Hankel vector moment sequences

J.E. Pascoe

May 29, 2014

Pick functions

Let Π be the complex upper halfplane, that is

$$
\Pi=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

Pick functions

Let Π be the complex upper halfplane, that is

$$
\Pi=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

A classical Pick function is an analytic function h on Π with nonnegative imaginary part, that is

$$
\operatorname{Im} h(z) \geq 0, \text { for } z \in \Pi
$$

Let \mathcal{P} be the class of Pick functions.

Nevanlinna representations

Theorem (Nevanlinna)
Let h be a function defined on Π. There exists a finite positive measure μ on \mathbb{R} such that

$$
h(z)=\int \frac{\mathrm{d} \mu(t)}{t-z}
$$

if and only if

1. $h \in \mathcal{P}$, and
2.

$$
\liminf _{y \rightarrow \infty} y|h(i y)|<\infty .
$$

Connection to moment problems

Note that

$$
\frac{1}{t-z}=-\sum_{n=0}^{\infty} \frac{t^{n}}{z^{n+1}}
$$

Connection to moment problems

Note that

$$
\frac{1}{t-z}=-\sum_{n=0}^{\infty} \frac{t^{n}}{z^{n+1}}
$$

So, if μ is compactly supported,

$$
h(z)=\int \frac{\mathrm{d} \mu(t)}{t-z}=-\sum_{n=0}^{\infty} \frac{\int t^{n} d \mu(t)}{z^{n+1}}
$$

Connection to moment problems

Note that

$$
\frac{1}{t-z}=-\sum_{n=0}^{\infty} \frac{t^{n}}{z^{n+1}}
$$

So, if μ is compactly supported,

$$
h(z)=\int \frac{\mathrm{d} \mu(t)}{t-z}=-\sum_{n=0}^{\infty} \frac{\int t^{n} d \mu(t)}{z^{n+1}}
$$

Thus, the moments of $\mu, \int t^{n} d \mu(t)$ are given by the residues at ∞ of h.

Connection to moment problems II

Theorem (Nevanlinna)
Let ρ_{n} be a sequence of real numbers. There is a measure μ with moments

$$
\rho_{n}=\int t^{n} d \mu(t)
$$

if and only if there is a Pick function so that for each N

$$
h(z)=-\sum_{n=0}^{N} \frac{\rho_{n}}{z^{n+1}}+o\left(\frac{1}{|z|^{n+1}}\right)
$$

nontangentially at infinity.

Operator theoretic approach

An operator theoretic approach can be guided by the observation that the integral representation

$$
h(z)=\int \frac{\mathrm{d} \mu(t)}{t-z}
$$

can be written

$$
h(z)=\left\langle(A-z)^{-1} \mathbf{1}, \mathbf{1}\right\rangle
$$

where A is multiplication by t on $L^{2}(\mu)$ and $\mathbf{1}$ is the constant function 1 .

Operator theoretic approach

An operator theoretic approach can be guided by the observation that the integral representation

$$
h(z)=\int \frac{\mathrm{d} \mu(t)}{t-z}
$$

can be written

$$
h(z)=\left\langle(A-z)^{-1} \mathbf{1}, \mathbf{1}\right\rangle
$$

where A is multiplication by t on $L^{2}(\mu)$ and $\mathbf{1}$ is the constant function 1.
Note that

$$
\left\langle A^{n} \mathbf{1}, \mathbf{1}\right\rangle=\int t^{n} d \mu
$$

Pick functions in two variables

Let Π^{2} be the bi-upperhalfplane

$$
\Pi^{2}=\left\{\left(z_{1}, z_{2}\right): \operatorname{Im} z_{i}>0\right\}
$$

Pick functions in two variables

Let Π^{2} be the bi-upperhalfplane

$$
\Pi^{2}=\left\{\left(z_{1}, z_{2}\right): \operatorname{Im} z_{i}>0\right\}
$$

The 2-variable Pick class \mathcal{P}_{2} is the set of analytic functions h on Π^{2} such that

$$
\operatorname{Im} h \geq 0
$$

2-variable type I Nevanlinna representation

Theorem (Agler, Tully-Doyle, Young)
For a function h defined on Π^{2}, there exists a Hilbert space \mathcal{H}, a densely defined self-adjoint operator A on \mathcal{H}, a vector $v \in \mathcal{H}$ and a positive contraction Y on \mathcal{H} such that h has a type I representation

$$
h(z)=\left\langle\left(A-z_{1} Y-z_{2}(1-Y)\right)^{-1} v, v\right\rangle_{\mathcal{H}}
$$

if and only if $h \in \mathcal{P}_{2}$ and

$$
\liminf _{y \rightarrow \infty} y|h(i y, i y)|<\infty
$$

Hankel vector moment sequences

Let $z_{Y}=z_{1} Y+z_{2}(1-Y)$. If A is bounded then

$$
h(z)=\left\langle\left(A-z_{Y}\right)^{-1} v, v\right\rangle=-\sum_{n=1}^{\infty}\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle
$$

Hankel vector moment sequences

Let $z_{Y}=z_{1} Y+z_{2}(1-Y)$. If A is bounded then

$$
h(z)=\left\langle\left(A-z_{Y}\right)^{-1} v, v\right\rangle=-\sum_{n=1}^{\infty}\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle
$$

In analogy with one variable, the function $r_{n}(z)=\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle$ is called the n-th scalar moment.

Hankel vector moment sequences

Let $z_{Y}=z_{1} Y+z_{2}(1-Y)$. If A is bounded then

$$
h(z)=\left\langle\left(A-z_{Y}\right)^{-1} v, v\right\rangle=-\sum_{n=1}^{\infty}\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle
$$

In analogy with one variable, the function
$r_{n}(z)=\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle$ is called the n-th scalar moment.
Furthermore the vector valued expression

$$
R_{n}(z)=z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v
$$

is called a vector moment.

Hankel vector moment sequences

Let $z_{Y}=z_{1} Y+z_{2}(1-Y)$. If A is bounded then

$$
h(z)=\left\langle\left(A-z_{Y}\right)^{-1} v, v\right\rangle=-\sum_{n=1}^{\infty}\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle
$$

In analogy with one variable, the function
$r_{n}(z)=\left\langle z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v, v\right\rangle$ is called the n-th scalar moment.
Furthermore the vector valued expression

$$
R_{n}(z)=z_{Y}^{-1}\left(A z_{Y}^{-1}\right)^{n-1} v
$$

is called a vector moment.
These are not in general polynomials in $\frac{1}{z_{1}}, \frac{1}{z_{2}}$.

Hankel vector moment sequences

Theorem (Agler, McCarthy)
A Pick function h has polynomial scalar moments to order $2 n-1$ if and only if h has polynomial vector moments to order n.

Hankel vector moment sequences

Theorem (Agler, McCarthy)
A Pick function h has polynomial scalar moments to order $2 n-1$ if and only if h has polynomial vector moments to order n.
Using some geometry of the representation they also obtained the following.

Corollary (Agler, McCarthy)

There is a Pick function h which has prescribed polynomial scalar moments r_{k} to order $2 n-1$ if and only if there is a rational function with those scalar moments.

Hankel vector moment sequences

The Hankel vector moment sequence theory can be replicated at any point in \mathbb{R}^{2}. (P.)

Hankel vector moment sequences

The Hankel vector moment sequence theory can be replicated at any point in \mathbb{R}^{2}. (P.)
Using this framework, similar interpolation results can be obtained.
Theorem (P.)
Let x_{1}, \ldots, x_{m} be a set of points in \mathbb{R}^{2} in generic position. There is a Pick function h with a prescribed power series with real coefficients to odd order at each x_{i} if and only if there is a rational function with those prescribed expansions at each x_{i}.

The end

Thanks.

