Chi-Squared Tests

Dr. Syring

February 8, 2020

Tabulated Categorical Data

A common data format consists of the counts of observations falling into different categories, such as the hair and eye color data set in R:

HairEyeColor

```
## , , Sex = Male
##
## Eye
## Hair Brown Blue Hazel Green
## Black 32 11 10 3
## Brown 53 50 25 15
## Red }1
## Blond 
##
## , , Sex = Female
##
## Eye
## Hair Brown Blue Hazel Green
## Black }3
## Brown 66 34 29 14
## Red }1
## Blond }
```


Multinomial Distribution

The binomial distribution can be used to model the probability an observation falls into one of two categories. If we generalize to the case of $k>2$ categories we obtain the multinomial distribution (section 3.1), which can be used to describe categorical data. A multinomial r.v. X is a vector $X=\left(X_{1}, \ldots, X_{k-1}\right)$ giving the counts of observations in each of $k-1$ categories. The count in the $k^{t h}$ category is then determined to be $n-\sum_{i=1}^{k-1} x_{i}$ where n is the total number of observations. A multinomial r.v has pmf

$$
P(X=x)=\frac{n!}{x_{1}!x_{2}!* \cdots * x_{k}!} p_{1}^{x_{1}} * \cdots * p_{k}^{x_{k}}
$$

where p_{i} gives the probability of the $i^{t h}$ category.

A relation between binomial and Chi-Squared

Recall that a binomial r.v. Y_{1} has mean $n p$ and variance $n p(1-p)$. Then, by the CLT

$$
\frac{Y_{1}-n p_{1}}{\sqrt{n p_{1}\left(1-p_{1}\right)}} \xrightarrow{D} N(0,1)
$$

Therefore,

$$
\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}\left(1-p_{1}\right)} \xrightarrow{D} \chi^{2}(1) .
$$

If we define $Y_{2}=n-Y_{1}$ and $p_{2}=1-p_{1}$ we can write the above r.v. as

$$
\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}\left(1-p_{1}\right)}=\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(Y_{2}-n p_{2}\right)^{2}}{n p_{2}} .
$$

Now, generalize the above expression to a multinomial r.v. Suppose $X=\left(X_{1}, \ldots, X_{k-1}\right)$ is a multinomial r.v. and define $X_{k}=n-\sum_{i=1}^{k-1} X_{i}$ and $p_{k}=1-\sum_{i=1}^{k-1} p_{i}$. Then, we might guess that

$$
\sum_{i=1}^{k} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}} \xrightarrow{D} \chi^{2}(k-1) .
$$

This is actually true!

Short proof sketch

Write

$$
\begin{gathered}
\sum_{i=1}^{k} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}}=\sum_{i=1}^{k-1} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}}+\frac{\left(X_{k}-n p_{k}\right)^{2}}{n p_{k}} \\
=\sum_{i=1}^{k-1} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}}+\frac{\left(\sum_{i=1}^{k-1} X_{i}-n p_{i}\right)^{2}}{n p_{k}}
\end{gathered}
$$

becuase $X_{k}=n-\sum_{i=1}^{k-1} X_{i}$ and $n p_{k}=n-\sum_{i=1}^{k-1} n p_{i}$.
Then, confirm that the last expression above can be written

$$
(X-n p)^{\top} \Sigma^{-1}(X-n p)
$$

where X is the column vector of X_{1}, \ldots, X_{k-1} and p is the column vector of p_{1}, \ldots, p_{k-1} and Σ is the matrix $n *\left[\operatorname{diag}(p)-p p^{\top}\right]$.

Since $(X-n p)^{\top} \Sigma^{-1 / 2}$ is approximately standard normal, the quadratic form above is approximately chi-squared with degrees of freedom $k-1$.

Testing for a specific Multinomial distribution

We can use the Chi-squared random variable

$$
\sum_{i=1}^{k} \frac{\left(X_{i}-n p_{0 i}\right)^{2}}{n p_{0 i}}
$$

to test the null hypothesis

$$
H_{0}: p_{1}=p_{01}, p_{2}=p_{02}, \ldots, p_{k-1}=p_{0, k-1}
$$

for a chosen vector $p_{0}=\left(p_{01}, \ldots, p_{0, k-1}\right)$. The alternative hypothesis is simply that at least one of these category proportions p_{i} is not $p_{0 i}$.

Example: testing Mendel's theory of inheritance

The biologist Gregory Mendel hypothesized that yellow pea plants crossed with green pea plants would produce 75% yellow and 25% green child plants. Of $n=8023$ hybrid seeds 2001 grew into green plants and 6022 grew into yellow pea plants.

$$
\begin{aligned}
& H_{0}: p_{1}=.25, p_{2}=0.75 \text {. The test statistic is } \\
& \frac{(2001-0.25 * 8023)^{2}}{0.25 * 8023}+\frac{(6022-0.75 * 8023)^{2}}{0.75 * 8023}=0.015
\end{aligned}
$$

If we test at $\alpha=0.05$ then the $\chi^{2}(1) 95^{t h}$ quantile is 3.84 so we do not reject H_{0}.

Testing equivalence of two Multinomial distributions

Suppose we have tabulated data like the hair and eye color data set in R that we model with a multinomial distribution.

```
HairEyeColor
```

\#\# , , Sex = Male					
\#\#					
\#\#		Eye			
\#\#	Hair	Brown	Blue	Hazel	Green
\#\#	Black	32	11	10	3
\#\#	Brown	53	50	25	15
\#\#	Red	10	10	7	7
\#\#	Blond	3	30	5	8
\#\#					
\#\# , , Sex = Female					
\#\#					
\#\#		Eye			
\#\#	Hair	Brown	Blue	Hazel	Green
\#\#	Black	36	9	5	2
\#\#	Brown	66	34	29	14
\#\#	Red	16	7	7	7
\#\#	Blond	4	64	5	8

There are two tables here, one for males and one for females. How could we test the null hypothesis that the distributions of hair and eye color are the same for males and females?

$$
H_{0}: p_{1 i}=p_{2 i}, \text { for all } i
$$

where $p_{1 i}$ and $p_{2 i}$ are the category i probabilities for males and females.

The point estimate for each $p_{1 i}=p_{2 i}:=p_{i}$ is the combined sample proportion $\frac{X_{1 i}+X_{2 i}}{n_{1}+n_{2}}$. And, the test statistic

$$
\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left(X_{j i}-n_{j}\left[\frac{X_{1 i}+X_{2 i}}{n_{1}+n_{2}}\right]\right)^{2}}{n_{j}\left[\frac{X_{1 i}+X_{2 i}}{n_{1}+n_{2}}\right]}
$$

is approximately $\chi^{2}(k-1)$. Why $k-\mathrm{df}$? There are $2 k-2$ parameters, but under the null the distributions are equal so there are only $k-1$ "free" parameters.

Example computation for hair and eye color data:

```
df <- as.data.frame(HairEyeColor)
p.hat <- (df[1:16,4]+df[17:32,4])/sum(df[,4])
n.m <- sum(df[1:16,4])
n.f <- sum(df[17:32,4])
chi.sq.test.stat <- sum(((df[1:16,4]-n.m*p.hat[1:16])^2)/n.m*p.hat[1:16])+sum(((df[17:32,4]-n.f*p.
chi.sq.test.stat
```

\#\# [1] 0.3425414
qchisq(.95,15)

Chi-square tests of independence

A $2 \times k$ "contingency table" has two variables that can take on $2 \times k$ values and records the number of observations in each combination. For example, a 2×2 table is

```
UCB<-matrix(c(3738, 4704, 1494, 2827), 2, 2, byrow=T)
rownames(UCB)<-c("Men", "Women")
colnames(UCB)<-c("Admit", "Deny")
mosaicplot(t(UCB),ylab="Gender",xlab="Graduate application", main="")
```


We may be interested in whether or not the chance of admission depends on gender. Let p denote the probability of
admission, and p_{M}, p_{F} denote the probability of admission for a Male and a Female applicant. Then, we want to test if $H_{0}: p_{M}=p_{F}=p$. If $p_{i j}$ denotes the (i, j) cell probability in the table, then independence means $p_{i} j=p_{i} \cdot * p_{\cdot j}$ where $p_{i}=p_{i 1}+p_{i 2}$ and $p_{\cdot j}=p_{1 j}+p_{2 j}$. Therefore, the test statistic is

$$
\chi^{2}=\frac{\sum_{i=1}^{2} \sum_{j=1}^{2}\left(X_{i j}-n_{j}\left[\left(X_{i 1}+X_{i 2}\right) /\left(n_{1}+n_{2}\right)\right]\right)^{2}}{n_{j}\left[\left(X_{i 1}+X_{i 2}\right) /\left(n_{1}+n_{2}\right)\right]}
$$

where n_{1} and n_{2} denote the number of males and females.

```
UCB<-matrix(c(3738, 4704, 1494, 2827), 2, 2, byrow=T)
rownames(UCB)<-c("Men", "Women")
colnames(UCB)<-c("Admit", "Deny")
UCB
```

```
## Admit Deny
## Men 3738 4704
## Women 1494 2827
```

```
p<-apply(UCB,1, sum)/sum(UCB)
q<-apply(UCB, 2, sum)/sum(UCB)
p
```

```
## Men Women
## 0.6614432 0.3385568
```

```
q
```

```
## Admit Deny
## 0.409935 0.590065
```

expected<-outer (p, q, FUN="*")
expected*sum(UCB)

```
## Admit Deny
## Men 3460.671 4981.329
## Women 1771.329 2549.671
```

```
((UCB - expected*sum(UCB))^2)/(expected*sum(UCB))
```

```
## Admit Deny
## Men 22.22441 15.43993
## Women 43.42015 30.16521
```

```
sum(((UCB - expected*sum(UCB))^2)/(expected*sum(UCB)))
```

```
## [1] 111.2497
```

```
X2<-chisq.test(UCB)
X2
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCB
## X-squared = 110.85, df = 1, p-value < 2.2e-16
```

The degrees of freedom are the number of free parameters minus the number of estimated parameters. We have a multinomial distribution with 4 categories, so there are 3 free parameters. We have estimated 2 parameters \hat{p}_{i} and $\hat{p}_{\cdot j}$ so there are 3-2 = I df.

```
UCBAdmissions
```

```
##
##
## Gender
## Admit Male Female
## Admitted 512 89
## Rejected 313 19
##
## , , Dept = B
##
```

```
## Gender
## Admit Male Female
## Admitted 353 17
## Rejected 207 8
##
## , , Dept = C
##
## Gender
## Admit Male Female
## Admitted 120 202
## Rejected 205 391
##
## , , Dept = D
##
## Gender
## Admit Male Female
## Admitted 138 131
## Rejected 279 244
##
## , , Dept = E
##
## Gender
## Admit Male Female
## Admitted 53 94
## Rejected 138 299
##
## , , Dept = F
##
## Gender
## Admit Male Female
## Admitted 22 24
## Rejected 351 317
```

chisq.test(UCBAdmissions[,,1])

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 1]
## X-squared = 16.372, df = 1, p-value = 5.205e-05
```

chisq.test(UCBAdmissions[,,2])

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 2]
## X-squared = 0.085098, df = 1, p-value = 0.7705
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 3]
## X-squared = 0.63322, df = 1, p-value = 0.4262
```

chisq.test(UCBAdmissions[,,4])

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 4]
## X-squared = 0.22159, df = 1, p-value = 0.6378
```

chisq.test(UCBAdmissions[,,5])

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 5]
## X-squared = 0.80805, df = 1, p-value = 0.3687
```

chisq.test(UCBAdmissions[,,6])

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCBAdmissions[, , 6]
## X-squared = 0.21824, df = 1, p-value = 0.6404
```

