Take the derivative and set equal to zero 

which implies .
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MLE Examples

Laplace distribution , , . 

The loglikelihood is 

For a fixed the loglikelihood is maximized in by taking to be any value 
such that , which means , the sample 
median (not unique). Tricky to see why. is differentiable 
everywhere except at the points with derivative 

. The sum of these is zero at the samle median. 

To maximize with respect to we can take the partial derivative and set 
equal to zero, 

which implies .
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An intuitive estimating equation for 
a mean

Suppose has a finite mean and variance. Consider the function 
for some generic value , and consider 
where . 

Why might this be a good function to use to estimate ? Well, the 
mean is a measure of the “center” of the distribution of . So, if we 
pick to be near the mean, then the average squared distance from 
to the data points should be small, whereas if we pick far from the 
mean, it will probably be far from many or all of the data points, and 

will tend to be large by comparison. 

With a little algebra 

which implies is minimized when .

Therefore, it is sensible to estimate by minimizing the function 

with respect to , for some data .
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To find the point estimator, take the partial derivative of 
with respect to , set it equal to zero and solve:

The estimating equation is , which means that . 
And, we know is a good point estimator for the mean.
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