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Tabulated Categorical Data

A common data format consists of the counts of observations 
falling into different categories, such as the hair and eye color 
data set in R:

HairEyeColor

## , , Sex = Male 
##  
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
##  
## , , Sex = Female 
##  
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8



Multinomial Distribution

The binomial distribution can be used to model the 
probability an observation falls into one of two categories. If 
we generalize to the case of categories we obtain the 
multinomial distribution (section 3.1), which can be used to 
describe categorical data. A multinomial r.v. is a vector 

giving the counts of observations in 
each of categories. The count in the category is 
then determined to be where is the total 
number of observations. A multinomial r.v has pmf 

where gives the probability of the category.
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A relation between binomial 
and Chi-Squared

Recall that a binomial r.v. has mean and variance 
. Then, by the CLT 

Therefore, 

If we define and we can write the above 
r.v. as 

Now, generalize the above expression to a multinomial r.v. 
Suppose is a multinomial r.v. and define 

and . Then, we might 
guess that 

This is actually true!
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Short proof sketch

Write 

becuase and .

Then, confirm that the last expression above can be written 

where is the column vector of and is the 
column vector of and is the matrix 

.

Since is approximately standard normal, 
the quadratic form above is approximately chi-squared with 
degrees of freedom .
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Testing for a specific 
Multinomial distribution

We can use the Chi-squared random variable 

to test the null hypothesis 

for a chosen vector . The alternative 
hypothesis is simply that at least one of these category 
proportions is not .
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Example: testing Mendel’s 
theory of inheritance

The biologist Gregory Mendel hypothesized that yellow pea 
plants crossed with green pea plants would produce 
yellow and green child plants. Of hybrid seeds 

grew into green plants and grew into yellow pea 
plants. 

. The test statistic is 

If we test at then the quantile is 3.84 so we 
do not reject .
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Testing equivalence of two 
Multinomial distributions

Suppose we have tabulated data like the hair and eye color 
data set in R that we model with a multinomial distribution.

HairEyeColor

## , , Sex = Male 
##  
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
##  
## , , Sex = Female 
##  
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8

There are two tables here, one for males and one for females. 
How could we test the null hypothesis that the distributions 
of hair and eye color are the same for males and females?

where and are the category probabilities for males and 
females. 
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The point estimate for each is the combined 
sample proportion . And, the test statistic 

is approximately . Why df? There are 
parameters, but under the null the distributions are equal so there 
are only “free” parameters.

Example computation for hair and eye color data:

df <- as.data.frame(HairEyeColor) 

p.hat <- (df[1:16,4]+df[17:32,4])/sum(df[,4]) 

n.m <- sum(df[1:16,4]) 

n.f <- sum(df[17:32,4]) 

chi.sq.test.stat <- sum(((df[1:16,4]-n.m*p.hat[1:16])^2)/n.m*p.hat[1:16])+sum(((df[17:32,4]-n.f*p.hat[

chi.sq.test.stat

## [1] 0.3425414

qchisq(.95,15)

## [1] 24.99579
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Chi-square tests of 
independence

A “contingency table” has two variables that can take 
on values and records the number of observations in 
each combination. For example, a table is

UCB<-matrix(c(3738,4704,1494,2827),2,2,byrow=T) 

rownames(UCB)<-c("Men","Women") 

colnames(UCB)<-c("Admit","Deny") 

mosaicplot(t(UCB),ylab="Gender",xlab="Graduate application", main="")

We may be interested in whether or not the chance of 
admission depends on gender. Let denote the probability of 
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admission, and , denote the probability of admission 
for a Male and a Female applicant. Then, we want to test if 

. If denotes the cell probability 
in the table, then independence means where 

and . Therefore, the test 
statistic is 

where and denote the number of males and females.

UCB<-matrix(c(3738,4704,1494,2827),2,2,byrow=T) 

rownames(UCB)<-c("Men","Women") 

colnames(UCB)<-c("Admit","Deny") 

UCB

##       Admit Deny 
## Men    3738 4704 
## Women  1494 2827

p<-apply(UCB,1,sum)/sum(UCB) 

q<-apply(UCB,2,sum)/sum(UCB) 

p

##       Men     Women  
## 0.6614432 0.3385568

q

##    Admit     Deny  
## 0.409935 0.590065

expected<-outer(p,q,FUN="*") 

expected*sum(UCB)
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##          Admit     Deny 
## Men   3460.671 4981.329 
## Women 1771.329 2549.671

((UCB - expected*sum(UCB))^2)/(expected*sum(UCB))

##          Admit     Deny 
## Men   22.22441 15.43993 
## Women 43.42015 30.16521

sum(((UCB - expected*sum(UCB))^2)/(expected*sum(UCB)))

## [1] 111.2497

X2<-chisq.test(UCB) 

X2

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCB 
## X-squared = 110.85, df = 1, p-value < 2.2e-16

The degrees of freedom are the number of free parameters 
minus the number of estimated parameters. We have a 
multinomial distribution with 4 categories, so there are 3 free 
parameters. We have estimated 2 parameters and so 
there are 3-2 = 1 df.

UCBAdmissions 

## , , Dept = A 
##  
##           Gender 
## Admit      Male Female 
##   Admitted  512     89 
##   Rejected  313     19 
##  
## , , Dept = B 
##  
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##           Gender 
## Admit      Male Female 
##   Admitted  353     17 
##   Rejected  207      8 
##  
## , , Dept = C 
##  
##           Gender 
## Admit      Male Female 
##   Admitted  120    202 
##   Rejected  205    391 
##  
## , , Dept = D 
##  
##           Gender 
## Admit      Male Female 
##   Admitted  138    131 
##   Rejected  279    244 
##  
## , , Dept = E 
##  
##           Gender 
## Admit      Male Female 
##   Admitted   53     94 
##   Rejected  138    299 
##  
## , , Dept = F 
##  
##           Gender 
## Admit      Male Female 
##   Admitted   22     24 
##   Rejected  351    317

chisq.test(UCBAdmissions[,,1])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 1] 
## X-squared = 16.372, df = 1, p-value = 5.205e-05

chisq.test(UCBAdmissions[,,2])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 2] 
## X-squared = 0.085098, df = 1, p-value = 0.7705



chisq.test(UCBAdmissions[,,3])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 3] 
## X-squared = 0.63322, df = 1, p-value = 0.4262

chisq.test(UCBAdmissions[,,4])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 4] 
## X-squared = 0.22159, df = 1, p-value = 0.6378

chisq.test(UCBAdmissions[,,5])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 5] 
## X-squared = 0.80805, df = 1, p-value = 0.3687

chisq.test(UCBAdmissions[,,6])

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  UCBAdmissions[, , 6] 
## X-squared = 0.21824, df = 1, p-value = 0.6404


