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Order Statistics

The order statistics of a sample are the smallest to 
largest, indicated by .

, , . . . ,X1 X2 Xn

, , . . . ,X(1) X(2) X(n)



Distribution of Order Statistics

Suppose are iid for with distribution function (CDF) . 
Then, the probability that the smallest order statistics is larger than a 
certain value can be expressed using :
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Density function of order statistics

Density of . A counting argument: There are ways to choose 
which is . There are left and are smaller than , 
so 

You can generalize this argument (carry it forward) to find joint densities 
of 2 or more order statistics.
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Example: Uniform

Suppose we have iid Uniform r.v.’s. Then, 

which is a Beta distribution with shape parameters and .
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Example: Range

The range is , and let . The joint density of 
is 

The Jacobian from to is . Then, 

Suppose the r.v.’s are iid Unif(0,1), then 

which is .
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Quantiles and sample quantiles

The quantile of a r.v. with distribution function is 
. One estimator is where . Then, 

Let with so that 

which is the expectation of which is 
. 

Since is a nearly unbiased estimator.
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Nonparametric CI for pop. quantile

We want to find a confidence interval for the quantile of the 
distribution of a continuous r.v. . Consider the event 

for . Since we have 

For a given coverage we can compute the above probability and use 
sample quantiles as the interval estimate. 

data <- c(2,  3,  4,  6, 10, 13, 17, 22, 39, 43) 

p <- 1/2

n<-10

binom.int <- function(n,j,k,p){ 

  s.seq <- seq(from = j, to = k-1, by = 1) 

return(sum(dbinom(s.seq,n,p))) 

} 

binom.int(10,2,8,1/2)

## [1] 0.9345703

binom.int(10,3,9,1/2)

## [1] 0.9345703

binom.int(10,4,9,1/2)

## [1] 0.8173828

binom.int(10,3,8,1/2)

## [1] 0.890625

c(data[2], data[8])

## [1]  3 22
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c(data[3], data[9])

## [1]  4 39


