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Definition

Let Fy denote the sequence of CDFs of a sequence of random

variables Xn and let FX denote the CDF of a random variable X . We
say that X, converges in distribution to X if

lim Fy, (x) = Fy(x)

n— 0

at every point x where F'is continuous.

The issue of continuity is mostly a technical one to avoid problems
with situations like the following. Suppose P(X, = 1/n) = 1 and

P(X = 0) = 1. Then, it certainly feels like X, converges in distribution
to X but /'y (0) = 0 for every n, so the limit is not equal to F,(0) .
But, 0 is a point of discontinuity of /'y, and F'y agrees with F', , in

the limit, at every other point (the points of continuity). This is why
we make this technical point part of our definition.



Central Limit Theorem: very short
proof

We will give a short proof of the CLT using moment generating
funtions. Details are also in Theorem 5.3.1 in the textbook.

Consider iid random variables X{, X,, ..., X, n — oo with moment

generating functions M (7) that exist in a neighborhood of 0. Then

X, —u

Jr

in distribution where Z ~ N(0, 1) .
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o

Proof:
First note that
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Zn:=\/n - \/,Z( ) =: %Z&Zi

X, —u
Second, note the MGF of \/; —— can be written (using

independence)

My, (s) = Ee*r = Ee* (Zl 1( ; ) HEe\/‘( ) HMZ(t/\/_)



where ¢ = s . Finally, take a 2 term Taylor expansion of MZ'(t/\/;)

around zero making note that M, (0) = 1 ,Mé(O) =0, M;(O) =1,
and 3 € (0, t/\/;) s.t.
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My (t/\Jn) = M, (0) + MZi(O)t/\/Z + M, ()5,
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=1+M_ (n)—
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Then,

— 1 _|_ " ﬁ " t2/2
M Zn(S) = M Zi(iy) o — e

as n — oo because M;(;y) — 1.

More advanced versions of the proof do not require moment
generating functions. Recall that the existence of the MGF implies the
tails of the distribution are sufficiently light. A weaker but similar

condition would restrict the variances of the random variables; see
Lindeberg-Feller CLT.



Relationship to convergence in
probability

Look at F'y (x) at a point of continuity x . By definition
Fy (x) = P(X, < x) . By law of total probability

PX,<x)=P(X,<xN |X,-X| <+ PX,<xN |X,—X| >

If X < x + € then the first event on the RHS definitely happens, so its
probability is bounded by P(X < x +¢) . If | X, — X| > ¢ happens then

the second event on the RHS happens so its probability is bounded by
I.p.
P(|X, —X> |e), which limits to zero if X, — X . So, we see that

limsup F'y (x) < F(x + ¢)

n— o0
The same sort of argument says

liminf F, (x) > F(x — €)

n— o0

And, since ¢ is arbitrary the limit exists and X, converges to X in

distribution.



Rates of Convergence
From the CLT we have

X—pu

o

\In — N0, 1)
and the decay of the standard deviation at rate n~ 12 is a kind of
“rate” of convergence. For example, let a, be any divergent sequence

(like loglogn )
P(1X,—p| >an %) —0

Since a,, is arbitrarily slow we can say the rate of convergence is
n_ 1/2 .

The rate is not always » —2 Suppose we estimate the “location” of
a distribution by way of a “modal interval.” Take the center of
shortest interval containing half the observations as your measure of

location. This estimator typically has rate of convergence n /3

In practice, rates of convergence are an intermediary result between
convergence in probability to a point (consistency) and convergence
in distribution (which can be used to construct tests/Cls).



Examples

sin (2n7mx)

S~ OonxE (0,1).The

|. Let X, have CDF Fy (x) = x —

limit is a uniform CDF.

2. Let X be the maximum of Unif(0, 6) . The limit is Exp(0) .

3.Let Fy (x) =1—(1 —x)"for 0 <x < 1. Limit is the point mass

at zero. Beware of discontinuity.

enx

4. Let Fy (x) = for x € R . Limit is the point mass at zero.

1+e™



Moment generating function
technique

Theorem 5.2.10: If the MGFs converge, i.e. lim, _ M, (1) = M (1)

then X, converges to X in distribution.

This was our approach to CLT.

Common situation: Often times we can express M, (f) in terms of a
n

Taylor expansion and the limit is

lim [1 +&/n + w(n)/n]" = &>

n— oo
if the function w(n) has limit zero.

Application:
Z, —n

Jon

2 , : _
Let Z, ~ x“(n), then it has mean n and variance 2n . Let ¥, =

be the standardized sequence. Then, Y, converges to standard

normal.



Delta Method

Suppose Z = \/;(Xn — 0)/ o converges to standard normal. First, this
implies that Z, is “bounded in probability”, i.e.

P(|Z,| >B) <c
for all large enough n . Next, consider a differentiable transformation

of X, , g(X,) . What is the limiting distribution of g(X ) ?

A Taylor expansion provides
\Jng(X,) = \ng(0) + \ng ()X, — 0) + 0, (\n| X, — 0])

0,(\n|X,~0])
and this last expression says — 0 Theorem 5.2.8.
\n|X, =0

Then, rearranging we have

\n[g(X,) - g(6)
g ()

]
=\n|X, —0|+6

\nlg(X,)-g(0)]

og’ (0)?
converges to \/Z | X, — 6] in probability, and therefore also in

where J convergest to zero in probability. Then,

distribution.



