J.E. Pascoe

May 29, 2014

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Pick functions

Let Π be the complex upper halfplane, that is

$$\Pi = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}.$$

Pick functions

Let Π be the complex upper halfplane, that is

$$\Pi = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}.$$

A classical *Pick function* is an analytic function h on Π with nonnegative imaginary part, that is

Im $h(z) \ge 0$, for $z \in \Pi$.

Let $\ensuremath{\mathcal{P}}$ be the class of Pick functions.

Nevanlinna representations

Theorem (Nevanlinna)

Let h be a function defined on Π . There exists a finite positive measure μ on \mathbb{R} such that

$$h(z) = \int \frac{\mathrm{d}\mu(t)}{t-z}$$

if and only if 1. h∈ P, and 2.

 $\liminf_{y\to\infty} y |h(iy)| < \infty.$

Connection to moment problems

Note that

$$\frac{1}{t-z} = -\sum_{n=0}^{\infty} \frac{t^n}{z^{n+1}}$$

Connection to moment problems

Note that

$$\frac{1}{t-z} = -\sum_{n=0}^{\infty} \frac{t^n}{z^{n+1}}$$

So, if μ is compactly supported,

$$h(z) = \int \frac{\mathrm{d}\mu(t)}{t-z} = -\sum_{n=0}^{\infty} \frac{\int t^n d\mu(t)}{z^{n+1}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Connection to moment problems

Note that

$$\frac{1}{t-z} = -\sum_{n=0}^{\infty} \frac{t^n}{z^{n+1}}$$

So, if μ is compactly supported,

$$h(z) = \int \frac{\mathrm{d}\mu(t)}{t-z} = -\sum_{n=0}^{\infty} \frac{\int t^n d\mu(t)}{z^{n+1}}.$$

Thus, the moments of μ , $\int t^n d\mu(t)$ are given by the residues at ∞ of *h*.

Connection to moment problems II

Theorem (Nevanlinna)

Let ρ_n be a sequence of real numbers. There is a measure μ with moments

$$\rho_n = \int t^n d\mu(t)$$

if and only if there is a Pick function so that for each N

$$h(z) = -\sum_{n=0}^{N} \frac{\rho_n}{z^{n+1}} + o(\frac{1}{|z|^{n+1}})$$

nontangentially at infinity.

Operator theoretic approach

An operator theoretic approach can be guided by the observation that the integral representation

$$h(z) = \int \frac{\mathrm{d}\mu(t)}{t-z}$$

can be written

$$h(z) = \langle (A-z)^{-1}\mathbf{1},\mathbf{1} \rangle$$

where A is multiplication by t on $L^2(\mu)$ and **1** is the constant function 1.

Operator theoretic approach

An operator theoretic approach can be guided by the observation that the integral representation

$$h(z) = \int \frac{\mathrm{d}\mu(t)}{t-z}$$

can be written

$$h(z) = \langle (A-z)^{-1}\mathbf{1},\mathbf{1} \rangle$$

where A is multiplication by t on $L^2(\mu)$ and **1** is the constant function 1. Note that

$$\langle A^n \mathbf{1}, \mathbf{1} \rangle = \int t^n d\mu.$$

Pick functions in two variables

Let Π^2 be the bi-upperhalfplane

$$\Pi^2 = \{ (z_1, z_2) : \text{Im } z_i > 0 \}.$$

Pick functions in two variables

Let Π^2 be the bi-upperhalfplane

$$\Pi^2 = \{ (z_1, z_2) : \text{Im } z_i > 0 \}.$$

The 2-variable Pick class \mathcal{P}_2 is the set of analytic functions h on Π^2 such that

 $\text{Im } h \ge 0.$

2-variable type I Nevanlinna representation

Theorem (Agler, Tully-Doyle, Young)

For a function h defined on Π^2 , there exists a Hilbert space \mathcal{H} , a densely defined self-adjoint operator A on \mathcal{H} , a vector $v \in \mathcal{H}$ and a positive contraction Y on \mathcal{H} such that h has a type I representation

$$h(z) = \left\langle (A - z_1 Y - z_2 (1 - Y))^{-1} v, v \right\rangle_{\mathcal{H}}$$

if and only if $h \in \mathcal{P}_2$ and

 $\liminf_{y\to\infty} y |h(iy,iy)| < \infty.$

Let $z_Y = z_1 Y + z_2(1 - Y)$. If A is bounded then

$$h(z) = \left\langle (A-z_Y)^{-1}v, v \right\rangle = -\sum_{n=1}^{\infty} \left\langle z_Y^{-1} (Az_Y^{-1})^{n-1}v, v \right\rangle.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Let
$$z_Y = z_1 Y + z_2(1 - Y)$$
. If A is bounded then

$$h(z) = \left\langle (A-z_Y)^{-1}v, v \right\rangle = -\sum_{n=1}^{\infty} \left\langle z_Y^{-1} (Az_Y^{-1})^{n-1}v, v \right\rangle.$$

In analogy with one variable, the function $r_n(z) = \langle z_Y^{-1}(Az_Y^{-1})^{n-1}v, v \rangle$ is called the *n*-th scalar moment.

Let $z_Y = z_1 Y + z_2(1 - Y)$. If A is bounded then

$$h(z) = \left\langle (A-z_Y)^{-1}v, v \right\rangle = -\sum_{n=1}^{\infty} \left\langle z_Y^{-1} (Az_Y^{-1})^{n-1}v, v \right\rangle.$$

In analogy with one variable, the function $r_n(z) = \langle z_Y^{-1} (A z_Y^{-1})^{n-1} v, v \rangle$ is called the *n*-th scalar moment. Furthermore the vector valued expression

$$R_n(z) = z_Y^{-1} (A z_Y^{-1})^{n-1} v$$

is called a vector moment.

Let
$$z_Y = z_1 Y + z_2(1 - Y)$$
. If A is bounded then

$$h(z) = \left\langle (A-z_Y)^{-1}v, v \right\rangle = -\sum_{n=1}^{\infty} \left\langle z_Y^{-1} (Az_Y^{-1})^{n-1}v, v \right\rangle.$$

In analogy with one variable, the function $r_n(z) = \langle z_Y^{-1} (A z_Y^{-1})^{n-1} v, v \rangle$ is called the *n*-th scalar moment. Furthermore the vector valued expression

$$R_n(z) = z_Y^{-1} (A z_Y^{-1})^{n-1} v$$

is called a vector moment.

These are not in general polynomials in $\frac{1}{z_1}, \frac{1}{z_2}$.

Theorem (Agler, McCarthy)

A Pick function h has polynomial scalar moments to order 2n - 1 if and only if h has polynomial vector moments to order n.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Agler, McCarthy)

A Pick function h has polynomial scalar moments to order 2n - 1 if and only if h has polynomial vector moments to order n.

Using some geometry of the representation they also obtained the following.

Corollary (Agler, McCarthy)

There is a Pick function h which has prescribed polynomial scalar moments r_k to order 2n - 1 if and only if there is a rational function with those scalar moments.

The Hankel vector moment sequence theory can be replicated at any point in $\mathbb{R}^2.$ (P.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The Hankel vector moment sequence theory can be replicated at any point in $\mathbb{R}^2.$ (P.)

Using this framework, similar interpolation results can be obtained.

Theorem (P.)

Let x_1, \ldots, x_m be a set of points in \mathbb{R}^2 in generic position. There is a Pick function h with a prescribed power series with real coefficients to odd order at each x_i if and only if there is a rational function with those prescribed expansions at each x_i .

The end

Thanks.

