Math 128 Exam 1 Spring’10

You may use a (non-programable) scientific calculator for the exam, and you may use a 3 x 5 note card. This exam has 20 questions worth 5 points each. Indicate your answers on the answer card.

1. For \(f(x, y) = x^2 y \) and an unspecified number \(a \) find \(f(3, a + 1) \).
 (a) \(9a \)
 (b) \(9 \)
 (c) \((a + 1)^2 \)
 (d) \(9(a + 1)^2 \)
 (e) \(6(a + 1) \)
 (f) cannot be determined from the given information
 (g) \(9a^2 \)
 (h) \(6a \)
 (i) \(6a^2 \)
 (j) \(9(a + 1) \)

2. Suppose \(F(x, y) = Ax^a y^{1-a} \) (\(A \) and \(a \) are unspecified constants). What is the relationship between \(F(3x, 3y) \) and \(F(x, y) \)?
 (a) \(F(3x, 3y) = F(x, y) \)
 (b) \(F(3x, 3y) = 3^a F(x, y) \)
 (c) \(F(3x, 3y) = 3^{-a} F(x, y) \)
 (d) \(F(3x, 3y) = a F(x, y) \)
 (e) \(F(3x, 3y) = 3a F(x, y) \)
 (f) \(F(3x, 3y) = F(x, y)/a \)
 (g) \(F(3x, 3y) = F(x, y)/3 \)
 (h) \(F(3x, 3y) = 3 F(x, y) \)
 (i) \(F(3x, 3y) = F(x, y)^3 \)
 (j) \(F(3x, 3y) = F(x, y)^a \)
3. Suppose

\[f(x, y) = \frac{\sqrt{xy + 2}}{1 + x^3 y} \]

Which of the points \(A = (1, 1), B = (2, 2), C = (1, -3), D = (1, -1), E = (0, 0) \) are NOT in the domain of the function \(f \)?

(a) \(A, C \)
(b) \(C, D \)
(c) \(A, B \)
(d) \(B, D \)
(e) \(B, C \)
(f) \(A, D \)
(g) \(A, E \)
(h) \(B, E \)
(i) \(C, E \)
(j) \(D, E \)

4. For the function

\[f(x, y) = x^3 + 3x^2 y^2 \]

What is

\[\frac{\partial f}{\partial x} = f_x ? \]

(a) \(3x^2 \)
(b) \(3x^2 + 3x^2 y^2 \)
(c) \(6xy^2 \)
(d) \(6x^2 y \)
(e) \(3x^2 + 6xy^2 \)
(f) \(x^3 + 6x^2 y \)
(g) \(x^3 + 6xy^2 \)
(h) \(3x^2 + 12xy \)
(i) \(6x + 6y^2 \)
(j) \(6y^2 \)
5. For the same function $f(x, y) = x^3 + 3x^2y^2$

What is

$$\frac{\partial f}{\partial y} = f_y ?$$

(a) $3x^2$
(b) $3x^2 + 3x^2y^2$
(c) $6xy^2$
(d) $6x^2y$
(e) $3x^2 + 6xy^2$
(f) $x^3 + 6x^2y$
(g) $x^3 + 6xy^2$
(h) $3x^2 + 12xy$
(i) $6x + 6y^2$
(j) $6y^2x^2$

6. For the same function $f(x, y) = x^3 + 3x^2y^2$

What is

$$\frac{\partial \partial f}{\partial x \partial y} = f_{yx} ?$$

(a) $3x^2$
(b) $3x^2 + 3x^2y^2$
(c) $6xy^2$
(d) $6x^2y$
(e) $3x^2 + 6xy^2$
(f) $x^3 + 6x^2y$
(g) $x^3 + 6xy^2$
(h) $12xy$
(i) $6x + 6y^2$
(j) $6y^2x^2$
7. Suppose \[f(x, y) = xy^2 + 1 \]

Which of the points \(A = (1, 1), B = (0, 1), C = (-1, 0), D = (-1, -1) \) are on the same level curve of \(f \) as the point \((0, 0) \)?

(a) A, B
(b) A, C,
(c) A, D
(d) B, C
(e) B, D
(f) C, D
(g) A, B, C
(h) A, B, D
(i) A, C, D
(j) B, C, D

8. What is the distance between the points \((1, 2, 3)\) and \((2, 0, 2)\)?

(a) \(\sqrt{1} \)
(b) \(\sqrt{2} \)
(c) \(\sqrt{3} \)
(d) \(\sqrt{4} \)
(e) \(\sqrt{5} \)
(f) \(\sqrt{6} \)
(g) \(\sqrt{7} \)
(h) \(\sqrt{8} \)
(i) \(\sqrt{9} \)
(j) \(\sqrt{10} \)
9. What is the equation of the sphere of radius 3 and center \((2, 1, -1)\)?

(a) \(x^2 + y^2 + z^2 = 9\)
(b) \(x^2 + y^2 + z^2 = 4\)
(c) \(x + 2y + 3z = 9\)
(d) \(2x + y - z = 3\)
(e) \(2x + y - z = 9\)
(f) \((x - 2)^2 + (y - 1)^2 + (z + 1)^2 = 3\)
(g) \((x - 2)^2 + (y - 1)^2 + (z + 1)^2 = 9\)
(h) \(x^2y^2z^{-1} = 9\)
(i) \(2x^2 + y^2 - z^2 = 3\)
(j) \(2x^2 + y^2 - z^2 = 9\)

10. For the function \(g(x, y, z) = xe^{xy} + xe^{xz}\)

find

\[
\frac{\partial}{\partial y} g = g_y
\]

(a) \(yze^{xy} + e^{xz} + zxe^{xz}\)
(b) \(xze^{xy}\)
(c) \(2ze^{xy}\)
(d) \(2xe^{xz} + 2zxe^{xz}\)
(e) \(x^2yze^{xy}\)
(f) \(e^{xz} + zxe^{xz}\)
(g) \(yze^{xy} + zxe^{xz}\)
(h) \(yze^{xy} + e^{xz}\)
(i) \(yze^{xy} + e^{xz} + zxe^{xz}\)
(j) \(yze^{xy} + e^{xz} + yxe^{xz}\)
11. For the same function find

\(g(x, y, z) = xe^{xy} + xe^{xz} \)

\(\frac{\partial}{\partial x} g = g_x \)

(a) \(yxe^{xy} + e^{xz} + zxe^{xz} \)
(b) \(xze^{xy} \)
(c) \(2zxe^{xz} \)
(d) \(2xe^{xz} + 2zxe^{xz} \)
(e) \(x^2ye^{xy} \)
(f) \(e^{xz} + zxe^{xz} \)
(g) \(yze^{xy} + zxe^{xz} \)
(h) \(yze^{xy} + e^{xz} \)
(i) \(yze^{xy} + e^{xz} + zxe^{xz} \)
(j) \(yze^{xy} + e^{xz} + yxe^{xz} \)

12. For the same function find

\(g(x, y, z) = xe^{xy} + xe^{xz} \)

\(\frac{\partial^2}{\partial y^2} g = g_{yy} \)

\(\frac{\partial^2}{\partial y^2} g = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(xe^{xy} + xe^{xz} \right) \right) \)
\(= \frac{\partial}{\partial y} (zxe^y) \)
\(= zxe^y \)

(a) \(yze^{xy} + e^{xz} + zxe^{xz} \)
(b) \(xze^{xy} \)
(c) \(2zxe^{xz} \)
(d) \(\Box x^2ze^{xy} \)
(e) \(e^{xz} + zxe^{xz} \)
(f) \(yze^{xy} + zxe^{xz} \)
(g) \(yze^{xy} + e^{xz} \)
(h) \(yze^{xy} + e^{xz} \)
(i) \(yze^{xy} + e^{xz} + zxe^{xz} \)
(j) \(yze^{xy} + e^{xz} + yxe^{xz} \)
13. Find the Hessian of the function \(f(x, y) = x^3 + 3xy \)

\[
\begin{array}{c}
a. \begin{pmatrix} 6 & 3 \\ 3 & 0 \end{pmatrix} \\
b. \begin{pmatrix} 6x & 3 \\ 3 & 0 \end{pmatrix} \\
c. \begin{pmatrix} 6x & 0 \\ 0 & 3xy \end{pmatrix} \\
d. \begin{pmatrix} 0 & 0 \\ 0 & 6x \end{pmatrix} \\
e. \begin{pmatrix} 3x^2 + 3y & 3x \\ 3x & 3x^2 + 3y \end{pmatrix} \\
f. \begin{pmatrix} x^3 & 0 \\ 0 & 3xy \end{pmatrix} \\
g. \begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix} \\
h. \begin{pmatrix} 3 & x \\ y & xy \end{pmatrix} \\
i. \begin{pmatrix} 3xy & 0 \\ 0 & 6x \end{pmatrix}
\end{array}
\]

\[
\begin{pmatrix}
\ell_{xx} & \ell_{xy} \\
\ell_{yx} & \ell_{yy}
\end{pmatrix} = \begin{pmatrix} 6x & 3 \\ 3 & 0 \end{pmatrix}
\]

14. Suppose \(Y = F(K, L, T) \) is an agricultural production function where \(Y \) is the number of units of output produced, \(K \) is the capital investment, \(L \) is the labor input and \(T \) is the area of land used. Suppose that \(\partial Y / \partial K = 5 \). Which of the following are true?

i. The marginal product of capital is 5
ii. The marginal product of capital is positive
iii. An increase of \(K \) of 2 units would lead to an increase in output of approximately 10 units.
iv. A decrease in \(K \) would be expected to lead to a decrease in the output.

\(\square \) (a) All
(b) None
(c) ii and iv
(d) i and ii
(e) iii and iv
(f) i and iii
(g) i, ii, and iii
(h) i, ii, and iv
(i) i, iii, and iv
(j) ii, iii, and iv
15. \(A, B \) and \(a \) are positive constants; \(Y = AK^a + BL^a \). Compute and simplify the expression \(K \frac{\partial Y}{\partial K} + L \frac{\partial Y}{\partial L} \).

The result is?

(a) 0

(b) \(a \)

(c) \(Y \)

(d) \(aY \)

(e) \(A + B \)

(f) \(AB \)

(g) \(A^aB^a \)

(h) \((KL)^a \)

(i) \(a(KL) \)

(j) \(a(K + L) \)

\[= K (A aK^{a-1}) + L (B aL^{a-1}) \]

\[= A aK^{a} + B aL^{a} \]

\[= a \left(A K^a + B L^a \right) \]

\[= aY \]

16. Suppose \(z = e^{xy^2} \). Compute \(E_{x} z \), the partial elasticity of \(z \) with respect on \(x \)

(a) \(x \)

(b) \(y \)

(c) \(y^2 \)

(d) \(xy^2 \)

(e) \(\log x \)

(f) \(\log y \)

(g) \(\log x + \log y \)

(h) \(\log x + 2 \log y \)

(i) \(e^x \)

(j) \(e^{xy^2} \)

\[E_{x} z = \frac{x \frac{\partial z}{\partial x}}{z} \]

\[= \frac{x}{e^{xy^2}} \cdot y^2 e^{xy^2} \]

\[= xy^2 \]
17. At a certain time the demand for potatoes was estimated to be

\[D = Ap^{-3}m^4 \]

where \(p \) is the price of potatoes and \(m \) is mean income. Find the price elasticity of demand, \(\text{El}_p D \).

(a) .4
(b) -.4
(c) .7
(d) -.7
(e) -.12
(f) .12
(g) .1
(h) -.1
(i) .3
(j) -.3

18. The annual herring catch is given by the function \(Y(K, S) = .06K^{1.3}S^{-6} \). Where \(K \) is the catching effort and \(S \) is the size of the herring stock. What will happen to the catch if both the effort and stock increase by a factor of three?

(a) The catch will not change.
(b) The catch will increase by a factor of 3
(c) The catch will increase by a factor of 3^{1.3}
(d) The catch will increase by a factor of 3^{6}
(e) The catch will increase by a factor of 3^{1.9}
(f) The catch will decrease by a factor of 3
(g) The catch will decrease by a factor of 3^{1.3}
(h) The catch will decrease by a factor of 3^{6}
(i) The catch will decrease by a factor of 3^{1.9}
(j) Cannot be determined from the given information.
19. The set of points \((x, y, z)\) in three dimensional space whose coordinates satisfy the equation \(x + y + z = 3\) form which of the following surfaces?

(a) A sphere centered at the origin, radius \(\sqrt{3}\).
(b) A sphere centered at \((1, 1, 1)\) radius \(\sqrt{3}\)
(c) A plane through the origin
(d) A plane through the point \((1, 1, 1)\)
(e) A curved surface through the origin
(f) A curved surface through the point \((1, 2, -1)\)
(g) A sphere centered at the origin radius 3
(h) A sphere centered at the point \((1, 1, 1)\) with radius 3

1) \((1, 1, 1)\) is on the surface
2) \((1, 2, -1)\) is not
3) Origin \((0, 0, 0)\) is not

1) eliminates b, 9, y
2) eliminates f
3) eliminates c, e

so answer is a) or d). Equation is not e.g. of a sphere so
ans = d

20. The straight line with equation \(x - y = 1\) is part of a single level curve for which of the following surfaces?

i. \(z = x + y\)
ii. \(z = x - y\)
iii. \(z = x^2 + y^2\)
iv. \(z = 3e^{x-y}\)

(a) All
(b) None
(c) i
(d) ii
(e) iii
(f) iv
(g) i and ii
(h) ii and iv
(i) i and iii
(j) iii and iv

\[\text{if}\ x-y \geq 1\]

\[\text{for i} \quad z = x+y \quad \text{could be anything}\]
\[z = x-1 = 1 = \text{constant}\]
\[\text{for iii} \quad z = x^2 + y^2 \quad \text{could be lots of things}\]
\[z = 3e^{x-y} = 3e^1 = \text{constant}\]

\[\text{Ans} \ ii + iv\]