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Definition

Let FXn
denote the sequence of CDFs of a sequence of random 

variables Xn and let FX denote the CDF of a random variable X . We 

say that Xn converges in distribution to X if 

lim
n→∞

FXn
(x) = FX(x)

at every point x where F is continuous.

The issue of continuity is mostly a technical one to avoid problems 
with situations like the following. Suppose P(Xn = 1/n) = 1 and 

P(X = 0) = 1 . Then, it certainly feels like Xn converges in distribution 

to X but FXn
(0) = 0 for every n , so the limit is not equal to FX(0) . 

But, 0 is a point of discontinuity of FX , and FX agrees with FXn
, in 

the limit, at every other point (the points of continuity). This is why 
we make this technical point part of our definition.



Central Limit Theorem: very short 
proof

We will give a short proof of the CLT using moment generating 
funtions. Details are also in Theorem 5.3.1 in the textbook. 

Consider iid random variables X1, X2, . . . , Xn n → ∞ with moment 

generating functions MX(t) that exist in a neighborhood of 0. Then 

√n
X̄n − μ

σ
→ Z

in distribution where Z ∼ N(0, 1) .

Proof:
First note that 

Zn :=√n
X̄n − μ

σ
=

1

√n

∞

∑
i=1

Xi − μ

σ
=:

1

√n

∞

∑
i=1

Zi

Second, note the MGF of √n
X̄n− μ

σ
can be written (using 

independence) 

MZn
(s) = EesZn = Ees

1

√n
∑∞
i=1

Xi− μ

σ =

n

∏
i=1

Ees
1

√n

Xi− μ

σ =

n

∏
i=1

MZi
(t /√n)
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where t = s . Finally, take a 2 term Taylor expansion of MZi
(t /√n)

around zero making note that MZi
(0) = 1 , M ′

Zi
(0) = 0 , M ″

Zi
(0) = 1 , 

and ∃η ∈ (0, t /√n) s.t. 

MZi
(t /√n) = MZi

(0) + M ′
Zi
(0)t /√n + M ″

Zi
(η)

t2

2n

= 1 + M ″
Zi
(η)

t2

2n

Then, 

MZn
(s) = 1 + M ″

Zi
(η)

t2

2n

n

→ et
2 / 2

as n → ∞ because M ″
Zi
(η) → 1 .

More advanced versions of the proof do not require moment 
generating functions. Recall that the existence of the MGF implies the 
tails of the distribution are sufficiently light. A weaker but similar 
condition would restrict the variances of the random variables; see 
Lindeberg-Feller CLT.
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Relationship to convergence in 
probability

Look at FXn
(x) at a point of continuity x . By definition 

FXn
(x) = P(Xn ≤ x) . By law of total probability 

P(Xn ≤ x) = P(Xn ≤ x ∩ |Xn − X | ≤ ϵ) + P(Xn ≤ x ∩ |Xn − X | > ϵ).

If X < x + ϵ then the first event on the RHS definitely happens, so its 
probability is bounded by P(X < x + ϵ) . If |Xn − X | > ϵ happens then 

the second event on the RHS happens so its probability is bounded by 

P( |Xn − X > | ϵ) , which limits to zero if Xn

i . p .

→ X . So, we see that 

lim sup
n→∞

FXn
(x) ≤ F(x + ϵ)

The same sort of argument says 

lim inf
n→∞

FXn
(x) ≥ F(x − ϵ)

And, since ϵ is arbitrary the limit exists and Xn converges to X in 

distribution.



Rates of Convergence

From the CLT we have 

√n
X̄ − μ

σ
→ N(0, 1)

and the decay of the standard deviation at rate n −1 / 2 is a kind of 
“rate” of convergence. For example, let an be any divergent sequence 

(like loglogn ) 

P( | X̄n − μ | > ann
−1 / 2) → 0

Since an is arbitrarily slow we can say the rate of convergence is 

n −1 / 2 .

The rate is not always n −1 / 2 . Suppose we estimate the “location” of 
a distribution by way of a “modal interval.” Take the center of 
shortest interval containing half the observations as your measure of 
location. This estimator typically has rate of convergence n −1 / 3 .

In practice, rates of convergence are an intermediary result between 
convergence in probability to a point (consistency) and convergence 
in distribution (which can be used to construct tests/CIs).



Examples

1. Let Xn have CDF FXn
(x) = x −

sin ( 2nπx )

2nπ
on x ∈ (0, 1) . The 

limit is a uniform CDF. 

2. Let Xn be the maximum of Unif(0, θ) . The limit is Exp(θ) . 

3. Let FXn
(x) = 1 − (1 − x)n for 0 ≤ x ≤ 1 . Limit is the point mass 

at zero. Beware of discontinuity.

4. Let FXn
(x) =

enx

1+ enx
for x ∈ R . Limit is the point mass at zero.



Moment generating function 
technique

Theorem 5.2.10: If the MGFs converge, i.e. limn→∞MXn
(t) = MX(t)

then Xn converges to X in distribution. 

This was our approach to CLT.

Common situation: Often times we can express MXn
(t) in terms of a 

Taylor expansion and the limit is 

lim
n→∞

[1 + b /n + ψ(n) /n]cn = ebc

if the function ψ(n) has limit zero.

Application:

Let Zn ∼ χ2(n) , then it has mean n and variance 2n . Let Yn =
Zn− n

√2n
be the standardized sequence. Then, Yn converges to standard 

normal.



Delta Method

Suppose Zn :=√n(Xn − θ) /σ converges to standard normal. First, this 

implies that Zn is “bounded in probability”, i.e. 

P( |Zn | > Bϵ) < ϵ

for all large enough n . Next, consider a differentiable transformation 
of Xn , g(Xn) . What is the limiting distribution of g(Xn) ?

A Taylor expansion provides 

√ng(Xn) = √ng(θ) + √ng ′ (θ)(Xn − θ) + op(√n |Xn − θ | )

and this last expression says 
op (√n |Xn− θ | )

√n |Xn− θ |
→ 0 Theorem 5.2.8.

Then, rearranging we have 

√n[g(Xn) − g(θ)]

σg ′ (θ)2
= √n |Xn − θ | + δ

where δ convergest to zero in probability. Then, 
√n [g (Xn ) − g ( θ ) ]

σg ′ ( θ )2

converges to √n |Xn − θ | in probability, and therefore also in 

distribution.


